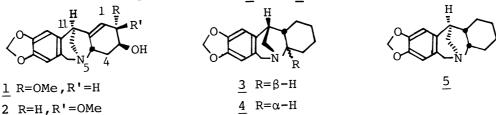
A Stereoselective Synthesis of a Basic Skeleton of Amaryllidaceae Montanine-type Alkaloids, (\pm) -4a,11a-cis-11,11a-syn-5,11- Methanomorphanthridine Ring System


Osamu HOSHINO* and Miyuki ISHIZAKI

Faculty of Pharmaceutical Sciences, Science University of Tokyo,

12, Ichigaya Funagawara-machi, Shinjuku-ku, Tokyo 162

A title compound was synthesized by reductive cyclization of 4a,11a-cis-11,11a-syn-11-acetoxymethyl-N-p-tosylmorphanthridine or N-detosylated alcohol derived from a hydroxymethyl-p-tosylamide prepared by hydroboration-oxidation of cis-1-(p-to-sylamido)-2-vinylcyclohexane derivative.

Recently, we reported a first synthesis $^{1)}$ of (\pm) -4a,11a-cis-11,11a-anti-5,11-methanomorphanthridine $(\underline{3})$ and its trans isomer $(\underline{4})$, which are a basic skeleton of Amaryllidaceae montanine-type alkaloids, montanine $(\underline{1})^{2)}$ and coccinine $(\underline{2})^{2)}$ by reductive cyclization of 11-hydroxymethyl-N-tosylmorphanthridines with sodium bis (2-methoxyethoxy) aluminum hydride (SMEAH) in boiling toluene. In the methodology, however, stereoselective synthesis of a 4a,11a-cis-11,11a-syn compound $(\underline{5})$, having the same stereochemistry to that at the 4a and 11 positions in 1 and 2, was not achieved. Therefore,

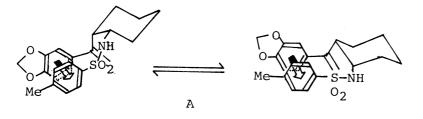
the development of the more efficient method for its stereoselective synthesis was explored. In the present paper, we wish to report a stereocontrolled effect of a p-tosyl group in hydroboration-oxidation³⁾ of $\underline{6}$ and a stereoselective synthesis of the title compound $(\underline{5})$.

Terminal olefins ($\underline{6}$ and $\underline{7}$) were prepared as follows. Reaction of ciscyclohexane-1,2-dicarboxylic anhydride with 3,4-methylenedioxyphenylmagnesium bromide in THF at 0 °C gave cis-2-(3,4-methylenedioxybenzoyl) cyclohexane-1-carboxylic acid⁴) (mp 168-169 °C), whose Curtius rearrangement furnished a carbamate ($\underline{8}$)⁴) (mp 138 °C; 61%). Conversion of $\underline{8}$ to a p-tosylamide ($\underline{9}$)⁴) (mp 173 °C) was performed in 91% yield. Wittig reaction of $\underline{8}$ and $\underline{9}$ gave $\underline{7}^4$) (mp 83.5 °C; 96%) and $\underline{6}^4$) (mp 173 °C; 84%), respectively.

Hydroboration-oxidation of $\underline{7}$ followed by acetylation gave a mixture of acetoxy carbamates, which were similarly converted to a separable mixture of p-tosylamides $\underline{10}^{4}$) (mp 125-126 °C) and $\underline{11}^{4}$) (mp 172-173 °C) in a ratio of 1:11.8 5) (71% overall yield). Structures of the p-tosylamides ($\underline{10}$ and $\underline{11}$) were determined by their transformation to the known N-(p-tosyl)-3-(3,4-me-

$$\frac{6}{2} \text{ or } \frac{1}{2} \frac{1$$

thylenedioxyphenyl) indolines (12 and 13).


On the other hand, the similar reaction of $\underline{6}$ gave exclusively a hydroxymethyl-p-tosylamide ($\underline{14}$)⁴ (mp 184 °C; 100%), whose acetylation gave $\underline{11}$.

In order to explore the effect of the sulfonamide group in the hydroboration, a mesylamide $(\underline{15})^4$) (mp 103-104 °C; 71%) was used. The similar reaction of mesylamide $(\underline{15})$ as noted above gave a diastereomeric mixture of hydroxy mesylamides in 93% yield, a ratio of which was undeterminable. Therefore, the mixture was converted in the usual manner to a diastereome-

Therefore, the mixture was converted in the usual manner to a diastereomeric mixture of $\underline{12}$ and $\underline{13}$. Surprisingly, the ratio of $\underline{12}$ and $\underline{13}$ was $17:1,^5)$ showing the reverse of the results obtained in the case of $\underline{6}$ and $\underline{7}$. This finding suggested the hydroboration to occur intramolecularly by the sulfonamide-borane complex, $^6)$ which would be formed initially by reaction of acidic sulfonamido group with borane.

To confirm the supposition, reaction of $\underline{15}$ in the presence of n-butyl-lithium (one equivalent) was similarly carried out to give a diastereomeric mixture of $\underline{12}$ and $\underline{13}$ in a ratio of 1:4.3⁵⁾ (23% overall yield) as expected, although the stereoselectivity was poor.

The remarkable difference is attributable to the steric hyndrance, which would occur because of the formation of the charge-transfer complex $^{7)}$

(e.g. A) between 3,4-me- thylenedioxyphenyl and p-tosyl groups in $\underline{6}$, although a sulfonamide-

borane complex might be formed. Furthermore, the less stereoselectivity of $\underline{7}$ and $\underline{15}$ would be explained in terms of the lack of the complex. Thus, a dramatic stereocontrolled effect of p-tosyl group in hydroboration-oxidation of a terminal olefin ($\underline{6}$) was observed.

Conversion of $\underline{11}$ obtained above to $\underline{5}$ was performed as follows. Cyclization of $\underline{11}$ under the same conditions as reported previously $^{1)}$ gave an 11-acetoxymethyl-N-tosylmorphanthridine ($\underline{16}$) $^{4)}$ (mp 136 °C; 77%), which was also

obtained (46%) from 14 under the same conditions.

Treatment of $\underline{16}$ with SMEAH in boiling toluene for 5 h gave $\underline{5}$ [mp 100 °C; 77%; MS m/z: 275 (M), 175 (base peak)], while reaction for 3 h yielded only an N-detosylated alcohol $(\underline{17})^{4}$ (mp 179-180 °C; 45%), which was cyclized to $\underline{5}$ (43%) by the similar treatment (3 h) as noted for $\underline{16}$. Structure of $\underline{5}$ was determined by comparison of its mass spectral data with those⁸⁾ reported and those described for its isomers.¹⁾

Thus, a stereoselective synthesis of 5 was accomplished.

References

- O. Hoshino, M. Ishizaki, K. Saito, and K. Yumoto, J. Chem. Soc., Chem. Commun., 1990, 420.
- 2) Y. Inubushi, H. M. Fales, E. W. Warnhoff, and W. C. Wildman, J. Org. Chem., 25, 2153 (1960).
- 3) <u>Cf.</u> There are reports on stereochemistry of hydroboration of terminal olefins, such as 2-substituted methylenecyclohexanes and methylenecyclopentanes [Y. Senda, S. Kamiyama, and S. Imaizumi, Tetrahedron, <u>33</u>, 2933(1977)]. However, the reaction does not always proceed stereoselectively.
- 4) All new compouds gave satisfactory chemical and mass and ¹H-NMR spectral analyses.
- 5) A ratio was estimated by gas-liquid chromatography.
- 6) Formation of β -hydroxysulfoximines-borane complex is reported: C. R. Johnson and C. J. Stark, Tetrahedron Lett., 1979, 4713.
- 7) A p-tosyl group is known to behave as a π -acceptor: M. D. Bentley and M. J. S. Dewar, Tetrahedron Lett., 1967, 5043.
- 8) W. C. Wildman and C. L. Brown, J. Am. Chem. Soc., <u>90</u>, 6439 (1968). (Received July 5, 1990)