Tetrahedron Letters 52 (2011) 6726-6728

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

First nucleophilic addition of acetylide to 1,3-diketonate anions: reaction of 1-aryl-4,4,4-trifluorobutane-1,3-diones with sodium acetylide

Boris I. Usachev*

Department of Chemistry, Ural Federal University, pr. Lenina 51, Ekaterinburg 620083, Russia

ARTICLE INFO

ABSTRACT

Article history: Received 25 August 2011 Revised 20 September 2011 Accepted 30 September 2011 Available online 17 October 2011

Keywords:

Trifluoromethylated 1,3-diketonate anions Sodium acetylide Nucleophilic addition Trifluoromethylated alkynediols Trifluoromethylated bifurans The nucleophilic addition of sodium acetylide to 1,3-diketonates derived from 1-aryl-4,4,4-trifluorobutane-1,3-diones is reported. Tertiary 1,4-alkynediols containing CF_3 and aroylmethyl groups are synthesized. 5,5'-Diaryl-3,3'-bis(trifluoromethyl)-2,2'-bifurans are prepared via a novel double cyclization of these alkynediols.

© 2011 Elsevier Ltd. All rights reserved.

Trifluoromethylated propargylic compounds have attracted significant attention mainly due to their biological activity¹ and as excellent building blocks for the preparation of a variety of complex CF₃-containing acyclic and heterocyclic compounds.² The most common method for the synthesis of propargylic alcohols and their derivatives is based on the reactions of metal acetylides and ketones.^{1e,3} However, there is no data in the literature on the use of 2-unsubstituted 1,3-diketones in similar reactions.

According to the literature,⁴ β -diketones (acetylacetones) react with sodium acetylide to give sodium diketonates. Formation of nonelectrophilic enolates is the main reason which prevents nucle-ophilic addition of the acetylide anion to the 1,3-dicarbonyl compound.

In this Letter, a novel reaction of such β -diketones (1-aryl-4,4,4-trifluorobutane-1,3-diones **1a-d**) with sodium acetylide is described (Scheme 1). It was found that reaction of diketones **1** with excess sodium acetylide proceeded under moderate heating via regioselective nucleophilic addition of the acetylide anion at C-3 (the carbon connected to the CF₃ group). The reaction was conducted by adding a solution of **1** in THF to a suspension of sodium acetylide in a mixture of THF and xylene. After acetylene evolution had ceased (due to the acid-base reaction), the mixture was stirred at ambient temperature for 2 h, then heated at 70–90 °C for 2 h, and quenched with dilute H₂SO₄ to give highly functionalized symmetric tertiary alkynediols, 1,8-diaryl-3,6-dihydroxy-3,6-

bis(trifluoromethyl)-oct-4-yne-1,8-diones 2 as novel, interesting CF₃-containing propargylic building blocks (47–71% yield).

The structures of alkynediols **2** were confirmed by ¹H, ¹⁹F, ¹³C NMR and IR spectroscopy, and elemental analysis. Thus, in the ¹H NMR spectrum of alkynediol **2a** two doublets due to the methylene protons appeared at δ 3.30 and 3.63 (²J = 17.0 Hz).

A singlet due to the two equivalent OH groups at δ 5.35 was observed. Signals due to ten aromatic protons appeared in the range δ 7.47–7.84. In the ¹³C NMR spectrum of compound **2a**, besides signals of the aromatic carbons, singlets due to the methylene (δ 41.3), alkyne (δ 81.7), and carbonyl (δ 198.1) carbons were observed. The carbinol and trifluoromethyl carbons appeared as characteristic quartets at δ 70.1 (² $J_{C,F}$ = 32.9 Hz) and δ 122.8 (¹ $J_{C,F}$ = 283.8 Hz), respectively.⁵

A high-field singlet in the ¹⁹F NMR spectrum of **2a** (CDCl₃, C₆F₆) at δ 80.2 confirmed that the CF₃ groups were connected to the sp³ hybridized carbons. Diastereomeric pairs of **2** were indistinguishable in the NMR spectra due to the long distance between the asymmetric centres (carbons C-3 and C-6), which have a negligibly small mutual asymmetric influence.

A possible mechanism for the reaction involves addition of the acetylide anion to the activated C-3 carbon of diketonate anion **A**. The resulting dianionic intermediate **B** undergoes deprotonation to give trianion **C**. The acetylide anion of **C** attacks a second diketonate anion **A** leading to the formation of tetraionic intermediate **D**. Quenching the reaction with aqueous H_2SO_4 affords alkynediols **2**. No monoaddition products derived from intermediates **B** were found in the crude product. This finding can be explained by the good solubility of disodium diolates **B** in the reaction medium

^{*} Tel.: +7 343 261 6824; fax: +7 343 261 5978. *E-mail address*: boris.usachev@mail.ru

Scheme 1. Synthesis of CF₃-containing alkynediols 2a-d.

Scheme 2. Synthesis of 5,5'-diaryl-3,3'-bis(trifluoromethyl)-2,2'-bifurans 3a-d.

Table 1Compounds 2 and 3 produced via Schemes 1–35.9

Entry	Ar	Product	Yield (%)	Mp (°C)
1	Ph	2a	71	126-128
2	$4-Cl-C_6H_4$	2b	48	132-134
3	4-MeO-C ₆ H ₄	2c	47	162-164
4	2-Naphthyl	2d	60	174-175
5	$Ph(CH)_4$	2e	73	147-149
6	Ph	3a	93,ª 73 ^b	168-170
7	$4-Cl-C_6H_4$	3b	93 ^a	227-228
8	4-MeO-C ₆ H ₄	3c	82 ^a	220-222
9	2-Naphthyl	3d	64, ^a 68 ^b	242-244
10	Ph(CH) ₄	3e	31 ^a	227-229

^a Prepared by treatment with Ac₂O/CF₃SO₃H.

^b Prepared by treatment with (CF₃CO)₂O/Et₃N.

(THF-xylene) in contrast to sodium acetylide. Therefore, the reaction $\mathbf{C} \rightarrow \mathbf{D}$ proceeds much faster than reaction $\mathbf{A} \rightarrow \mathbf{B}$ to give alkynediols **2** as the major products.

It is known, that anionic^{6a-c} and palladium-catalyzed^{6c} cyclization of several pent-4-ynones leads to the formation of the

Scheme 3. Synthesis of highly conjugated CF₃-containing alkynediol **2e** and 2,2'-bifuran **3e**.

corresponding furan derivatives.⁶ It was found that treatment of compounds **2a–d** with acetic anhydride in the presence of trifluoromethanesulfonic acid at ambient temperature was followed by double intramolecular cyclization and resulted in the formation of 5,5'-diaryl-3,3'-bis(trifluoromethyl)-2,2'-bifurans **3a–d** (64–93%), the first representatives of 3,3'-bis(trifluoromethyl)-2,2'-bifurans (Scheme 2).

Alternatively, bifurans **3** could be prepared in good yields (Table 1) by treatment of **2** with trifluoroacetic anhydride in trieth-ylamine (Scheme 2).

Solutions of **3** in organic solvents possess visible fluorescence (a characteristic property of 5,5'-diaryl-2,2'-bifurans⁷). This approach should enrich considerably the class of 5,5'-diaryl-2,2'-bifurans, some derivatives of which are antiprotozoal agents and prodrugs thereof.⁸

The structures of compounds **3** were confirmed by ¹H, ¹⁹F, ¹³C NMR and IR spectroscopy, and elemental analysis. Thus, in the ¹H NMR spectrum of bifuran **3a**, besides signals due to the 10 aromatic protons, a singlet due to 2 equiv furan potons (H-4 and H-4') at δ 6.95 was observed. In the ¹³C NMR spectrum of **3a** three characteristic quartets due to the C-4, C-4' (δ 105.1, ³J_{C,F} = 3.3 Hz), C-3, C-3' (δ 117.1, ²J_{C,F} = 38.9 Hz), and CF₃, CF₃' (δ 122.0, ¹J_{C,F} = 268.0 Hz) carbons were observed, confirming the CF₃-furan structure. Carbons C-5, C-5' appeared as a singlet at δ 154.8. The characteristic quartet of quartets (coupling to two CF₃ groups) due to C-2, C-2' (δ 140.7, ³J_{C,F} = 4.4 Hz, ⁴J_{C,F} = 1.5 Hz) proved unambiguously the 2,2'-bifuran structure. In the ¹⁹F NMR spectra of compounds **3** (CDCl₃, C₆F₆) the trifluoromethyl group appeared as a singlet at about δ 104.0.⁹

No signals from any intermediates were found in the ¹H NMR spectra of crude bifurans **3**. Nevertheless, extraction of traces of possible intermediates from a portion (~30 mg) of a crude sample of **3d** with CDCl₃ (~1 mL) (solubility of **3d** in chloroform was low) gave, according to ¹H and ¹⁹F NMR spectra, a mixture of **3d** and the corresponding intermediate diacetate **E** (Scheme 2) in the ratio 1:1. The characteristic signals of this intermediate in the ¹H NMR spectrum included a singlet at δ 2.11 (6H, 2Me), two doublets due to the methylene protons at δ 3.77 and 3.94 (²J = 15.4 Hz). In the ¹⁹F NMR spectrum of the extract the trifluoromethyl groups appeared as singlets at δ 83.8 (**E**) and δ 104.0 (**3d**).

Vinylogs of CF₃-diketones **1** can also be used in the reaction with sodium acetylide. Thus, 7,10-dihydroxy-1,16-diphenyl-7,10-bis(tri fluoromethyl)hexadeca-1,3,13,15-tetraen-8-yne-5,12-dione (**2e**) (73%) and 5,5'-bis(4-phenylbuta-1,3-dienyl)-3,3'-bis(trifluoromethyl)-2,2'-bifuran (**3e**) (31%) were synthesized from 1,1,1-trifluoro-8-phenylocta-5,7-diene-2,4-dione (**1e**) via the approaches described above (Scheme 3, Table 1). The structures of **2e** and **3e** were confirmed by ¹H, ¹⁹F, ¹³C NMR and IR spectroscopy, and elemental analysis.

The starting CF_3 -diketones **1** are commercially available or easily obtainable.¹⁰

In summary, regioselective nucleophilic addition of the acetylide anion to 1,3-diketonate anions derived from 1-aryl-4,4,4-trifluorobutane-1,3-diones has been demonstrated for the first time. This reaction is of significant interest for the development of the chemistry of trifluoromethylated 1,3-diketones concerning their possible reactions with C-nucleophiles. A novel double cyclization of 1,8-diaryl-3,6-dihydroxy-3,6-bis(trifluoromethyl)oct-4-yne-1,8-diones into 5,5'-diaryl-3,3'-bis(trifluoromethyl)-2,2'-bifurans was also discovered.

References and notes

- (a) Garay, E.; Jankowski, P.; Lizano, P.; Marczak, S.; Maehr, H.; Adorini, L.; Uskokovic, M. R.; Studzinski, G. P. Bioorg, Med. Chem. 2007, 15, 4444-4455; (b) Maehr, H.; Hong, J. L.; Perry, B.; Suh, N.; Uskokovic, M. R. J. Med. Chem. 2009, 52, 5505–5519; (c) Ohira, Y.; Taguchi, T.; Iseki, K.; Kobayashi, Y. Chem. Pharm. Bull. 1992, 40, 1647–1649; (d) Markwalder, J. A.; Christ, D. D.; Mutlib, A.; Cordova, B. C.; Klabe, R. M.; Seitz, S. P. Bioorg. Med. Chem. Lett. 2001, 11, 619–622; (e) Kourist, R.; Bartsch, S.; Bornscheuer, U. T. Adv. Synth. Catal. 2007, 349, 1393– 1398; (f) Ko, S.-J.; Lim, J. Y.; Jeon, N. Y.; Kim, B. T.; Lee, H.; Ha, D.-C.; Won, K. Tetrahedron: Asymmetry 2009, 20, 1109–1114.
- (a) Nicolaou, K. C.; Krasovskiy, A.; Majumder, U.; Trepanier, V. E.; Chen, D. Y.-K. J. Am. Chem. Soc. 2009, 131, 3690–3699; (b) Yamazaki, T.; Iwatsubo, H.; Kitazume, T. Tetrahedron: Asymmetry 1994, 5, 1823–1830; (c) Frey, L. F.; Tillyer, R. D.; Ouellet, S. G.; Reamer, R. A.; Grabowski, E. J. J.; Reider, P. J. J. Am. Chem. Soc. 2000, 122, 1215–1216; (d) Hilpert, H.; Wirz, B. Tetrahedron 2001, 57, 681–694; (e) Shimizu, M.; Fujimoto, T.; Minezaki, H.; Hata, T.; Hiyama, T. J. Am. Chem. Soc. 2001, 123, 6947–6948; (f) Wu, Y.; Clercq, P. D.; Vandewalle, M.; Bouillon, R.; Verstuyf, A. Bioorg. Med. Chem. Lett. 2002, 12, 1633–1636; (g) Li, Z.; Deng, G.; Li, Y.-C. Synlett 2008, 3053–3057; (h) Mello, R.; Alcalde-Aragones, A.; Gonzalez-Nunez, M. E. Tetrahedron Lett. 2010, 51, 4281–4283; (i) Kawai, H.; Tachi, K.; Tokunaga, E.; Shibata, N.; Shiro, M. Org. Lett. 2010, 12, 5104–5107; (j) Konno, T.; Tanikawa, M.; Ishihara, T.; Yamanaka, H. Chem. Lett. 2000, 1360–1361; (k) Ishizaki, M.; Suzuki, D.; Hoshino, O. J. Fluorine Chem. 2001, 111, 81–90; (l) Shimizu, M.; Higashi, M.; Takeda, Y.; Jiang, G.; Murai, M.; Hiyama, T. Synlett 2007, 1163–1165.
- (a) Tarrant, P.; Warner, D. A.; Taylor, R. E. J. Am. Chem. Soc. 1953, 75, 4360– 4362; (b) Fleck, B.; Kmiecik, J. J. Org. Chem. 1957, 22, 90–92.
- (a) Papa, D.; Villani, F. J.; Ginsberg, H. F. J. Am. Chem. Soc. 1954, 76, 4446–4450;
 (b) Davis, R. B.; Hurd, P. J. Am. Chem. Soc. 1955, 77, 3284–3287.
- 3,6-Bis(trifluoromethyl)-3,6-dihydroxy-1,8-diphenyloct-4-yne-1,8-dione (2a): The reaction was conducted under an argon atmosphere. A solution of 4,4,4trifluoro-1-phenylbutane-1,3-dione (1a) (11.3 g, 52.3 mmol) in dry THF

(15 mL) was added gradually to a cooled (-10 °C) mixture of sodium acetylide suspension 18 wt% slurry in xylene (60 mL) and dry THF (50 mL). The mixture was stirred at ambient temperature for 2 h, at 70 °C for 30 min, and at 90 °C for 1.5 h (the low-boiling solvent THF partially distilled off during heating the reaction mixture in the range 70-90 °C). The mixture was cooled to ambient temperature and quenched with cold (0 °C) 10% aqueous H2SO4 (200 mL). Hexane (250 mL) was added, and the resulting mixture stirred at 0 °C for 30 min. The residue was filtered, washed with H₂O and hexane, and dried. The dry residue was dissolved in a minimum volume of a hot mixture of hexane-toluene (1:1), the hot solution was passed through a layer of silica gel (5 cm³), and the layer washed with a hot mixture of hexane-toluene (1:1) (20 mL). The resulting residue was filtered, washed with hexane (5 mL) and dried to give compound **2a** as a white solid. Yield 8.52 g (71%), mp 126–128 °C; IR (KBr) 3429, 1698, 1658, 1597 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.30 (2H, d, J = 17.0 Hz, 2 CHH, 3.63 (2H, d, J = 17.0 Hz, 2 CHH), 5.35 (2H, s, 2 OH), 7.47 (4H, $\begin{array}{l} F_{1,1}(1,1), F_{2,1}(1,1), F_{2,1}($ Anal. Calcd for C22H16F6O4: C, 57.65; H, 3.52. Found: C, 57.90; H, 3.45.

- (a) Vieser, R.; Eberbach, W. Tetrahedron Lett. **1995**, 36, 4405–4408; (b) Nicola, T.; Vieser, R.; Eberbach, W. Eur. J. Org. Chem. **2000**, 527–538; (c) Wipf, P.; Rahman, L. T.; Rector, S. R. J. Org. Chem. **1998**, 63, 7132–7133.
- 7. Christoffers, J.; Dötz, K. H. Chem. Ber. 1995, 128, 641-644.
- Werbovetz, K.; Brun, R. Eur. Pat. Appl. EP1726589, 2006; Chem. Abstr. 2006, 146, 27716.
- 9. 5,5'-Diphenyl-3,3'-bis(trifluoromethyl)-2,2'-bifuran (3a). Method A. Alkynediol 2a (3.00 g, 6.55 mmol) was added with stirring to a mixture of Ac2O (20 mL) and CF3SO3H (0.5 mL). The mixture was kept at ambient temperature for 8 h and then cooled to -30 °C. The residue was filtered, washed with cold Ac2O (5 mL) and EtOH (5 mL), and dried to give compound **3a** as cream needles. Yield 2.58 g (93%), mp 168–170 °C; IR (ATR) 1586, 1571, 1516 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 6.95 (2H, s, H-4, H-4'), 7.37 (2H, t, J = 7.4 Hz, 2 Ar-H), 7.45 (4H, t, J = 7.4 Hz, 2 Ar-H), 7.74 (4H, d, J = 7.4 Hz, 2 Ar–H); ¹⁹F NMR (376.5 MHz, CDCl₃, C₆F₆) δ 104.0 (s, CF₃); ¹³C NMR J = 7.4 Hz, 2 AI-H); F NMR (370.5 MHZ, CDCI3, CGF() δ 104.0 (S, CF3); C NMR (100 MHZ, CDCI3) 105.1 (C-4, C-4', q, ${}^{3}J_{CF} = 3.3$ Hz), 117.1 (C-3, C-3', q, ${}^{2}J_{CF} = 3.8$ Hz), 122.0 (CF3, CF3, ${}^{1}J_{CF} = 268.0$ Hz), 124.2 (Ph), 128.7 (Ph), 129.01 (Ph), 129.04 (Ph), 140.7 (C-2, C-2', qq, ${}^{3}J_{CF} = 4.4$ Hz, ${}^{4}J_{CF} = 1.5$ Hz); 154.8 (C-5, C-5'); Anal. Calcd for C₂₂H₁₂F₆O₂: C, 62.57; H, 2.86. Found: C, 62.53; H, 2.77. Method B. Alkynediol 2a (0.200 g, 0.44 mmol) was added to dry Et₃N (3 mL). The mixture was cooled to 0 °C, and (CF₃CO)₂O (1.0 mL) was added gradually over 2 min. The mixture was stirred at 0°C for 20 min and at ambient temperature for 20 min. Then the mixture was carefully diluted with AcOH (3 mL) and H₂O (1 mL). The residue was filtered, washed with EtOH, and crystallized from a mixture of EtOH and isoamyl alcohol (1:1) to give compound 3a as cream needles. Yield 0.135 g (73%), mp 168-170 °C
- (a) Reid, J. C.; Calvin, M. J. Am. Chem. Soc. 1950, 72, 1952–2948; (b) Barkley, L. B.; Levine, R. J. Am. Chem. Soc. 1951, 73, 1627–4625.