

Spectrochimica Acta Part A 57 (2001) 1305-1316

SPECTROCHIMICA ACTA PART A

www.elsevier.nl/locate/saa

Effect of solvent on the *cis-trans* conformational equilibrium of a proline imide bond of short model peptides in solution

Masae Sugawara, Kenji Tonan, Shun-ichi Ikawa *

Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan

Received 1 November 2000; accepted 10 December 2000

Abstract

Proton NMR spectra of proline-containing short peptides with *N*-terminal sequences of *N*-acetyl-prolyl- (Ac-Pro-) *N*-tert-butoxycarbonyl-phenylalanyl-prolyl- (Boc-Phe-Pro-) and *N*-tert-butoxycarbonyl-leucyl-prolyl- (Boc-Leu-Pro-) were measured in mixed solvents of hexadeuterodimethylsulfoxide and deuterochloroform (CDCl₃). Population ratios of *cis* and *trans* conformers with respect to the proline imide bond and chemical shifts of NH protons were obtained as a function of a CDCl₃ fraction of solvent. With increasing fraction of CDCl₃, the *trans* percentages of the Ac-Proimide bonds increased. On the other hand, those of Boc-Phe-Pro- decreased, and those of Boc-Leu-Pro- exhibited middle tendency. From the solvent-dependent variation of the chemical shifts of the NH protons, intramolecular hydrogen bonds that stabilize the *trans* form of Ac-Pro- and the *cis* form of Boc-Phe-Pro- were discussed. For the Ac-Pro- peptides, only the *trans* forms are found to the compatible with 7-, 10-, and 13-membered hydrogen-bonded rings that would be similar to the ordinary secondary structures, γ - and β -turns and α -helix, respectively. For the *cis* form of Boc-Phe-Pro-R (R = O-methyl or glycyl-O-ethyl), the hydrogen-bonded structure is found to be similar to the type-VIa β -turn. On the other hand, for Boc-Phe-Pro-Pro-Leu-Gly-NH₂, it has been suggested that two different hydrogen bonds, which are different from that of the type-VIa β -turn, support each other and cooperatively stabilize the *cis* form. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Peptides; Proline; Cis-trans; Intramolecular hydrogen bond; NMR

1. Introduction

* Corresponding author. Present address: Biomolecular, NMR Laboratory, Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec, Canada, H4P 2R2. Tel.: + 81-11-7062707; fax: + 81-11-7064924.

E-mail address: sikawa@sci.hokudai.ac.jp (S.-i. Ikawa).

The peptide bond preceding a prolyl residue, which is called a proline imide bond, is unique among other peptide bonds in proteins. The peptide bonds that do not involve Pro residues take predominantly the *trans* form and scarcely occur in the *cis* form in the folded structure of proteins, where the probability of occurrence of the cis form is less than 0.05% [1,2]. On the contrary, about 5% of the proline imide bond have been found to occur in the cis form in the folded proteins. For unstructured peptides, about 30% of the imide bonds adopt the cis form [1,3] and, for short peptides in solution, the amount of the cis form can be even comparable to that of the *trans* form, depending on amino acid sequences and solvent conditions [4-6]. This unusual distribution of the proline imide bonds can be explained by the unique structure of proline. The pyrrolidine ring, which covalently connects the side chain to the backbone nitrogen atom of proline, vields steric hindrance which is unfavorable to the trans form and, consequently, reduces significantly the energy difference between the trans and cis forms [1,2]. As a result, the cis-trans equilibrium of the proline imide bond becomes sensitive to environmental conditions, being different form that of other peptide bonds.

The above-mentioned difference in the *cis/trans* ratio between the folded and unfolded structure of proteins indicates that some change in environmental conditions, which occurs on the folding pathway, must shift the conformational equilibrium to the *trans* form. Solvent condition should be one of the important factors that influence conformation of local segments of he peptide chains. In order to study mechanism of the solvent effect, it is useful to examine short peptides because they are free from various long-range interactions, which would give rise to complicated effect on the conformation of polypeptide chains.

It is known that the fraction of the *trans* form of short model peptides is higher in less polar or non-polar solvents than in polar solvents [4,5]. In the recent IR and NMR study making use of mixed solvents of hexadeuterodimethylsulfoxide (DMSO-d₆) [6], we have found that both intramolecular hydrogen bonding and *cis*-to-*trans* isomerization are promoted by increased in fraction of CDCl₃ in the mixed solvents. It was concluded that the *cis*-to-*trans* isomerization is facilitated by formation of 10 membered or 13membered intramolecular hydrogen-bonded rings that include the carbonyl group precedent to the prolyl residue. It should be noted, however, that the abovementioned results were only for peptides with an N terminus of an N-acetyl-Pro- (Ac-Pro-) or Ntert-butoxycarbonyl-Pro- (Boc-Pro-) type. If another residue exists before the prolyl residue, situation could be changed. For imide bonds in a sequence of -Xaa-Pro-, it has been found that the occurrence of the *cis* form depends on the type of the residue Xaa [1,7]. In addition, it has been suggested that the *cis* form could be stabilized by interaction between the pyrrolidine ring and the aromatic side chain of the preceding residue or both the preceding and following residues [8,9].

However, effect of solvent on the cis-trans equilibrium of -Xaa-Pro- has not been reported so far to our knowledge. In the present study, we have performed NMR measurements on two series of peptides; one includes peptides with an *N*-terminus of Ac-Pro- and the other includes Boc-Xaa-Pro- where Xaa is Phe or Leu residue. We have used mixtures of DMSO-d₆ and CDCl₃ at various mixing ratios as solvents for the NMR measurements. These mixed solvents are particularly useful for characterization of the cis-trans equilibrium and the intramolecular hydrogen bonding [6].

2. Experiments

The model peptides used for measurements are shown in Fig. 1, where amino acid residues are indicated by the usual one-letter abbreviations. These are classified into two types. The peptides in one group have a proline as the first residue with an acetyl group at the N-terminus. In the other group, peptides have a proline as the second residue and a Boc group as an N-terminal substituent. These compounds were synthesized by the ordinary liquid-phase method [10] and impurities were found to be negligible by infrared and NMR spectra. Starting compounds for the syntheses were commercially available Boc-Xaa-OH (Xaa = Pro, Phe, Leu, Gly), H-Pro-OMe (Me = methyl), H-Leu-OMe, H-Gly-OEt (Et = ethyl), and H-Pro-Leu-Gly-NH₂. Condensation reagent 1- ethyl - 3 - (3 - dimethylaminopropyl)carbodiimide and anti-racemization reagent 1-hydeoxybenzotriazole from Watanabe Chemical Industries, Ltd. were used. Deprotection of Boc-peptides was performed with 4 M HCl in 1,4-dioxane. Solvents used for spectroscopic measurements were $CDCl_3$ and DMSO-d₆ from CEA (France) and dried over molecular sieves 4A for 48 h before the preparation of sample solutions.

Proton NMR spectra of 1.25 mM peptide solutions in DMSO- d_6 /CDCl₃ mixed solvents were measured with a JEOL EX400 Fourier-transform NMR spectrometer at 298 K. Chemical shifts were standardized by a residual proton of DMSO

Fig. 1. Peptides used in the present study. Ac: acetyl, Boc: *tert*-butoxycarbonyl, P: Pro (prolyl), G: Gly (glycyl), L: Leu (leucyl), F: Phe (phenylalanyl), Me: methyl, Et: ethyl.

for solutions in DMSO-containing solvents and by a residual CHCl₃ proton for solutions in pure CDCl₃. The observed NMR signals were assigned with COSY (two-dimensional correlated spectroscopy) and NOESY (nuclear Overhauser enhancement-exchange spectroscopy) spectra. These two-dimensional spectra were measured with a JEOL ALPHA600 Fourier-transform NMR spectrometer at 298 K. Each data matrix size collected with 24–64 scans was 512×1024 and the spectrum was Fourier-transformed in both dimensions using the squared sine-bell window function.

Infrared spectra were measured with a Perkin-Elmer System-2000 Fourier-transform spectrometer at 2 cm⁻¹ resolution and at a room temperature. A cell with CaF₂ windows and a sample path-length of 6 mm was used. Sample concentrations were 1.25 mM in CDCl₃.

3. Results

Two different signals, assigned to the *cis* and *trans* forms, were observed for each proton of the peptides. Among these signals, clearly separated pair for a Pro- α proton or a Lue-NH or Phe-NH proton were integrated to obtain the population ratios of the *cis* and *trans* forms. Fig. 2 shows the resulting percentages of the *trans* form plotted against the CDCl₃ fraction of the mixed solvents.

For the Ac-Pro-Leu- compounds shown in Fig. 2a, the ratios of the trans forms increase with increasing fraction of CDCl₃, while the *cis-trans* ratio of Ac-Pro-OMe is approximately independent of the solvent mixing ratio. This is consistent with the previous results for different Ac-Pro-Glvand Boc-Pro-Gly- compounds [6]. The increase of the trans population has been found to be parallel to increase in intramolecular hydrogen bonding of the peptides. We have concluded in the previous paper that formation of the 10-membered or 13membered intramolecular hydrogen-bonded ring that includes the carbonyl group precedent to the prolyl residue facilitated the cis-trans isomerization. These hydrogen-bonded rings would correspond to those of the usual secondary structures, the β -turn and α -helix, respectively.

Fig. 2. The *trans* percentages of proline imide bonds plotted against CDCl₃ fractions of the DMSO-d₆-CDCl₃ mixed solvents for (a) Ac-Pro- compounds, (b) Boc-Leu-Pro-Leu- compounds, and (c) Boc-Phe-Pro- compounds.

For Boc-Phe-Pro-Leu- compounds, on the contrary, relative ratio of the trans forms decrease with increasing CDCl₃ fraction as shown in Fig. 2c, and those for the Boc-Leu-Pro-Leu- compounds exhibit middle tendency as shown in Fig. 2b. The contrast between the Ac-Pro-Leu- and Boc-Phe-Pro-Leu- compounds are clearly shown in Fig. 3, where solvent dependent changes in the trans percentages are compared among related compounds of the three types. It is intriguing how the cis-trans isomerization is related to the intramolecular hydrogen bonding for the Boc-Phe-Pro-Leu- compounds. A simple logical extension of the previous results [6] might suggest that the intramolecular hydrogen bonds that stabilize the trans form could be disturbed as the CDCl₃ fraction increases. Another possibility is existence of some hydrogen-bonded structure that stabilizes the *cis* form, a candidate of which would be the type-VIa β -turn-like structure [7]. To elucidate hydrogen-bonded structures, infrared spectra and NMR chemical shifts are useful.

Figs. 4 and 5 show observed infrared NH stretching absorption of Ac-Pro-and Boc-Phe-Pro-compounds. The broad bands with peak wave numbers below 3400 cm⁻¹ are assigned to the intramolecularly hydrogen-bonded NH groups while bands at higher than 3400 cm^{-1} are assigned to hydrogen-bond-free NH groups [6,10,11]. The broad peaks at around 3350 cm⁻¹ are assigned to the β -turn like structure with a 10-membered hydrogen-bonded ring, while the peaks or shoulders at around 3300 cm⁻¹ are assigned to a 7-membered hydrogen-bonded ring. For Ac-Pro-Leu-Gly-NH₂ and Boc-Phe-Pro-Leu-Gly-NH₂, the bulge at around 3300 cm⁻¹ can be assigned to a 13-membered hydrogen-bonded ring, which resembles one turn of the α -helix [10], instead of the 7-memebered hydrogen-bonded

Fig. 3. Comparison of solvent-dependent changes of the *trans* percentages among Ac-Pro-, Boc-Phe-Pro- and Boc-Leu-Pro- compounds with (a) -Leu-Gly-OEt and (b) -Leu-Gly-NH₂, respectively, at the C-terminus.

Fig. 4. Infrared absorption in the NH stretching region of 1.25 mM solutions of Ac-Pro- compounds in CDCl₃.

ring. This is supported by the chemical shift data that will be discussed later.

It should be noted that corresponding compounds of the Ac-Pro- and Boc-Phe-Pro- groups exhibit similar infrared NH stretching absorption

Fig. 5. Infrared absorption in the NH streching region of 1.25 mM solutions of Boc-Phe-Pro-compounds in CDCl₃.

Fig. 6. Chemical shifts plotted against CDCl₃ fractions in the DMSO-CDCl₃ mixed solvents for NH-protons of Ac-Pro-Leu-OMe and Ac-Gly-OEt.

to each other except for Ac-Pro-OMe and Boc-Phe-Pro-OMe. Although Boc-Phe-Pro-OMe has a Phe-NH proton, it proves to be free from intramolecular hydrogen bonds like Ac-Pro-OMe that has no NH proton. Then the degrees of the intramolecular hydrogen bonding of the Boc-Phe-Pro- compounds are similar to the corresponding Ac-Pro- compounds. Infrared spectra, however, can not distinguish the cis and trans forms, and therefore, can not provide information about correlation between the hydrogen-bonded structures and the *cis-trans* ratios. To obtain further insight, we need to know to what degree each of the NH protons of the peptides takes part in the intramolecular hydrogen bonding. For this purpose, the NMR chemical shifts are useful [6].

Fig. 6 shows an example of how the chemical shifts of NH protons vary with the CDCl₃ fraction in the DMSO-CDCl₃ mixed solvents. The large chemical shift variation for the Gly-NH proton of Ac-Gly-OEt is interpreted as follows. Since DMSO is a strong hydrogen-bond acceptor, the Gly-NH proton is considered to be hydrogenbonded to DMSO in the DMSO-rich solvents. These hydrogen bonds will decrease as the CDCl₃ fraction increases and completely disappear in 100% CDCl₃ solvent, which does not act as a hydrogen-bond acceptor but a very weak hydrogen-bond donor. As a result, signals of the Gly-NH proton show a large high-field shift as the CDCl₃ fraction increases from 0 to 100%. This will be also the case for a Leucyl amide proton of the cis form [designated by Leu-NH(c)] of Ac-Pro-Leu-OMe because its chemical shift shows a very similar variation. On the contrary, Leu-NH(t) shows distinctly smaller chemical shift variation. This proton is able to form an intramolecular hydrogen bond with the acetyl carbonyl group in the trans configuration. The Leu-NH(c) proton, on the other hand, can not from sterically any intramolecular hydrogen bond. Then the infrared hydrogen-bonded band of Ac-Pro-Leu-OMe seen in Fig. 4 is assigned to the trans form, and moreover, the small chemical shift variation of Leu-NH(t) can be assumed to be caused by formation of the intramolecular hydrogen bond in the CDCl₃-rich solvent. That is to say, the decay of the hydrogen bonds between DMSO and Leu-NH(t) may be compensated by the intramolecular hydrogen bonds between DMSO and Leu-NH(t) may be compensated by the intramolecular hydrogen bonding, and the variation of the chemical shift is significantly reduced. Thus, the chemical shift variations in the DMSO-CDCl₃ mixed solvents are useful to characterize the NH protons by their ability to form intramolecular hydrogen bonds.

Fig. 7 shows chemical shifts of four different types of NH protons of Boc-Phe-Leu-OMe plotted against the $CDCl_3$ percentage of the DMSO- $CDCl_3$ mixed solvents. It is found that both Phe-NH(t) and Phe-NH(c) show large variation of about the same magnitude. This is reasonable because the Phe-NH proton has no chance to

Fig. 7. Chemical shifts plotted against CDCl₃ fractions in the DMSO-CDCl₃ mixed solvents for NH-Protons of Boc-Phe-Pro-Leu-OMe.

make any intramolecular hydrogen bond both in the trans and cis configurations. On the other hand, variations for Leu-NH(t) and Leu-NH(c) are significantly smaller, and moreover, Leu-NH(c) shows distinctly smaller variation than Leu-NH(t). These facts indicate that the Leu-NH proton takes part in some intramolecular hydrogen bonds both in the trans and cis forms, and intriguingly the hydrogen-bond of the cis form could be more stable than that of the *trans* form. The hydrogen-bonded structure of the trans conformer is thought to be the 7-membered hydrogen-bonded ring formed by the Leu-NH(t) and the Phe-carbonyl group. This type of hydrogenbonded structure, is, however, sterically incompatible with the cis configuration. Then the hydrogen bond partner of the Leu-NH(c) is restricted to the Boc-carbonyl group, and they form 10-membered hydrogen-bonded ring. This structure, being compatible with the cis configuration, has the same hydrogen-bonded pattern as that of the type-VIa β -turn.

4. Discussion

The observed chemical shifts of all the compounds studied are listed in Table 1. The first five compounds have no or little possibility of intramolecular hydrogen bonding in the whole range of the mixed solvents. Therefore, their chemical shift variations, $\Delta \delta = \delta$ (DMSO) – δ (CDCl₂), are considered to be solely due to change in the intermolecular DMSO-peptide hydrogen bonds. Consequently, these values can be adopted as standards for estimating the degree to which each of the amide protons of peptides is involved in the intramolecular hydrogen bonding in pure CDCl₃ solvent. Since the chemical shift variations may more or less depend on structural configuration close to the NH group concerned, in addition to the intramolecular hydrogen bonding, we have adopted several standards for different NH protons. The ratio of the chemical shift variation of each amide proton of the peptides to that of a suitable standard, $\Delta \delta / \Delta \delta_{\text{Ref}}$, is indicated in the fifth column of Table 1.

It proved that the values of the NH protons for the cis forms of Ac-Pro-Leu-compounds are closed to 1. This is consistent with the steric incompatibility of intramolecular hydrogen bonding with the cis configuration for these compounds, as mentioned before for an example of Ac-Pro-Leu-OMe. For Ac-Pro-Leu-Gly-NH₂, $\Delta\delta$ values for the cis form were not obtained because the *cis* form completely disappears in the pure CDCl₃ solvent as shown in Fig. 2a. On the other hand, the $\Delta \delta / \Delta \delta_{\text{Ref}}$, values of the NH protons for the trans form of Ac-Pro-Leu-compounds are distinctly smaller than unity. This fact indicates that these protons are involved in some intramolecular hydrogen bonds. The degrees of the involvement in hydrogen bonding for different NH protons could be compared by using magnitudes of the $\Delta \delta / \Delta \delta_{\text{Ref}}$ values; smaller the values the larger the involvement.

For Ac-Pro-Leu-Gly-OEt, both Leu-NH(t) and Gly-NH(t) are involved in the intramolecular hydrogen bonding. The former is thought to make the same type of hydrogen-bonded structure, the 7-membered ring, as that of Ac-Pro-Leu-OMe. On the other hand, the hydrogen-bonded structure for the Gly-NH(t) is considered to be a 10-membered ring with the acetyl carbonyl group. Another possibility of Gly-NH(t) for forming 7membered ring with prolyl carbonyl group can be neglected, because the 7-membered ring that does not cross a prolyl residue is not stable enough [6]. The fact that the $\Delta \delta / \Delta \delta_{\text{Ref}}$ values of Gly-NH(t) is smaller than that of Leu-NH(t) suggests that the 7-membered ring might be more stable than the 10-membered ring. However, the difference in the $\Delta \delta / \Delta \delta_{\text{Ref}}$ values seems not large enough to discuss conclusively.

Three amide protons of Ac-Pro-Leu-Gly-NH₂, Leu-NH(t), Gly-NH(t) and *anti*-NH(t), show considerably smaller $\Delta \delta / \Delta \delta_{\text{Ref}}$ values than unity, and are thought to significantly take part in the intramolecular hydrogen bonding. Among others the *anti*-NH(t) is most heavily involved in the hydrogen bonding. According to the previous study [10], it forms mainly a 13-membered hydrogen-bonded ring with the acetyl-carbonyl group, and to a less extent a 10-membered ring with the prolyl carbonyl group. The Leu-NH(t) and Gly-

Table 1 Chemical shifts of the amide protons of peptides^a

Ac-Leu-OEr 2.39 (1) Lau-NH 8.17 5.78 2.39 (1) Ac-Gir-OEr	Compound proton	δ (DMSO)	δ (CDCl ₃)	$\Delta\delta$	$\Delta\delta/\Delta\delta$ (Ref.)
Ac-Gir)-OEr	Ac-Leu-OEt Leu-NH	8.17	5.78	2.39	(1)
Ac-Lar-NHMe	Ac-Gly-OEt Gly-NH	8.25	6.08	2.17	(2)
$Aac.Gb_r.NHMe$ $B.06$ 6.22 1.84 (4) Gly-NH 8.06 6.22 1.84 (4) $Ac-NB_r$ $Ac-NB_r$ $Ac-NB_r$ (5) $Ami.NH$ 7.25 5.38 1.87 (5) $Syn-NH$ 6.97 5.24 1.73 (6) $Ac-Pro-Leu-OMe$ $Eue-NH$ (t) 8.15 7.33 0.82 0.34 (l) $Lau-NH$ (c) 8.43 6.17 2.26 0.95 (l) $Ac-Pro-Leu-Gly-OEr$ $Eue-NH$ (c) 8.13 6.82 1.31 0.60 (2)Gly-NH (t) 8.13 6.82 1.31 0.60 (2)Gly-NH (t) 8.13 6.82 1.31 0.60 (2)Gly-NH (c) 8.28 $ Lu-NH$ (t) 7.08 6.63 0.45 0.24 (s) $Gly-NH (c)$ 8.09 $ Ami.NH$ (c) 7.08 5.25 1.83 1.06 (6) $Syn-NH$ (c) 7.02 5.202 1.82 0.96 (3) $Syn-NH$ (c) 6.84 7.07 1.11 0.46 (1) $Lu-NH$ (t) 7.05 5.17 1.88 0.99 (3) $Eu-Phe-Pro-Leu-Gly-OMe$ $Eu-Pho-Leu-Gly-OMe$ $Eu-Pho-Leu-Gly-OMe$ $Eu-Pho-Leu-Gly-OMe$ $Phe-NH$ (c) 6.82 5.11 1.71 0.90 (3) $Lu-NH$ (t) 8.18 7.07 1.11 0.46 (1) $Lu-NH$ (t) 8.16 7.07 1.88 0.99 (3) $Lu-NH$ (t) 8.17 7.58 <td< td=""><td><i>Ac-Leu-NHMe</i> Leu-NH</td><td>7.92</td><td>6.02</td><td>1.90</td><td>(3)</td></td<>	<i>Ac-Leu-NHMe</i> Leu-NH	7.92	6.02	1.90	(3)
$Ac-NH_{3}$ $Auti-NH$ 7.255.281.87(5) $Auti-NH$ 6.975.241.73(6) $Ac-Pro-Leu-OMe$ Ac $Leu-NH$ (c)8.157.330.820.34 (1) $Leu-NH$ (c)8.436.172.260.95 (1) Ac -Pro-Leu-Gly-OEt </td <td>Aac-Gly-NHMe Gly-NH</td> <td>8.06</td> <td>6.22</td> <td>1.84</td> <td>(4)</td>	Aac-Gly-NHMe Gly-NH	8.06	6.22	1.84	(4)
Antr-NH (.25 5.38 1.8/ (.5) Ac -Pro-Leu-OMe	Ac-NH ₂	7.05	5.20	1.07	(5)
	Anti-NH Sun NH	7.25	5.38	1.87	(5)
Ac-Pro-Leu-OMe Leu-NH (t) 8.15 7.33 0.82 0.34 (1) Leu-HN (c) 8.43 6.17 2.26 0.95 (1) Ac-Pro-Leu-Gly-OEt	Syn-III	0.97	J.24	1.75	(0)
Leu-NH (t) 8.15 7.33 0.82 0.34 (1) Leu-NH (c) 8.43 6.17 2.26 0.95 (1) Ac-Pro-Leu-Gly-OEt Leu-NH (t) 7.89 7.11 0.78 0.41 (3) Leu-NH (t) 8.13 6.82 1.31 0.60 (2) Gly-NH (t) 8.13 6.82 1.31 0.60 (2) Gly-NH (t) 8.13 6.35 2.02 0.93 (2) Ac-Pro-Leu-Gly-NH2 Leu-NH (t) 8.02 7.03 0.99 0.52 (3) Leu-NH (c) 8.28 - - Gly-NH (c) 8.09 - - Anti-NH (c) 7.08 6.63 0.45 0.24 (5) Anti-NH (c) 7.06 - - Boc-Phc-Pro-Leu-OMe - - Phe-NH (c) 6.86 4.97 1.82 0.96 (3) Leu-NH (t) 7.05 5.17 1.88 0.99 (3) Leu-NH (t) <	Ac-Pro-Leu-OMe				
Leu-NN (c) 8.43 6.17 2.26 0.95 (1) Ac -Pro-Leu-Gly-OEI	Leu-NH (t)	8.15	7.33	0.82	0.34 (1)
Ac - Pro - Leu - Gly - OEi $V.11$ 0.78 0.41 (3)Leu-NH (c) 8.21 6.30 1.91 1.01 (3)Gly-NH (t) 8.13 6.82 1.31 0.60 (2)Gly-NH (c) 8.37 6.35 2.02 0.93 (2) Ac - Pro - Leu - Gly - NH_2 U $V.16$ 0.99 0.52 (3)Leu-NH (t) 8.02 7.03 0.99 0.52 (3)Leu-NH (c) 8.28 $ -$ Gly NH (c) 8.09 $ -$ Anti-NH (c) 7.08 6.63 0.45 0.24 (5)Anti-NH (c) 7.08 5.25 1.83 1.06 (6)Syn-NH (c) 7.06 $ Boc$ -Phe-Pro-Leu-OMe $ Boc$ -Phe	Leu-HN (c)	8.43	6.17	2.26	0.95 (1)
Leu-NH (t)7.897.110.780.41 (3)Leu-NH (c)8.216.301.911.01 (3)Gly-NH (t)8.136.821.310.60 (2)Gly-NH (c)8.376.352.020.93 (2) Ac -Pro-Leu-Gly-NH2 </td <td>Ac-Pro-Leu-Gly-OEt</td> <td></td> <td></td> <td></td> <td></td>	Ac-Pro-Leu-Gly-OEt				
Leu-NH (c)8.216.301.911.01 (3)Gly-NH (c)8.136.821.310.60 (2)Gly-NH (c)8.376.352.020.93 (2)Ac-Pro-Leu-Gly-NH2Leu-NH (t)8.027.030.990.52 (3)Leu-NH (c)8.28Gly-NH (c)8.09Gly-NH (t)7.927.070.850.46 (4)Gly-NH (c)8.09Anti-NH (t)7.086.630.450.24 (5)Anti-NH (c)7.19Sym-NH (c)7.085.251.831.06 (6)Sym-NH (c)7.06Boc-Phe-Pro-Leu-OMeDe-NH (c)6.864.971.890.99 (3)Leu-NH (c)8.187.071.110.46 (1)Leu-NH (c)8.447.960.480.20 (1)Boc-Phe-Pro-Leu-Gly-OetPhe-NH (t)7.055.171.880.99 (3)Leu-NH (t)7.055.171.880.99 (3)Leu-NH (t)8.176.531.360.72 (3)Leu-NH (t)8.176.871.300.60 (2)Gly-NH (c)8.176.631.500.79 (3)Leu-NH (c)8.136.631.500.79 (3)Leu-NH (c)8.446.891.550.82 (3)Gly-NH (c)8.146.631.50 <td>Leu-NH (t)</td> <td>7.89</td> <td>7.11</td> <td>0.78</td> <td>0.41 (3)</td>	Leu-NH (t)	7.89	7.11	0.78	0.41 (3)
Gly-NH (t) 8.13 6.82 1.31 0.60 (2)Gly-NH (c) 8.37 6.35 2.02 0.93 (2) $Ac-Pro-Leu-Gly-NH_2$ Leu-NH (t) 8.02 7.03 0.99 0.52 (3)Leu-NH (c) 8.28 $-$ Gly NH (c) 8.09 $ -$ Anti-NH (c) 8.09 $ -$ Anti-NH (c) 7.92 7.07 0.85 0.46 (4) $Sym-NH (c)$ 7.08 6.63 0.45 0.24 (5)Anti-NH (c) 7.19 $ -$ Sym-NH (c) 7.06 $ -$ Boc-Phe-Pro-Leu-OMePhe-NH (c) 7.02 5.202 1.82 0.96 (3)Leu-NH (c) 8.44 7.96 0.48 0.20 (1)Boc-Phe-Pro-Leu-Gly-OtePhe-NH (t) 7.05 5.17 1.88 0.99 (3)Leu-NH (c) 8.44 7.96 0.48 0.20 (1)Boc-Phe-Pro-Leu-Gly-OtePhe-NH (t) 7.05 5.17 1.88 0.99 (3)Leu-NH (c) 8.30 7.05 5.17 1.88 0.99 (3)Leu-NH (c) 8.30 7.05 5.17 1.88 0.99 (3)Leu-NH (c) 8.17 7.58 0.59 0.31 (3)Gly-NH (c) 8.30 7.05 1.25 0.58 (2)Boc-Phe-Pro-Leu-Gly-NH_2Phe-NH (t) 7.14	Leu-NH (c)	8.21	6.30	1.91	1.01 (3)
Gly-NH (c) 8.37 6.35 2.02 0.93 (2) Ac -Pro-Leu-Gly-NH ₂	Gly-NH (t)	8.13	6.82	1.31	0.60 (2)
$Ac-Pro-Leu-Gly-NH_2$	Gly-NH (c)	8.37	6.35	2.02	0.93 (2)
Leu-NH (t)8.027.030.990.52 (3)Leu-NH (c)8.28Gly NH (t)7.927.070.850.46 (4)Gly-NH (c)8.09Anti-NH (t)7.086.630.450.24 (5)Anti-NH (c)7.19Syn-NH (c)7.06Bac-Phe-Pro-Leu-OMePhe-NH (c)7.025.2021.820.96 (3)Phe-NH (t)7.025.2021.820.96 (3)Leu-NH (c)8.487.071.110.46 (1)Leu-NH (c)8.447.960.480.20 (1)Boc-Phe-Pro-Leu-Gly-OetPhe-NH (t)7.055.171.880.99 (3)Leu-NH (c)8.447.960.480.20 (1)Boc-Phe-Pro-Leu-Gly-OetPhe-NH (t)7.055.171.880.99 (3)Phe-NH (c)8.176.541.360.72 (3)Leu-NH (c)8.176.871.300.60 (2)Gly-NH (c)8.307.051.250.58 (2)Boc-Phe-Pro-Leu-Gly-NH2Phe-NH (t)7.145.002.141.13 (3)Phe-NH (c)8.136.631.500.79 (3)Leu-NH (c)8.446.891.550.82 (3)Gly-NH (c)8.067.290.770.42 (4)Gly-NH (c)8.017.510.500.27	Ac-Pro-Leu-Glv-NH2				
Leu-NH (c) 8.28 $ -$ Gly NH (t) 7.92 7.07 0.85 0.46 (4) Gly NH (t) 7.92 7.07 0.85 0.46 (4) Gly NH (t) 7.92 7.07 0.85 0.46 (4) Gly NH (t) 7.08 6.63 0.45 0.24 (5) Anti-NH (t) 7.08 5.25 1.83 1.06 (6) Sym-NH (c) 7.06 $ -$ Boc-Phe-Pro-Leu-OMe $ -$ Boc-Phe-Pro-Leu-OMe $ -$ Phe-NH (t) 7.02 5.202 1.82 0.96 (3) Leu-NH (t) 8.18 7.07 1.11 0.46 (1) Leu-NH (c) 8.44 7.96 0.48 0.20 (1) Boc-Phe-Pro-Leu-Gly-Oet $ -$ Phe-NH (t) 7.05 5.17 1.88 0.99 (3) Leu-NH (t) 8.04 7.96 0.48 0.20 (1) Boc-Phe-Pro-Leu-Gly-Oet $ -$ <th< td=""><td>Leu-NH (t)</td><td>8.02</td><td>7.03</td><td>0.99</td><td>0.52 (3)</td></th<>	Leu-NH (t)	8.02	7.03	0.99	0.52 (3)
Gly NH (t)7.927.070.850.46 (4)Gly-NH (c)8.09Anti-NH (t)7.086.630.450.24 (5)Anti-NH (c)7.19Syn-NH (c)7.06Syn-NH (c)7.06Boc-Phe-Pro-Leu-OMePhe-NH (t)7.025.2021.820.96 (3)Phe-NH (c)6.864.971.890.99 (3)Leu-NH (c)8.187.071.110.46 (1)Leu-NH (c)8.447.960.480.20 (1)Boc-Phe-Pro-Leu-Gly-OetPhe-NH (t)7.055.171.880.99 (3)Leu-NH (c)8.447.960.480.20 (1)Boc-Phe-Pro-Leu-Gly-OetPhe-NH (t)7.055.171.880.99 (3)Leu-NH (c)8.177.580.590.31 (3)Gly-NH (c)8.177.580.590.31 (3)Gly-NH (c)8.307.051.250.58 (2)Boc-Phe-Pro-Leu-Gly-NH2Phe-NH (c)6.945.231.710.90 (3)Leu-NH (c)8.136.631.500.79 (3)Leu-NH (c)8.136.631.550.82 (3)Gly-NH (c)8.067.290.770.42 (4)Gly-NH (c)8.017.510.500.27 (4)	Leu-NH (c)	8.28	_	_	
Gly-NH (c) 8.09 $ -$ Anti-NH (t) 7.08 6.63 0.45 0.24 (s)Anti-NH (c) 7.19 $ -$ Sym-NH (t) 7.08 5.25 1.83 1.06 (6)Sym-NH (c) 7.06 $ -$ Boc-Phe-Pro-Leu-OMe $ -$ Phe-NH (c) 6.86 4.97 1.89 0.99 (3)Leu-NH (t) 8.18 7.07 1.11 0.46 (1)Leu-NH (c) 8.44 7.96 0.48 0.20 (1)Boc-Phe-Pro-Leu-Gly-Oet $ -$ Phe-NH (t) 7.05 5.17 1.88 0.99 (3)Leu-NH (c) 8.18 7.07 1.11 0.46 (1)Leu-NH (c) 6.82 5.11 1.71 0.90 (3)Leu-NH (t) 7.05 5.17 1.88 0.99 (3)Phe-NH (t) 7.05 5.17 1.88 0.99 (3)Leu-NH (c) 8.17 6.54 1.36 0.72 (3)Leu-NH (c) 8.17 6.87 1.30 0.60 (2)Gly-NH (t) 8.17 6.87 1.30 0.60 (2)Gly-NH (c) 8.30 7.51 0.50 0.27 (4)Boc-Phe-Pro-Leu-Gly-NH_2 $ -$ Phe-NH (t) 7.14 5.00 2.14 1.13 (3)Phe-NH (t) 8.13 6.63 1.50 0.79 (3)Leu-NH (c) 8.44 6.89 1.55 0.82 (3)Gly-NH (c) 8.06	Gly NH (t)	7.92	7.07	0.85	0.46 (4)
Anti-NH (t)7.086.630.450.24 (5)Anti-NH (c)7.19Syn-NH (t)7.085.251.831.06 (6)Syn-NH (c)7.06Boc-Phe-Pro-Leu-OMePhe-NH (t)7.025.2021.820.96 (3)Phe-NH (t)8.187.071.110.46 (1)Leu-NH (t)8.187.071.110.46 (1)Leu-NH (c)8.447.960.480.20 (1)Boc-Phe-Pro-Leu-Gly-OetPhe-NH (t)7.055.171.880.99 (3)Leu-NH (c)6.825.111.710.90 (3)Leu-NH (c)8.447.960.480.20 (1)Boc-Phe-Pro-Leu-Gly-OetPhe-NH (t)7.055.171.880.99 (3)Leu-NH (c)8.177.580.590.31 (3)Gly-NH (t)8.176.541.360.72 (3)Leu-NH (c)8.176.871.300.60 (2)Gly-NH (c)8.307.051.250.58 (2)Boc-Phe-Pro-Leu-Gly-NH2Phe-NH (t)7.145.002.141.13 (3)Phe-NH (c)6.945.231.710.90 (3)Leu-NH (c)8.446.891.500.79 (3)Leu-NH (c)8.446.891.550.82 (3)Gly-NH (c)8.067.290.770.42 (4)Gly-NH (c)8.017.51 </td <td>Gly-NH (c)</td> <td>8.09</td> <td>_</td> <td>-</td> <td></td>	Gly-NH (c)	8.09	_	-	
Anti-NH (c)7.19 $ -$ Syn-NH (t)7.085.251.831.06 (6)Syn-NH (c)7.06 $ -$ Boc-Phe-Pro-Leu-OMe $ -$ Phe-NH (t)7.025.2021.820.96 (3)Phe-NH (c)6.864.971.890.99 (3)Leu-NH (c)8.187.071.110.46 (1)Leu-NH (c)8.447.960.480.20 (1)Boc-Phe-Pro-Leu-Gly-Oet $ -$ Phe-NH (t)7.055.171.880.99 (3)Leu-NH (c)6.825.111.710.90 (3)Leu-NH (t)7.055.171.880.99 (3)Phe-NH (t)7.055.171.880.99 (3)Gly-NH (c)8.177.580.590.31 (3)Gly-NH (c)8.176.871.300.60 (2)Gly-NH (c)8.307.051.250.58 (2)Boc-Phe-Pro-Leu-Gly-NH2 $ -$ Phe-NH (t)7.145.002.141.13 (3)Phe-NH (c)6.945.231.710.90 (3)Leu-NH (c)8.136.631.500.79 (3)Leu-NH (c)8.446.891.550.82 (3)Gly-NH (c)8.067.290.770.42 (4)Gly-NH (c)8.017.510.500.27 (4)	Anti-NH (t)	7.08	6.63	0.45	0.24 (5)
Syn-NH (t)7.085.251.831.06 (6)Syn-NH (c)7.06 $ -$ Boc-Phe-Pro-Leu-OMe $-$ Phe-NH (t)7.025.2021.820.96 (3)Phe-NH (c)6.864.971.890.99 (3)Leu-NH (t)8.187.071.110.46 (1)Leu-NH (c)8.447.960.480.20 (1)Boc-Phe-Pro-Leu-Gly-OetPhe-NH (t)7.055.171.880.99 (3)Phe-NH (c)6.825.111.710.90 (3)Leu-NH (c)6.825.111.360.72 (3)Leu-NH (c)8.177.580.590.31 (3)Gly-NH (t)8.176.871.300.60 (2)Gly-NH (c)8.307.051.250.58 (2)Boc-Phe-Pro-Leu-Gly-NH2Phe-NH (t)7.145.002.141.13 (3)Phe-NH (t)7.145.002.141.13 (3)Chy-NH (c)8.136.631.500.79 (3)Leu-NH (t)8.136.631.500.79 (3)Leu-NH (c)8.446.891.550.82 (3)Gly-NH (c)8.067.290.770.42 (4)	Anti-NH (c)	7.19	_	_	
Syn-NH (c) 7.06 $ -$ Boc-Phe-Pro-Leu-OMe $-$ Phe-NH (t) 7.02 5.202 1.82 0.96 (3)Phe-NH (c) 6.86 4.97 1.89 0.99 (3)Leu-NH (t) 8.18 7.07 1.11 0.46 (1)Leu-NH (c) 8.44 7.96 0.48 0.20 (1)Boc-Phe-Pro-Leu-Gly-Oet $ -$ Phe-NH (t) 7.05 5.17 1.88 0.99 (3)Phe-NH (c) 6.82 5.11 1.71 0.90 (3)Leu-NH (c) 6.82 5.11 1.71 0.90 (3)Leu-NH (c) 8.17 7.58 0.59 0.31 (3)Gly-NH (t) 8.17 6.87 1.30 0.60 (2)Gly-NH (c) 8.30 7.05 1.25 0.58 (2)Boc-Phe-Pro-Leu-Gly-NH2 $ -$ Phe-NH (t) 7.14 5.00 2.14 1.13 (3)Phe-NH (t) 8.13 6.63 1.50 0.79 (3)Leu-NH (c) 8.44 6.89 1.55 0.82 (3)Gly-NH (c) 8.06 7.29 0.77 0.42 (4)Gly-NH (c) 8.01 7.51 0.50 0.27 (4)	Syn-NH (t)	7.08	5.25	1.83	1.06 (6)
Boc-Phe-Pro-Leu-OMePhe-NH (t)7.02 5.202 1.82 0.96 (3)Phe-NH (c) 6.86 4.97 1.89 0.99 (3)Leu-NH (t) 8.18 7.07 1.11 0.46 (1)Leu-NH (c) 8.44 7.96 0.48 0.20 (1)Boc-Phe-Pro-Leu-Gly-Oet $Phe-NH$ (t) 7.05 5.17 1.88 0.99 (3)Phe-NH (t) 7.05 5.17 1.88 0.99 (3)Leu-NH (t) 7.90 6.54 1.36 0.72 (3)Leu-NH (t) 7.90 6.54 1.36 0.72 (3)Leu-NH (c) 8.17 7.58 0.59 0.31 (3)Gly-NH (c) 8.30 7.05 1.25 0.58 (2)Boc-Phe-Pro-Leu-Gly-NH2 $Phe-NH$ 1.41 5.00 2.14 1.13 (3)Phe-NH (t) 7.14 5.00 2.14 1.13 (3)Che-NH (c) 6.94 5.23 1.71 0.90 (3)Leu-NH (t) 8.13 6.63 1.50 0.79 (3)Leu-NH (t) 8.13 6.63 1.55 0.82 (3)Gly-NH (c) 8.44 6.89 1.55 0.82 (3)Gly-NH (c) 8.06 7.29 0.77 0.42 (4)Gly-NH (c) 8.01 7.51 0.50 0.27 (4)	Syn-NH (c)	7.06	_	-	
Bote NR 100 Enr 0107.02 5.202 1.82 0.96 (3)Phe-NH (c) 6.86 4.97 1.89 0.99 (3)Leu-NH (t) 8.18 7.07 1.11 0.46 (1)Leu-NH (c) 8.44 7.96 0.48 0.20 (1)Boc-Phe-Pro-Leu-Gly-Oet $Phe-NH$ (c) 6.82 5.17 1.88 0.99 (3)Phe-NH (c) 6.82 5.11 1.71 0.90 (3)Leu-NH (c) 8.17 7.58 0.59 0.31 (3)Gly-NH (c) 8.17 7.58 0.59 0.31 (3)Gly-NH (c) 8.30 7.05 1.25 0.58 (2)Boc-Phe-Pro-Leu-Gly-NH ₂ $Phe-NH$ (c) 6.94 5.23 1.71 0.90 (3)Leu-NH (t) 7.14 5.00 2.14 1.13 (3)Phe-NH (c) 6.94 5.23 1.71 0.90 (3)Leu-NH (c) 8.44 6.63 1.55 0.82 (3)Gly-NH (c) 8.44 6.63 1.55 0.82 (3)Gly-NH (c) 8.01 7.51 0.50 0.27 (4)	Boc-Phe-Pro-Leu-OMe				
Initial of the second secon	Phe-NH (t)	7.02	5.202	1.82	0.96 (3)
Init HereInitInitInitInitLeu-NH (c)8.187.071.110.46 (1)Leu-NH (c)8.447.960.480.20 (1)Boc-Phe-Pro-Leu-Gly-Oet $Phe-NH$ (t)7.055.171.880.99 (3)Phe-NH (c)6.825.111.710.90 (3)Leu-NH (t)7.906.541.360.72 (3)Leu-NH (c)8.177.580.590.31 (3)Gly-NH (c)8.307.051.250.58 (2)Boc-Phe-Pro-Leu-Gly-NH2 $Phe-NH$ (t)7.145.002.141.13 (3)Phe-NH (c)6.945.231.710.90 (3)Leu-NH (t)8.136.631.500.79 (3)Leu-NH (c)8.446.891.550.82 (3)Gly-NH (c)8.446.891.550.82 (3)Gly-NH (c)8.067.290.770.42 (4)Gly-NH (c)8.017.510.500.27 (4)	Phe-NH (c)	6.86	4 97	1.89	0.99(3)
Leu-NH (c)8.447.960.480.20 (1)Boc-Phe-Pro-Leu-Gly-Oet $Phe-NH$ (t)7.055.171.880.99 (3)Phe-NH (c)6.825.111.710.90 (3)Leu-NH (t)7.906.541.360.72 (3)Leu-NH (c)8.177.580.590.31 (3)Gly-NH (c)8.307.051.250.58 (2)Boc-Phe-Pro-Leu-Gly-NH2 $Phe-NH$ (t)7.145.002.141.13 (3)Phe-NH (t)7.145.002.141.13 (3)Phe-NH (t)8.136.631.500.79 (3)Leu-NH (t)8.136.631.550.82 (3)Gly-NH (c)8.446.891.550.82 (3)Gly-NH (c)8.446.891.550.82 (3)Gly-NH (c)8.446.891.550.82 (3)Gly-NH (c)8.017.510.500.27 (4)	Leu-NH (t)	8.18	7.07	1.11	0.46 (1)
Boc-Phe-Pro-Leu-Gly-OetPhe-NH (t)7.05 5.17 1.88 0.99 (3)Phe-NH (c) 6.82 5.11 1.71 0.90 (3)Leu-NH (t)7.90 6.54 1.36 0.72 (3)Leu-NH (c) 8.17 7.58 0.59 0.31 (3)Gly-NH (t) 8.17 6.87 1.30 0.60 (2)Gly-NH (c) 8.30 7.05 1.25 0.58 (2)Boc-Phe-Pro-Leu-Gly-NH2Phe-NH (t) 7.14 5.00 2.14 1.13 (3)Phe-NH (t) 8.13 6.63 1.50 0.79 (3)Leu-NH (t) 8.44 6.89 1.55 0.82 (3)Gly-NH (c) 8.44 6.89 1.55 0.82 (3)Gly-NH (t) 8.06 7.29 0.77 0.42 (4)Gly-NH (c) 8.01 7.51 0.50 0.27 (4)	Leu-NH (c)	8.44	7.96	0.48	0.20 (1)
boc-rhe-Pro-Leu-Gly-OerPhe-NH (t)7.05 5.17 1.88 0.99 (3)Phe-NH (c) 6.82 5.11 1.71 0.90 (3)Leu-NH (t) 7.90 6.54 1.36 0.72 (3)Leu-NH (c) 8.17 7.58 0.59 0.31 (3)Gly-NH (t) 8.17 6.87 1.30 0.60 (2)Gly-NH (c) 8.30 7.05 1.25 0.58 (2)Boc-Phe-Pro-Leu-Gly-NH2Phe-NH (t) 7.14 5.00 2.14 1.13 (3)Phe-NH (t) 7.14 5.00 2.14 1.13 (3)Leu-NH (t) 8.13 6.63 1.50 0.79 (3)Leu-NH (t) 8.13 6.63 1.50 0.79 (3)Gly-NH (c) 8.44 6.89 1.55 0.82 (3)Gly-NH (t) 8.06 7.29 0.77 0.42 (4)Gly-NH (c) 8.01 7.51 0.50 0.27 (4)	Pag Pha Pro Law Chi Oat				
InterNII (t) 7.03 5.17 1.66 0.59 (3)Phe-NH (c) 6.82 5.11 1.71 0.90 (3)Leu-NH (t) 7.90 6.54 1.36 0.72 (3)Leu-NH (c) 8.17 7.58 0.59 0.31 (3)Gly-NH (t) 8.17 6.87 1.30 0.60 (2)Gly-NH (c) 8.30 7.05 1.25 0.58 (2)Boc-Phe-Pro-Leu-Gly-NH2Phe-NH (t) 7.14 5.00 2.14 1.13 (3)Phe-NH (c) 6.94 5.23 1.71 0.90 (3)Leu-NH (t) 8.13 6.63 1.50 0.79 (3)Leu-NH (c) 8.44 6.89 1.55 0.82 (3)Gly-NH (t) 8.06 7.29 0.77 0.42 (4)Gly-NH (c) 8.01 7.51 0.50 0.27 (4)	Doc-rne-rro-Leu-Giy-Oei	7.05	5 17	1.88	0.99(3)
Intervent (c) 0.32 5.11 1.11 0.90 (3)Leu-NH (t) 7.90 6.54 1.36 0.72 (3)Leu-NH (c) 8.17 7.58 0.59 0.31 (3)Gly-NH (t) 8.17 6.87 1.30 0.60 (2)Gly-NH (c) 8.30 7.05 1.25 0.58 (2)Boc-Phe-Pro-Leu-Gly-NH2Phe-NH (t) 7.14 5.00 2.14 1.13 (3)Phe-NH (c) 6.94 5.23 1.71 0.90 (3)Leu-NH (t) 8.13 6.63 1.50 0.79 (3)Leu-NH (c) 8.44 6.89 1.55 0.82 (3)Gly-NH (t) 8.06 7.29 0.77 0.42 (4)Gly-NH (c) 8.01 7.51 0.50 0.27 (4)	$\frac{1}{2} \frac{1}{2} \frac{1}$	6.82	5.17	1.00	0.99(3)
Leu-NH (c) 8.17 7.58 0.59 0.31 (3)Gly-NH (t) 8.17 6.87 1.30 0.60 (2)Gly-NH (c) 8.30 7.05 1.25 0.58 (2)Boc-Phe-Pro-Leu-Gly-NH2 $Phe-NH$ (t) 7.14 5.00 2.14 1.13 (3)Phe-NH (t) 6.94 5.23 1.71 0.90 (3)Leu-NH (t) 8.13 6.63 1.50 0.79 (3)Leu-NH (c) 8.44 6.89 1.55 0.82 (3)Gly-NH (t) 8.06 7.29 0.77 0.42 (4)Gly-NH (c) 8.01 7.51 0.50 0.27 (4)	$I = 1 \text{ or } \mathbf{N} \mathbf{H}$ (t)	7 90	6.54	1.71	0.50(3) 0.72(3)
Let NI (c) 0.17 1.30 0.57 0.57 0.51 (c)Gly-NH (t) 8.17 6.87 1.30 0.60 (2)Gly-NH (c) 8.30 7.05 1.25 0.58 (2)Boc-Phe-Pro-Leu-Gly-NH2 $Phe-NH$ (t) 7.14 5.00 2.14 1.13 (3)Phe-NH (c) 6.94 5.23 1.71 0.90 (3)Leu-NH (t) 8.13 6.63 1.50 0.79 (3)Leu-NH (c) 8.44 6.89 1.55 0.82 (3)Gly-NH (t) 8.06 7.29 0.77 0.42 (4)Gly-NH (c) 8.01 7.51 0.50 0.27 (4)	Leu-NH (c)	817	7 58	0.59	0.72(3) 0.31(3)
Ory NH (c) 0.11 0.12 0.10 <th< td=""><td>Glv-NH (t)</td><td>8 17</td><td>6.87</td><td>1 30</td><td>0.51(3) 0.60(2)</td></th<>	Glv-NH (t)	8 17	6.87	1 30	0.51(3) 0.60(2)
Boc-Phe-Pro-Leu-Gly-NH2 Phe-NH (t) 7.14 5.00 2.14 1.13 (3) Phe-NH (c) 6.94 5.23 1.71 0.90 (3) Leu-NH (t) 8.13 6.63 1.50 0.79 (3) Leu-NH (c) 8.44 6.89 1.55 0.82 (3) Gly-NH (t) 8.06 7.29 0.77 0.42 (4) Gly-NH (c) 8.01 7.51 0.50 0.27 (4)	Gly-NH (c)	8.30	7.05	1.25	0.58 (2)
Boc-Pre-Pro-Leu-Gty-NH2 Phe-NH (t) 7.14 5.00 2.14 1.13 (3) Phe-NH (c) 6.94 5.23 1.71 0.90 (3) Leu-NH (t) 8.13 6.63 1.50 0.79 (3) Leu-NH (c) 8.44 6.89 1.55 0.82 (3) Gly-NH (t) 8.06 7.29 0.77 0.42 (4) Gly-NH (c) 8.01 7.51 0.50 0.27 (4)				-	
FIRE-INF (1) 7.14 5.00 2.14 1.13 (3)Phe-NH (c) 6.94 5.23 1.71 0.90 (3)Leu-NH (t) 8.13 6.63 1.50 0.79 (3)Leu-NH (c) 8.44 6.89 1.55 0.82 (3)Gly-NH (t) 8.06 7.29 0.77 0.42 (4)Gly-NH (c) 8.01 7.51 0.50 0.27 (4)	Boc-Phe-Pro-Leu-Gly- NH_2	7.14	5.00	2.14	1 12 (2)
FIGE-INT (C) 0.94 5.25 1.71 0.90 (3)Leu-NH (t) 8.13 6.63 1.50 0.79 (3)Leu-NH (c) 8.44 6.89 1.55 0.82 (3)Gly-NH (t) 8.06 7.29 0.77 0.42 (4)Gly-NH (c) 8.01 7.51 0.50 0.27 (4)	$\mathbf{P} = \mathbf{N} \mathbf{H} + \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I}$	7.14 6.04	5.00	∠.14 1.71	1.13(3)
Leu-NH (c) 8.13 0.05 1.50 0.79 (5)Leu-NH (c) 8.44 6.89 1.55 0.82 (3)Gly-NH (t) 8.06 7.29 0.77 0.42 (4)Gly-NH (c) 8.01 7.51 0.50 0.27 (4)	$\frac{\Gamma_{\rm HC}}{\Gamma_{\rm HC}} = \frac{\Gamma_{\rm HC}}{\Gamma_{\rm HC}} + \Gamma_$	0.7 4 8 1 3	5.25	1.71	0.90(3)
Current (c) 0.44 0.67 1.55 0.82 (5)Gly-NH (c) 8.06 7.29 0.77 0.42 (4)Gly-NH (c) 8.01 7.51 0.50 0.27 (4)	$L_{u-1NII}(t)$ Leu-NH(c)	8.13 8.44	6.89	1.50	0.75(3) 0.82(3)
Gly-NH (c) 8.01 7.51 0.70 0.42 (4)	Glv-NH (t)	8.06	7 29	0.77	0.02(3) 0.42(4)
	Gly-NH (c)	8.01	7.51	0.50	0.27 (4)

Table 1 (Continued)

Compound proton	δ (DMSO)	δ (CDCl ₃)	$\Delta\delta$	$\Delta\delta/\Delta\delta$ (Ref.)
Anti-NH (t)	7.21	6.59	0.62	0.33 (5)
Anti-NH (c)	7.20	6.55	0.65	0.35 (5)
Syn-NH (t)	7.18	5.21	1.97	1.14 (6)
Syn-NH (c)	7.16	5.21	1.95	1.13 (6)
Boc-Leu ¹ -Pro-Leu ² -Ome				
Leu ¹ -NH (t)	6.88	5.12	1.76	0.93 (3)
Leu ¹ -NH (c)	6.73	5.12	1.61	0.85 (3)
Leu^2 -NH (t)	8.13	7.21	0.92	0.38 (1)
Leu ² -NH (c)	8.40	8.14	0.26	0.11 (1)
Boc-Leu ¹ -Pro-Leu ² -Gly-Oet				
Leu ¹ -NH (t)	6.92	5.03	1.89	0.99 (3)
Leu ¹ -NH (c)	6.50	4.99	1.51	0.79 (3)
Leu^2 -NH (t)	7.84	7.01	0.83	0.44 (3)
Leu ² -NH (c)	_	7.45	_	
Gly-NH (t)	8.16	6.67	1.49	0.69 (2)
Gly-NH (c)	-	_	_	
Boc-Leu ¹ -Pro-Leu ² -Gly-NH ₂	,			
Leu ¹ -NH (t)	6.95	4.98	1.97	1.04 (3)
Leu ¹ -NH (c)	_	5.10		_
Leu^2 -NH (t)	8.11	7.04	1.07	0.56 (3)
Leu ² -NH (c)	-	6.84	_	
Gly-NH (t)	7.97	7.24	0.73	0.40 (4)
Gly-NH (c)	_	7.75		
Anti-NH (c)	-	6.61	_	
Anti-NH (c)		6.63	_	
Syn-NH (t)		5.23	_	
Syn-NH (t)		5.19	-	

^a Chemical shifts were standardized by a residual proton of DMSO or a residual $CHCl_3$ proton. Alphabets in parentheses mean *trans* (t) and *cis* (c).

NH(t) are thought to form a 7-membered ring and a 10-membered ring, respectively, with the acetyl carbonyl group. These hydrogen-bonded structures are considered to be similar to the γ -turn and the β -turn, respectively.

For Boc-Phe-Pro-Leu- compounds, in contrast to Ac-Pro-Leu- compounds, the NH protons of both *trans* and *cis* conformers take part in some intramolecular hydrogen bonds. The Leu-NH(c) proton as well as the Leu-NH(t) proton of Boc-Phe-Pro-Leu-OMe exhibits a significantly small $\Delta\delta/\Delta\delta_{\text{Ref}}$ value, which indicates existence of a stable intramolecular hydrogen bonds in the *cis* configuration. This is also the case for Boc-Leu¹-Pro-Leu²-OMe in which the Leu²-NH(c) proton is involved in the intramolecular hydrogen bonds. As mentioned previously, a hydrogen bond partner of Leu-NH(c) is restricted to the Boc carbonyl group and a likely candidate for the hydrogenbonded structure is the type-VI β turn. A balland-stick model of this structure for Boc-Phe-Pro-Leu-OMe is examined on the basis of molecular mechanics calculation with a MM + force field [12], and the optimized structure is shown in Fig. 8. Comparison of the $\Delta \delta / \Delta \delta_{\text{Ref}}$ values suggests that the hydrogen bond in the cis configuration is more stable than that in the trans configuration. However, it does not mean that the cis form is more stable than the trans form. In fact, the cis/trans ratios of Boc-Phe-Pro-Leu-OME and Boc-Leu¹-Pro-Leu²-OMe are 32/68 and 15/85, respectively, in CDCl₃. These facts indicate that non-hydrogen-bonded structures are less stable in the cis configuration than in the trans

Fig. 8. A ball-and-stick model of type-VIa β -turn structure for Boc-Phe-Pro-Leu-OMe. The distance between the Boc-CO oxygen and the Leu-NH proton is 2.15 Å as shown in the figure.

configuration. As a result, the relative stability of the hydrogen-bonded structure is larger in the *cis* configuration than in the *trans* configuration. Nevertheless the *trans* form as a whole is more stable than the *cis* form.

For Boc-Phe-Pro-Leu-Gly-OEt, similarly, the hydrogen-bonded ring that involves the Leu-NH proton is more stable in the *cis* form than in the *trans* form in CDCl₃. The hydrogen bond partner of the Leu-NH(c) proton should be the Boc-carbonyl group as for Boc-Phe-Pro-Leu-OMe and a candidate for this *cis* hydrogen-bonded structure is also the type-VIa β -turn. Unfortunately, chemical shift of the Leu²-NH(c) of Boc-Leu¹-Pro-Leu²-Gly-OEt in 100% DMSO could not be obtained by overlap of other signals. However, this compound may have a similar *cis* hydrogen-bonded structure to that of Boc-Phe-Pro-Leu-Gly-OEt.

For Boc-Phe-Pro-Leu-Gly-NH₂, on the contrary, the Leu-NH proton is less involved in any intramolecular hydrogen bonding both in the *trans* and *cis* forms as compared with those of Boc-Phe-Pro-Leu-OMe and Boc-Phe-Pro-Leu-Gly-OEt mentioned above. Instead, mainly the Gly-NH and *anti*-NH protons take part in some hydrogen bonding both in the *trans* and *cis* forms. There are some possible hydrogen-bonded structures for these amide protons. Among those, the 7-membered hydrogen-bonded ring that does not cross a prolyl residue is not stable enough and can be neglected as mentioned before. In the trans configuration, therefore, the possible hydrogen bonded structures for Gly-NH(t) are 10- and 13-membered rings with Phe- and Boc-carbonyl groups, respectively. The anti-NH(t) proton has possibilities of forming 10-, 13- and 16-membered rings with Pro-, Phe-, and Boc-carbonyl groups, respectively. The 10- and 13-membered rings, which may be similar to the β -turn and α -helix structures, are quite common for short peptides in solution and probably coexist with each other in the present solutions. On the other hand, it is not clear whether the 16-membered ring exists to an appreciable degree or not.

The Phe-carbonyl group of Boc-Phe-Pro-Leu-Gly-NH₂ in the *cis* form is difficult to make any intramolecular hydrogen bonds due to steric hindrance. Consequently, the hydrogen-bonding partner of the Gly-NH(c) is restricted to the Boc-carbonyl group, while the Pro-carbonyl group is excluded by the reason mentioned above. The C-terminal anti-NH(c) is able to make 10-membered ring with the Pro-carbonyl, while a possibility of a 16-membered ring with the Boc-carbonyl could not be excluded. At present we have not enough knowledge to conclusively discuss details of the hydrogen-bonded structure in the cis form. However, examination with a ball-and-stick model on the basis of molecular mechanics calculations suggests that a 10-membered hydrogen-bonded ring of anti-NH(c) and a 13-membered ring of Gly-NH(c) can be formed simultaneously. If the 10-membered ring is like the type-I β -turn, the Gly-NH(c) group is protruded from the ring toward sterically possible region for the Boc-carbonyl group in the cis form. This hydrogen-bonded structure of Boc-Phe-Pro-Leu-Gly-NH₂ optimized with the MM + force field is shown in Fig. 9. These two intramolecular hydrogen-bonded rings seem to support each other, and may cooperatively contribute to stabilization of the cis form of Boc-Phe-Pro-Leu-Gly-NH₂. Each of hydrogen bonds could be less stable than that of the type-VIa β-turn structure. However, molecular mechanics calculations indicated that the structure with the two hydrogen-bonded rings shown in Fig. 9 was considerably more stable than a type-VIa β -turn structure for this peptide. Although, such cooperative actions of different hydrogen bonds on the structures of proteins and polypeptides are commonly observed [13], they have so far not been reported for such a short peptide as composed of four residues to our knowledge. It should be noted here that the above-mentioned cooperativity of hydrogen bonds is different in nature from the usual hydrogen-bond cooperativity that is essentially caused by electronic induction effect in a succession of hydrogen bonds [13]. The former may be called conformational cooperativity of hydrogen bonds.

Finally, we briefly discuss difference in the *cis/ trans* ratio between imide bonds of the Phe-Pro and Leu-Pro sequences. As seen in Fig. 2 and Fig. 3, the *cis* form of Boc-Phe-Pro-Leu- compounds are more stable than those of Boc-Leu-Pro-Leu- compounds in CDCl₃-rich solvent. This fact indicates that the Phe residue stabilize more the *cis* imide bond than the Leu residue. This is consistent with a statistical preference of proline imide bonds in proteins. Probability of occurrence of the *cis* imide bond is somewhat larger in -Xaa-Pro- sequence, where Xaa indicates a residue with an aromatic side chain, than in other -Yaa-Pro- sequence [1,8]. The reason for this, however, seems not yet clear

Fig. 9. A ball-and-stick model of hydrogen-bonded structure for the *cis* form of Boc-Phe-Pro-Leu-Gly-NH₂. The distance between the Boc-CO oxygen and the Gly-NH proton is 2.71 Å and that between the Pro-CO oxygen and the C-terminal *anti*-NH proton is 2.76 Å as shown in the figure.

enough. Interaction between the aromatic side chain and the pyrrolidine ring has been sometimes suggested [1,7,9]. However, conformational study by Kang et al. [8] suggested that the interaction is not strong enough. The present molecular mechanics calculations also do not imply any specific interaction between the Phe-aromatic ring and the pyrrolidine ring. For Boc-Phe-Pro-Leu-OMe, another conformation with a different dihedral angle about the $C_{\alpha}{-}C_{\beta}$ axis of the Phe residue and a closer distance between the two rings is slightly higher in energy than the optimized structure shown in Fig. 8. The same is true for Boc-Phe-Pro-Leu-Gly-NH₂. Although this could be due to an insufficiency of the molecular mechanics force field used in the present study, we may need to take account of another factor such as solvent effect. In general, an aromatic side chain is considered to be somewhat stronger in interaction with solvent than an aliphatic side chain, probably owing to a smaller ionization potential of the aromatic ring than that of the aliphatic side chain. This will cause difference in interaction with solvent and could yield different conformational preference in solution.

5. Summary

This *cis-trans* conformational equilibrium of a proline imide bond of different short peptides in DMSO-CDCl₃ mixed solvents has been studied as a function of solvent mixing ratio by proton NMR. It is found that, with increasing fraction of CDCl₃, the trans percentage of Ac-Pro- imide bonds increases, but that of Boc-Phe-Pro- decreases and that of Boc-Leu-Pro- exhibits middle tendency. From the solvent-dependent change of chemical shifts of NH protons, intramolecular hydrogen bonds that stabilize the trans form of Ac-Pro and the cis form of Boc-Phe-Pro- were discussed. It is found that formation of 7-, 10-, and 13-membered intramolecular hydrogen-bonded rings stabilizes the trans form of Ac-Pro- imide bonds. On the other hand, the *cis* of Boc-Phe-Pro-R (R = OMe or Gly-OEt) is stabilized by formation of a 10-membered hydrogen-bonded ring similar to that of the type-VIa β-turn. For Boc-Phe-Pro-Leu-Gly-NH₂,

on the other hand, it is suggested that the *cis* form is stabilized by cooperative action of two different hydrogen-bonded rings, both of which are different from the type-VIa β -turn structure. Difference in the *cis/trans* ratio between the Boc-Phe-Proand Boc-Phe-Pro- sequences was briefly discussed.

Acknowledgements

The NMR measurements were performed at the High Resolution NMR Laboratory, Graduate School of Science, Hokkaido University.

References

 D.E. Stewart, A. Sarkar, J.E. Wampler, J. Mol. Biol. 214 (1990) 253.

- [2] T.E. Creighton, Proteins: Structures and Molecular Properties, second edn, Freeman and Company, New York, 1993, p. 221.
- [3] J.F. Brandts, H.R. Halvorson, M. Brennan, Biochemistry 14 (1975) 4953.
- [4] V. Madison, J. Schellman, Biopolymers 9 (1970) 511.
- [5] T. Higashijima, M. Tasumi, T. Miyazawa, Biopolymers 16 (1977) 1259.
- [6] B. Ishimoto, K. Tonan, S. Ikawa, Spectrochim. Acta Part A 56 (2000) 201.
- [7] M.W. MacArthur, J.M. Thornton, J. Mol. Biol. 218 (1991) 397.
- [8] Y.K. Kang, J.S. Jhon, S.J. Han, J. Peptide Res. 53 (1999) 30.
- [9] J. Yao, V.A. Feher, B.F. Espejo, M.T. Reymond, P.E. Wright, H.J. Dyson, J. Mol. Biol. 243 (1994) 736.
- [10] K. Tonan, S. Ikawa, J. Am. Chem. Soc. 118 (1996) 6960.
- [11] B. Ishimoto, K. Tonan, S. Ikawa, Spectrochim. Acta Part A55 (1999) 2321.
- [12] J.T. Sprague, J.C. Tai, Y. Yuh, N.L. Allinger, J. Compt. Chem. 7 (1987) 581.
- [13] G.A. Jeffrey, W. Saenger, Hydrogen Bonding in Biological Structures, Springer, Berlin, 1991.