DOI: 10.1002/zaac.201100375

Palladium(II) and Platinum(II) Complexes with Bisphosphanes, $[S_2C=C(CN)_2]^{2-}$ and $[Se_2C=C(CN)_2]^{2-}$ as Chelating Ligands

Lothar Scheller^[a] and Helmut Werner^{*[a]}

Dedicated to Professor Wolfgang Beck on the Occasion of His 80th Birthday

Keywords: Chelate complexes; 1,1-Dicyanoethylene-2,2-dithiolate; 1,1-Dicyanoethylene-2,2-diselenolate; Palladium; Platinum

Abstract. The palladium(II) and platin(II) 1,1-dicyanoethylene-2,2-dithiolates [(L–L)M{S₂C=C(CN)₂}] (M = Pd: L–L = dppm, dppe, dcpe, dpmb; M = Pt: dppe, dcpe, dpmb) were prepared either from [(L–L)MCl₂] and K₂[S₂C=C(CN)₂] or from [(PPh₃)₂M{S₂C=C(CN)₂}] and the bisphosphane. Moreover, [(dppe)Pt{S₂C=C(CN)₂}] was obtained from [(1,5-C₈H₁₂)Pt{S₂C=C(CN)₂}] and dppe by ligand exchange. The 1,1-dicyanoethylene-2,2-diselenolates

Introduction

In the context of our work on coordination compounds formed from CS₂ and related heteroallenes,^[1] we found that the palladium(0) complex [(PMe₂Ph)₂Pd(SCNPh)], formed from [Pd(PMe₂Ph]₄ and SCNPh, reacted with a second molecule of SCNPh to afford the palladium(II) derivative [(PMe₂Ph)₂Pd(S₂CNPh)] by elimination of CNPh^[2]. Analogues of [(PMe₂Ph)₂Pd(S₂CNPh)] of the general composition [(PR₃)₂M(S₂CO)] and [(PR₃)₂Pd(S₂CS)] (M = Pd, Pt) were well known and had been prepared mainly from [(PR₃)₂MCl₂] and alkali salts of the anions [S₂COMe]⁻ or [S₂CS]²⁻, respectively.^[3,4] The nickel complex [(dppe)Ni(S₂CS)] was obtained from [(dppe)Ni(chelate)] precursors and CS₂ as source of the trithiocarbonate ligand.^[5]

The aim of the present study was firstly to prepare a series of palladium(II) and platinum(II) compounds $[(L-L)Pd(S_2C=X)]$ and $[(L-L)Pt(S_2C=X)]$, where X is $C(CN)_2$ instead of oxygen, sulfur, and NPh, and where L-L is a chelating bisphosphane such as dppe, dcpe etc. Secondly, we were interested to find out whether the counterparts with $[Se_2C=C(CN)_2]^{2-}$ as bidentate ligand were also accessible. We point out that whereas some 1,1-dicyanoethylene-2,2-dithiolate platinum(II) complexes $[(L-L)Pt{S_2C=C(CN)_2}]$ with 1,1'-bis(diphenylphosphanyl)ferrocene,^[6] 2,2-bipyridine, 1,10-phenanthroline and their derivatives were described,^[7] analogues with 1,1-dicyanoethylene-2,2-diselenolate as ligand, to the best of our knowledge, were unknown.

Anorganische Chemie Am Hubland 97074 Würzburg, Germany $[(dppe)M{Se_2C=C(CN)_2}] \quad (M = Pd, Pt) \text{ were prepared from } [(dppe)MCl_2] \text{ and } K_2[Se_2C=C(CN)_2]. The oxidation potentials of the square-planar palladium and platinum complexes were determined by cyclic voltammetry. The reaction of <math>[(dcpe)Pd(S_2C=O)]$ with TCNE led to a ligand fragment exchange and gave the 1,1-dicyanoethylene-2,2-dithiolate $[(dcpe)Pd{S_2C=C(CN)_2}]$ in good yield.

Results and Discussion

The bisphosphane metal dichlorides **1a–1d** and **2a–2c** reacted with equimolar amounts of $K_2[S_2C=C(CN)_2]$ in THF/CH₂Cl₂ at room temperature to give the four-coordinate chelate complexes **3a–3d** and **4a–4c** in 70–78% isolated yield (Scheme 1). An alternative procedure used the bis(triphenylphosphane) palladium and platinum dichlorides **5** and **6** as starting materials, which on treating with $K_2[S_2C=C(CN)_2]$ afforded the metal 1,1-dicyanoethylene-2,2-dithiolates **7** and **8**. The reactions of **7** with dppe and dpmb, and of **8** with dppe readily led to the displacement of PPh₃ and gave the chelate complexes **3b**, **3d** and **4a**. A similar substitution occurred on treatment of **10** with dppe to furnish **4a** (Scheme 2). In this case, however, the reaction is slower than that of **8** with dppe.

The metal 1.1-dicvanoethylene-2.2-dithiolates **3a-3d.** 4a-4c, 7 and 8 are yellow to orange, almost air-stable solids, which are soluble in CH₂Cl₂ and chloroform, but insoluble in hydrocarbons. Characteristic features of the IR spectra of **3a-3d**, **4a-4c**, **7** and **8** are the strong absorption at 2200-2210 cm⁻¹, corresponding to the C=N stretching mode, and the band at 1430-1435 cm⁻¹, assigned to an olefinic C=C stretch. Both numbers are in agreement with reference data.^[3a] The ³¹P NMR spectra of **3a–3d**, **4a–4c**, **7** and **8** display only one signal, confirming the stereochemical equivalence of the phosphane groups. From the satellites in the spectra of the platinum complexes 4a-4c and 8, substantially large ¹⁹⁵Pt-³¹P coupling constants of 3000-3170 Hz could be determined. The UV spectra of 3a-3d, 4a-4c, 7 and 8 show a maximum at 340-350 nm, which is at a similar position as found for the palladium and platinum trithionates $[(L-L)M(S_2CS)]$ (L-L = dppe, dcpe, dmpe).^[8,9]

WILEY ONLINE LIBRARY

76

^{*} Prof. Dr. H. Werner

E-Mail: helmut.werner@mail.uni-wuerzburg.de [a] Universität Würzburg

Scheme 1. [(i) M = Pd: P-P = dppe. dpmb; M = Pt: P-P = dppe].

(1,5-C ₈ H ₁₂)PtCl ₂	$K_2[S_2C=C(CN)_2]$	$(1,5-C_8H_{12}) Pt < S = C < CN CN$	dppe	4a
9		10		

Scheme 2.

The preparation of the palladium(II) and platinum(II) 1,1dicyanoethylene-2,2-diselenolates 11 and 12 followed the same route as used for 3b and 4a (Scheme 3). Similar to 3a–3d and 4a–4c, the diselenolates 11 and 12 are air-stable solids, the IR, UV and ³¹P NMR spectra of which display only minor differences to those of the analogous metal 1,1-dicyanoethylene-2,2dithiolates.

Scheme 3.

The X-ray diffraction analyses of 3b and 11 confirmed that the two related complexes possess the proposed square-planar geometry. The bond angle S-Pd-S in **3b** (74.7(1)°)^[10] is considerably smaller than 90° but similar to that in 74.2(2)°),^[11] $[(PPh_3)_2Pd\{S_2C=C(CN)_2\}]$ (S-Pd-S = 75.4(1)°),^[12] $[(PMe_2Ph)_2Pd(S_2CO)]$ (S-Pd-S = $[(PPh_3)_2Pt(S_2CO)]$ (S-Pt-S = 75.2(2)°),^[3a] and analogous coordination compounds with trithiocarbonate as chelating ligand.^[13] The bond angle Se–Pd–Se in **11** is only slightly larger than in **3b** and amounts to 77.61(4)°.^[14] The Pd-S and Pd-Se distances (**3b**: 2.356(4) and 2.344(4) Å; **11**: 2.425(1) and 2.474(1) Å) are in the range of palladium-sulfur and palladium-selenium single bonds; the Pd-Se distances in 11 being quite similar to those in the maleonitrilediselenoate dianion $[Pd{Se_2C_2(CN)_2}_2]^{2-.[15]}$ The C=C distances in **3b** (1.370(2) Å) and **11** (1.360(1) Å) are almost similar to those in the structurally analogous platinum(II) complexes (1.368(8) Å),^[16] $[(1,5-C_8H_{12})Pt{S_2C=C(CN)CO_2Et}]$ $[(PPh_3)_2Pt\{S_2C=CHC(O)Ph\}]$ (1.349(8) Å)^[17] and $[(PC_{16}H_{13})_2Pt\{S_2C=C(CO_2Et)_2\}]$ (1.355(7) Å),^[18] and correspond to a carbon-carbon double bond. In the unit cell of **3b**, the molecules are not layered like in $[Pd{S_2C_2(CN)_2}_2]^{2-}$ and $[Pt{S_2C_2(CN)_2}_2]^{2-,[19]}$ which is probably due to the spatial arrangement of the PPh2 units. The Pd-Pd distances between two neighboring molecules of 3b are larger than 6.0 Å and thus exclude a direct metal-metal interaction as found in the bis(maleonitrildithiolates).^[20]

The oxidation chemistry of the palladium and the platinum complexes 3b-3d, 7, 11 and 4a-4c, 8, 12 were investigated both by electroanalytical and chemical studies. All complexes showed irreversible oxidation waves in acetonitrile at room temperature. As summarized in Table 1, the E_{pa} values for the 1,1-dicyanoethylene-2,2-dithiolates are between 1.51 V and 1.64 V and depend only slightly on the phosphane ligand as well as on the metal atom. The 1,1-dicyanoethylene-2,2-diselenolates 11 and 12 exhibit lower oxidation potentials than their dithiolate counterparts 3b and 4a, which can be rationalized by the lower σ -donating capabilities of the dianion $[Se_2C_2(CN)_2]^{2-}$ compared with $[S_2C_2(CN)_2]^{2-}$. We note that the E_{pa} values of the dithiocarbonates [(dcpe)M(S₂C=O)] (M = Pd, Pt) are significantly lower than those of the analogues 3c and 4b,^[9] which is in agreement with the substantial difference in the electronegativity of oxygen and the C(CN)₂ fragment.

Table 1. Oxidation Potentials of 1,1-dicyanoethylene-2,2-dithiolates and 1,1-dicyanoethylene-2,2-diselenolates of palladium(II) and platinum(II) (in acetonitrile, referenced to the ferrocen/ferrocenium redox couple).

Compd	$E_{\rm pa}$ /V _{Fc}	compd	$E_{\rm pa}$ /V _{Fc}
3b	+1.55	4c	+1.61
3c	+1.58	7	+1.60
3d	+1.58	8	+1.63
4a	+1.64	11	+1.33
4b	+1.51	12	+1.42

Attempts to oxidize the compounds **3b** and **4a** by chemical means and trap the proposed paramagnetic cations $[(dppe)M{S_2C=C(CN)_2}]^+$ in the presence of NH₄[PF₆] or Na[BPh₄] failed. The reaction of **3b** with equimolar amounts of chloroanil gave 1b as the main product, whereas on treatment of 3b with iodine the corresponding diiodide $[(dppe)PdI_2]$ was obtained. The platinum complex 4a proved to be inert even in the presence of a tenfold excess of I₂. Also no reaction occurred upon treating 3b or 3c with tetracyanoethylene (TCNE) as the electron acceptor. In contrast, the dithiocarbonato complex 13 reacted with TCNE in CH₂Cl₂ to give the 1,1-dicyanoethylene-2,2-dithiolate derivative 3c (see Scheme 4). Α similar reaction occurred between [(dcpe)Pd(S₂CS)] and TCNE, although in this case side prod-

ARTICLE

ucts were observed. We assume that the formation of **3c** from **13** and TCNE proceeds by a [2+2] cycloaddition process via a four-membered thietane intermediate. Such intermediates have been observed in the reactions of $[(C_5Me_5)Co(PMe_3)-(S_2CS)]$ with TCNE,^[9] and of thioketones and thioketenes with electron poor olefins.^[20]

Experimental Section

General: All experiments were carried out under argon using Schlenk techniques. The starting materials **1a–1d**,^[21] **2a–2c**,^[21,22] **5**,^[23] **6**,^[24] **9**,^[25] K₂[S₂C=C(CN)₂],^[26] K₂[Se₂C=C(CN)₂],^[27] and K[S₂COMe],^[28] were prepared as described in the literature. NMR: Bruker WH 90, JOEL FX 90Q. IR: Perkin–Elmer 397. UV: Hitachi 340. X-ray: Enraf Nonius CAD4 diffractometer, MoK_a radiation (0.70930 Å), graphite monochromator, zirconium filter (factor 16.55). Melting points were determined by DTA. Abbreviations used: dppm: CH₂(PPh₂)₂; dppe: 1,2-C₂H₄(PPh₂)₂; dcpe: 1,2-C₂H₄(PCy₂)₂; dpmb: 1,2-C₆H₄(CH₂PPh₂)₂; s: singlet; d: doublet; m: multiplet; br: broad signal.

Preparation of [(dppm)Pd{S₂C=C(CN)₂}] (3a): A solution of **1a** (84 mg, 0.15 mmol) in THF/CH₂Cl₂ (1:3, 40 mL) was treated with K₂[S₂C=C(CN)₂] (66 mg, 0.30 mmol) and stirred for 1 h at room temperature. The solution was filtered, and the filtrate was evaporated in vacuo. An orange solid was obtained, which was washed three times with hexane (5 mL) and dried; yield 66 mg (70%); m.p. 110 °C (decomp.). **IR** (KBr): $\tilde{v} = 2205$ [v (CN)], 1430 [v (C=C)] cm⁻¹. **UV** (CH₂Cl₂, 10⁻⁶ mol/L): $\lambda_{max} = 346$ nm. ³¹P **NMR** (36.2 MHz, CDCl₃): $\delta = 30.4$ (s) ppm. C₂₉H₂₂N₂P₂PdS₂ (631.0): calcd. C 55.20, H 3.51, N 4.44, S 10.16; found C 55.12, H 3.50, N 4.32, S 10.32 %.

Preparation of [(dppe)Pd{S₂C=C(CN)₂}] (3b): (a) This compound was prepared as described for **3a**, with **1b** (86 mg, 0.15 mmol) and K₂[S₂C=C(CN)₂] (66 mg, 0.30 mmol) as starting materials; yield 75 mg (78%). – (b) A solution of **7** (216 mg, 0.28 mmol) in CH₂Cl₂ (40 mL) was treated with dppe (112 mg, 0.28 mmol) and stirred for 4 h at room temperature. It was then worked up as described for (a). Bright yellow solid; yield 159 mg (88%); m.p. 170 °C (decomp.). **IR** (KBr): $\tilde{v} = 2205$ [v (CN)], 1430 [v (C=C)] cm⁻¹. **UV** (CH₂Cl₂, 10⁻⁶ mol/L): $\lambda_{max} = 342$ nm. ¹**H NMR** (90 MHz, CD₂Cl₂): $\delta = 7.48-7.82$ (m, 20 H, C₆H₅), 2.59 (d, 4 H, ²*J*(P,H) = 20.5 Hz, CH₂) ppm. ³¹**P NMR** (36.2 MHz, CDCl₃): $\delta = 54.5$ (s) ppm. C₃₀H₂₄N₂P₂PdS₂ (645.0): calcd. C 55.86, H 3.75, N 4.34, S 9.94; found C 55.50, H 3.85, N 4.10, S 9.79 %.

Preparation of [(dcpe)Pd{S₂C=C(CN)₂}] (3c): This compound was prepared as described for 3a, with 1c (90 mg, 0.15 mmol) and

K₂[S₂C=C(CN)₂] (66 mg, 0.30 mmol) as starting materials. Pale yellow solid; yield 75 mg (75%); m.p. 266 °C (decomp.). **IR** (KBr): $\tilde{v} = 2200 [v (CN)]$, 1430 [v (C=C)] cm⁻¹. **UV** (CH₂Cl₂, 10⁻⁶ mol/L): $\lambda_{max} = 340$ nm. ³¹**P NMR** (36.2 MHz, CDCl₃): $\delta = 81.4$ (s) ppm. C₃₀H₄₈N₂P₂PdS₂ (669.2): calcd. C 53.84, H 7.23, N 4.19, S 9.58; found C 53.57, H 7.11, N 4.20, S 9.50 %.

Preparation of [(dpmb)Pd{S₂C=C(CN)₂}] (3d): (a) This compound was prepared as described for **3a**, with **1d** (98 mg, 0.15 mmol) and K₂[S₂C=C(CN)₂] (66 mg, 0.30 mmol) as starting materials; yield 79 mg (73%). – (b) A solution of **7** (216 mg, 0.28 mmol) in CH₂Cl₂ (40 mL) was treated with dppe (132 mg, 0.28 mmol) and stirred for 4 h at room temperature. It was then worked up as described for (a). Yellow solid; yield 179 mg (89%); m.p. 192 °C (decomp.). **IR** (KBr): $\tilde{v} = 2205$ [v (CN)], 1435 [v (C=C)] cm⁻¹. **UV** (CH₂Cl₂, 10⁻⁶ mol/L): $\lambda_{max} = 343$ nm. ¹**H NMR** (90 MHz, CD₂Cl₂): $\delta = 7.35-7.70$ (m, 24 H, C₆H₄ and C₆H₅), 3.80 (m, 4 H, CH₂) ppm. ³¹**P NMR** (36.2 MHz, CDCl₃): $\delta = 15.6$ (s) ppm. C₃₆H₂₈N₂P₂PdS₂ (721.1): calcd. C 59.96, H 3.91, N 3.88, S 8.89; found C 59.66, H 3.85, N 3.93, S 8.95 %.

Preparation of [(dppe)Pt{S₂C=C(CN)₂}] (4a): (a) This compound was prepared as described for 3a, with 2a (100 mg, 0.15 mmol) and $K_2[S_2C=C(CN)_2]$ (66 mg, 0.30 mmol) as starting materials; yield 86 mg (78%). - (b) A solution of 8 (241 mg, 0.28 mmol) in CH₂Cl₂ (40 mL) was treated with dppe (112 mg, 0.28 mmol) and stirred for 4 h at room temperature. It was then worked up as described for (a); yield 177 mg (86%). - (c) A solution of 10 (102 mg, 0.23 mmol) in CH₂Cl₂ (25 mL) was treated with dppe (92 mg, 0.23 mmol) and stirred for 18 h at room temperature. Afterwards, it was worked up as described for (a): vield 131 mg (88%); light vellow solid; vield 177 mg (86%); m.p. 275 °C (decomp.). **IR** (KBr): $\tilde{v} = 2205 [v (CN)]$, 1430 [v (C=C)] cm⁻¹. UV (CH₂Cl₂, 10⁻⁶ mol/L): λ_{max} = 348 nm. ¹H NMR (90 MHz, CD_2Cl_2): $\delta = 7.39-7.89$ (m, 20 H, C_6H_5), 2.52 (d, 4 H, ${}^{2}J(P,H) = 17.4$, ${}^{3}J_{(Pt,H)} = 48.4$ Hz, CH₂) ppm. ${}^{31}P$ NMR (36.2 MHz, CDCl₃): $\delta = 41.3$ (s, ${}^{2}J_{(Pt,P)} = 3058$ Hz) ppm. C₃₀H₂₄N₂P₂PtS₂ (733.7): calcd. C 49.11, H 3.30, N 3.82, S 8.74; found C 49.23, H 3.49, N 3.67, S 8.85 %.

Preparation of [(dcpe)Pt{S₂C=C(CN)₂}] (4b): This compound was prepared as described for **3a**, with **2b** (103 mg, 0.15 mmol) and K₂[S₂C=C(CN)₂] (66 mg, 0.30 mmol) as starting materials. Pale yellow solid; yield 86 mg (76%); m.p. 209 °C (decomp.). **IR** (KBr): $\tilde{v} =$ 2200 [v (CN)], 1430 [v (C=C)] cm⁻¹. **UV** (CH₂Cl₂, 10⁻⁶ mol/L): $\lambda_{max} =$ 348 nm. ³¹**P NMR** (36.2 MHz, CDCl₃): $\delta =$ 64.3 (s, ²*J*_(Pt,P) = 3005 Hz) ppm. C₃₀H₄₈N₂P₂PtS₂ (757.9): calcd. C 47.54, H 6.38, N 3.70, S 8.46; found C 47.45, H 6.41, N 3.57, S 8.45 %.

Preparation of [(dpmb)Pt{S₂C=C(CN)₂]] (4c): This compound was prepared as described for **3a**, with **2c** (111 mg, 0.15 mmol) and K₂[S₂C=C(CN)₂] (66 mg, 0.30 mmol) as starting materials; yield 79 mg (73%); pale yellow solid; yield 92 mg (76%); m.p. 214 °C (decomp.). **IR** (KBr): $\tilde{v} = 2210$ [v (CN)], 1435 [v (C=C)] cm⁻¹. **UV** (CH₂Cl₂, 10⁻⁶ mol/L): $\lambda_{max} = 349$ nm. ¹**H NMR** (90 MHz, CD₂Cl₂): $\delta = 7.38-7.68$ (m, 24 H, C₆H₄ and C₆H₅), 3.95 (m, 4 H, CH₂) ppm. ³¹**P NMR** (36.2 MHz, CDCl₃): $\delta = 0.6$ (s, ²*J*_(Pt,P) = 3083 Hz) ppm. C₃₆H₂₈N₂P₂PtS₂ (809.8): calcd. C 53.40, H 3.49, N 3.46, S 7.92; found C 53.21, H 3.55, N 3.47, S 7.80 %.

Preparation of [(**PPh**₃)₂**Pd**{**S**₂**C=C**(**CN**)₂}] (7): A solution of **5** (98 mg, 0.28 mmol) in THF/CH₂Cl₂ (1:3, 40 mL) was treated with K₂[S₂C=C(CN)₂] (33 mg, 0.15 mmol) and stirred for 2 h at 40 °C. After the reaction mixture was cooled to room temperature, the solution was filtered, and the filtrate was evaporated in vacuo. An deep yellow solid was obtained, which was washed three times with diethyl

ether (5 mL) and dried; yield 84 mg (78%); m.p. 200 °C (decomp.). **IR** (KBr): $\tilde{v} = 2210 [v (CN)]$, 1430 [v (C=C)] cm⁻¹. **UV** (CH₂Cl₂, 10⁻⁶ mol/L): $\lambda_{max} = 346$ nm. ¹**H NMR** (90 MHz, CD₂Cl₂): $\delta = 7.20-7.55$ (m, C₆H₅) ppm. ³¹**P NMR** (36.2 MHz, CDCl₃): $\delta = 30.4$ (s) ppm. C₄₀H₃₀N₂P₂PdS₂ (771.2): calcd. C 62.29, H 3.92, N 3.63, S 8.32; found C 61.77, H 4.09, N 3.34, S 8.18 %.

Preparation of [(PPh₃)₂Pt{S₂C=C(CN)₂}] (8): This compound was prepared as described for **7**, with **6** (111 mg, 0.15 mmol) and K₂[S₂C=C(CN)₂] (33 mg, 0.15 mmol) as starting materials. Yellow solid; yield 93 mg (76%); m.p. >300 °C. **IR** (KBr): $\tilde{v} = 2210$ [v (CN)], 1430 [v (C=C)] cm⁻¹. **UV** (CH₂Cl₂, 10⁻⁶ mol/L): $\lambda_{max} = 342$ nm. ¹**H NMR** (90 MHz, CD₂Cl₂): $\delta = 7.18-7.57$ (m, C₆H₅) ppm. ³¹**P NMR** (36.2 MHz, CDCl₃): $\delta = 17.0$ (s, ²*J*_(Pt,P) = 3167 Hz) ppm. C₄₀H₃₀N₂P₂PtS₂ (859.9): calcd. S 7.46; found S 7.40 %.

Preparation of [(1,5-C₈H₁₂)Pt{S₂C=C(CN)₂}] (10): A suspension of **9** (123 mg, 0.33 mmol) and K₂[S₂C=C(CN)₂] (87 mg, 0.40 mmol) in CH₂Cl₂ (25 mL) was stirred for 12 h at 40 °C. After the reaction mixture was cooled to room temperature, it was worked up as described for **7**; light yellow solid; yield 124 mg (85%); m.p. 210 °C (decomp.). **IR** (KBr): $\tilde{v} = 2215$ [v (CN)], 1430 [v (C=C)] cm⁻¹. **UV** (CH₂Cl₂, 10⁻⁶ mol/L): $\lambda_{max} = 338$ nm. ¹**H NMR** (90 MHz, CD₂Cl₂): $\delta = 5.64$ (m, 4 H, CH=CH), 2.56 (br. m, 8 H, CH₂) ppm. C₁₂H₁₂N₂PtS₂ (443.5): calcd. C 32.50, H 2.73, N 6.32, S 14.46; found C 32.17, H 2.66, N 6.11, S 14.29 %.

Preparation of [(dppe)Pd{Se₂C=C(CN)₂}] (11): This compound was prepared as described for **3a**, with **1b** (104 mg, 0.18 mmol) and K₂[Se₂C=C(CN)₂] (112 mg, 0.36 mmol) as starting materials; reaction time 2 h; orange brown solid; yield 94 mg (71%); m.p. 164 °C (decomp.). **IR** (KBr): $\tilde{v} = 2200$ [v (CN)], 1430 [v (C=C)] cm⁻¹. **UV** (CH₂Cl₂, 10⁻⁶ mol/L): $\lambda_{max} = 349$ nm. ¹**H** NMR (90 MHz, CD₂Cl₂): $\delta = 7.33-7.62$ (m, 20 H, C₆H₅), 2.56 (d, 4 H, ²*J*(P,H) = 20.5 Hz, CH₂) ppm. ³¹**P** NMR (36.2 MHz, CDCl₃): $\delta = 55.5$ (s) ppm. C₃₀H₂₄N₂P₂PdSe₂ (738.8): calcd. C 48.77, H 3.27, N 3.79; found C 48.32, H 3.35, N 3.76 %.

Preparation of [(dppe)Pt{Se₂C=C(CN)₂}] (12): This compound was prepared as described for **11**, with **2a** (120 mg, 0.18 mmol) and K₂[S₂C=C(CN)₂] (112 mg, 0.36 mmol) as starting materials; orange brown solid; yield 104 mg (70%); m.p. 124 °C (decomp.). **IR** (KBr): $\tilde{v} = 2200$ [v (CN)], 1430 [v (C=C)] cm⁻¹. UV (CH₂Cl₂, 10⁻⁶ mol/L): $\lambda_{max} = 354$ nm. ¹**H NMR** (90 MHz, CD₂Cl₂): $\delta = 7.40-7.88$ (m, 20 H, C₆H₅), 2.47 (d, 4 H, ²*J*(P,H) = 17.6 Hz, CH₂) ppm. ³¹**P NMR** (36.2 MHz, CDCl₃): $\delta = 43.4$ (s) ppm. C₃₀H₂₄N₂P₂PtSe₂ (827.5): calcd. C 43.55, H 2.92, N 3.39; found C 43.26, H 2.94, N 3.57 %.

Preparation of [(dcpe)Pd(S₂C=CO)] (13): A solution of **1c** (102 mg, 0.17 mmol) in CH₂Cl₂ (30 mL) was treated with K[S₂CCOMe] (28 mg, 0.19 mmol) and stirred for 6 h at 40 °C. After the reaction mixture was cooled to room temperature, it was worked up as described for **7**; pale yellow solid; yield 87 mg (82%); m.p. 234 °C (decomp.). **IR** (KBr): $\tilde{v} = 1600 [v (CO)] \text{ cm}^{-1}$. **UV** (CH₂Cl₂, 10⁻⁶ mol/L): $\lambda_{\text{max}} = 268 \text{ nm}$. ³¹**P NMR** (36.2 MHz, CDCl₃): $\delta = 78.6$ (s) ppm. C₂₇H₄₈OP₂PdS₂ (621.2): calcd. C 52.21, H 7.79, S 10.32; found C 52.70, H 8.09, S 10.59 %.

Reaction of 13 with Tetracyanoethylene: A solution of **13** (106 mg, 0.17 mmol) in CH_2Cl_2 (20 mL) was treated with TCNE (26 mg, 0.20 mmol) and stirred for 48 h at room temperature. The solvent was evaporated in vacuo, the residue was dissolved in CH_2Cl_2 (5 mL), and the solution was chromatographed on Al_2O_3 (neutral, activity grade V, height of column 5 cm). With CH_2Cl_2 a yellow fraction was eluted,

which was dried in vacuo. The remaining pale yellow solid was characterized by IR and ³¹P NMR spectroscopy as 3c; yield 82 mg (72%).

Cyclic Voltammetry: In a glovebox $[N(nBu)_4]PF_6$ and the electroactive species were placed into a thoroughly dried CV cell. At a high purity argon line acetonitrile was added through a gastight syringe. Then a platinum disk working electrode, a platinum wire counter electrode, and a Hg/HgCl₂ reference electrode were placed into the solution. The cyclic voltammograms were recorded at scan rates between 50 and 200 mV·sec⁻¹ using different starting and switching potentials. For the determination of the oxidation potentials, ferrocene ($E_{1/2} = +0.40$ V vs. SCE) was added as the internal standard.^[29] Cyclic voltammograms were recorded using a Potentioscan Wenking POS 73 model of Bank Electronics with an XY recorder as described by *Feldmann* and *Koberstein*.^[30]

Acknowledgement

We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. We also thank Mrs *R. Schedl* and Mr *C. P. Kneis* (DTA and elemental analyses) and *Dr. G. Lange* and Mr *F. Dadrich* (mass spectra).

References

- [1] Reviews: a) H. Werner, Coord. Chem. Rev. 1982, 43, 165–185;
 b) H. Werner, Angew. Chem. 1990, 102, 1109–1121; Angew. Chem. Int. Ed. Engl. 1990, 29, 1077–1089.
- [2] W. Bertleff, H. Werner, Chem. Ber. 1982, 115, 1012–1018.
- [3] a) J. P. Fackler Jr., W. C. Seidel, *Inorg. Chem.* 1969, *8*, 1631–1639; b) M. C. Cornock, R. O. Gould, C. L. Jones, J. D. Owen, D. F. Steele, T. A. Stephenson, *J. Chem. Soc. Dalton Trans.* 1977, 496–501.
- [4] a) J. M. Burke, J. P. Fackler Jr., *Inorg. Chem.* 1972, *11*, 2744–2749; b) I. J. B. Lin, H. W. Chen, J. P. Fackler Jr., *Inorg. Chem.* 1978, *17*, 394–401.
- [5] J. Cámpora, E. Carmona, E. Gutiérrez-Puebla, M. L. Poveda, C. Ruiz, Organometallics 1988, 7, 2577–2579.
- [6] D.-Y. Noh, E.-M. Seo, H.-J. Lee, H.-Y. Jang, M.-G. Choi, Y. H. Kim, J. Hong, *Polyhedron* 2001, 20, 1939–1945.
- [7] J. A. Zuleta, M. Burberry, R. Eisenberg, Coord. Chem. Rev. 1990, 97, 47–64.
- [8] M. Ebner, H. Werner, Chem. Ber. 1986, 119, 482-487.
- [9] L. Scheller, Dissertation Universität Würzburg **1990**.
- [10] a) M. Schulz, Dissertation Universität Würzburg **1991**; b) Tables with selected bond lengths and bond angles, the atomic parameters x, y, z, the isotropic temperature factors U(eq), and the anisotropic temperature factors U_{11} , U_{22} , U_{33} , U_{23} , U_{13} , U_{12} of **3b** are available by the corresponding author (H. W.) on request.
- [11] D. Long, H. Zheng, X. Xin, G. Sakane, T. Shibahara, *Polyhedron* 1997, 16, 4305–4311.
- [12] H. Werner, W. Bertleff, B. Zimmer-Gasser, U. Schubert, *Chem. Ber.* 1982, 115, 1004–1011.
- [13] R. P. Burns, F. P. McCullough, C. A. McAuliffe, Adv. Inorg. Chem. Radiochem. 1980, 23, 211–280.
- [14] a) O. Nürnberg, Dissertation Universität Würzburg **1993**; b) Tables with selected bond lengths and bond angles, the atomic parameters x, y, z, the isotropic temperature factors U(eq), and the anisotropic temperature factors U_{11} , U_{22} , U_{33} , U_{23} , U_{13} , U_{12} of **11** are available by the corresponding author (H. W.) on request.
- [15] C. C. McLauchlan, S. D. Robowski, J. A. Ibers, *Inorg. Chem.* 2001, 40, 1372–1375.
- [16] J. M. Bevilacqua, J. A. Zuleta, R. Eisenberg, *Inorg. Chem.* 1993, 32, 3689–3693.
- [17] W. Weigand, G. Bosl, K. Polborn, Chem. Ber. 1990, 123, 1339– 1342.

ARTICLE _

- [18] F. Yang, P. E. Fanwick, C. P. Kubiak, Inorg. Chem. 2002, 41, 4805–4809.
- [19] M. Bousseau, L. Valade, J.-P. Legros, P. Cassoux, M. Garbauskas, L. Interrante, J. Am. Chem. Soc. 1986, 108, 1908–1916.
- [20] a) U. Schmidt, K. Kabitzke, I. Boie, C. Österroht, *Chem. Ber.* 1965, 98, 3819–3826; b) M. S. Raasch, *J. Org. Chem.* 1970, 35, 3470–3483; c) A. Ohno, T. Koizumi, Y. Akasaki, *Bull. Chem. Soc. Jpn.* 1974, 47, 319–325.
- [21] J. A. Davies, F. R. Hartley, S. G. Murray, J. Chem. Soc., Dalton Trans. 1979, 1705–1708.
- [22] A. D. Westland, J. Chem. Soc. 1965, 3060-3067.
- [23] B. E. Mann, B. L. Shaw, R. M. Slade, J. Chem. Soc. A 1971, 2976–2980.
- [24] a) J. C. Bailar Jr., H. Itatani, *Inorg. Chem.* 1965, *4*, 1618–1620;
 b) U. Nagel, *Chem. Ber.* 1982, *115*, 1998–1999.

- [25] J. X. McDermott, J. F. White, G. M. Whitesides, J. Am. Chem. Soc. 1976, 98, 6521–6528.
- [26] R. Gompper, W. Töpfl, Chem. Ber. 1962, 95, 2861-2870.
- [27] K. A. Jensen, L. Henriksen, Acta Chem. Scand. 1970, 24, 3213– 3229.
- [28] F. Drawert, K.-H. Reuter, F. Born, Chem. Ber. 1960, 93, 3056– 3065.
- [29] C. Elschenbroich, Organometallics 3rd. ed., Wiley-VCH, Weinheim, 2006, pp. 718.
- [30] M. Feldmann, E. Koberstein, Nachr. Chem. Tech. Lab. 1977, 6, 517–522.

Received: August 20, 2011

Online veröffentlicht: Dezember 6, 2011