COMMUNICATION

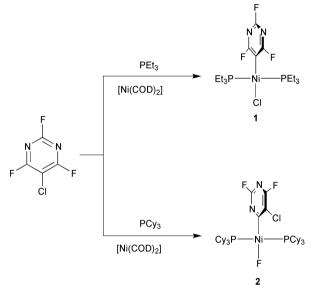
Aromatic C-F activation at Ni in the presence of a carbonchlorine bond: the nickel mediated synthesis of new pyrimidines †

Marianna I. Sladek, Thomas Braun,* Beate Neumann and Hans-Georg Stammler

Fakultät für Chemie, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germanv. E-mail: thomas.braun@uni-bielefeld.de

Received 7th November 2001, Accepted 14th December 2001 First published as an Advance Article on the web 7th January 2002

Treatment of [Ni(COD)₂]/PCy₃ with 5-chloro-2,4,6-trifluoropyrimidine affords the C-F activation product trans-[NiF(4-C₄N₂ClF₂)(PCy₃)₂] 2, which reacts with iodine to form 5-chloro-2,6-difluoro-4-iodo-pyrimidine 5.


Several methods have been described for the activation of carbon-fluorine bonds of fluoroaromatic compounds by reaction at transition metal centres. Catalytic C-F activation has also become a reality.²⁻⁴ However, the formation of new organofluorine compounds via C-F activation, followed by functionalisation within the coordination sphere of the metal is still little developed.³⁻⁶ Nevertheless, the activation of a C-F bond in pentafluoropyridine, 2,3,5,6-tetrafluoropyridine or 2,4,6trifluoropyrimidine at a nickel centre can be used as a remarkable approach to obtain fluorinated derivatives which are otherwise inaccessible.^{4,6–8} While C–F activation at nickel is selective over C-H activation, 2,4,9,10 the activation of a C-F bond in the presence of a C-Cl bond in the same ring has never been observed. Crespo et al. reported the C-F activation of the imine (C₆F₅)CH=NCH₂(2-ClC₆H₄) at a Pt(II) centre, but with the C-F and C-Cl bond on different rings. 11 In this communication we describe (1) the activation of a C-F bond in the presence of a much weaker C-Cl bond in the same aromatic ring, (2) that the chemospecificity of the activation of a C-X bond (X = F, Cl) in 5-chloro-2,4,6-trifluoropyrimidine by $[Ni(COD)_2]/PR_3$ (R = Et, Cy; COD = cycloocta-1,5-diene) is controlled by the size of the phosphine, (3) the nickel-mediated synthesis of new fluorinated pyrimidines by C-F activation.

The stepwise treatment of [Ni(COD)₂] with PEt₃ and 5chloro-2,4,6-trifluoropyrimidine in hexane solution at room temperature results in the formation of trans-[NiCl(5-C₄N₂F₃)-(PEt₃)₂] 1, which was crystallised at -20 °C (Scheme 1). ‡ The isolated yield of 20% was limited principally by the extreme solubility of the product. However, there was a minor amount (5%) of a yellow solid, insoluble in all common solvents, which could not, as yet, be identified. The ¹⁹F NMR spectrum of 1 shows two resonances at δ -37.77 and -55.72 with a ratio of 2: 1 revealing the presence of the trifluoropyrimidyl group. The observed preference for C-Cl activation is fully consistent with comparable reactions of chloropentafluorobenzene and 3,5-dichlorotetrafluoropyridine, which are described in the literature.

On using PCy₃ instead of PEt₃ exclusive activation of the C-F bond takes place. Treatment of [Ni(COD)₂] with PCy₃ in the presence of 5-chloro-2,4,6-trifluoropyrimidine results in the formation of trans-[NiF(4-C₄N₂ClF₂)(PCy₃)₂] 2. ‡ The ³¹P and ¹⁹F NMR spectrum of the reaction solution reveals the presence of a minor product (18%), which was assigned as trans-[NiCl(4-C₄N₂ClF₂)(PCy₃)₂] 3.‡ However, after recrystallisation we obtained a pure sample of 2 in moderate yield (34%). The ¹⁹F NMR spectrum of **2** exhibits a triplet at δ -377.56 (J_{PF} 40 Hz) characteristic of the metal fluoride and two further resonances at δ -49.86 and -73.67 with a 1 : 1 ratio revealing

DOI: 10.1039/b110128e

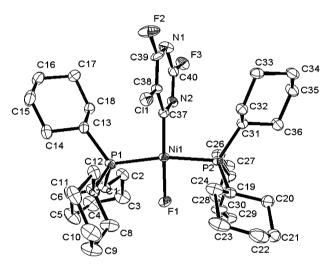
www.rsc.org/suppdata/dt/b1/b110128e/

Scheme 1 Reactivity of [Ni(COD)₂] towards 5-chloro-2,4,6-trifluoropyrimidine.

the presence of a difluoropyrimidyl group.^{4,8–10} The ³¹P NMR spectrum displays a doublet resonance at δ 19.65 (J_{PF} 39 Hz) for the two equivalent phosphorus nuclei coupled to the metal-bound fluorine.

The formation of compound 3 can be explained by a reaction of 2 with free 5-chloro-2,4,6-trifluoropyrimidine. Indeed, treatment of a solution of 2 with the organic substrate affords complex 3. A comparable substitution of a metal-bound fluoride by a chloro ligand using chloropentafluorobenzene has been described at a rhodium centre. 12 Complex 3 can also be synthesised by reaction of 2 with NaCl (Scheme 2).

Complex 2 was crystallised at -20 °C from hexane. The structure was determined by X-ray diffraction at low temperature (Fig. 1). § Despite a rotational disorder of the aromatic ring in 2 (62:38) the structure provides useful data. The Ni-F bond of 1.845(2) Å is comparable to the distance found in trans-[NiF(2-C₅NF₃H)(PEt₃)₂] [1.856(2) Å].⁹ The distance found for the Ni–C bond in **2** [1.828(8) Å, 1.863(12) Å] is in the same range as the values found in 1 [1.8849(13) Å] and trans-[NiF(2-C₅NF₃H)(PEt₃)₂] [1.869(4) A]. †


We believe that a precoordination of the aromatic system at the nickel centre, via a nitrogen atom or in an η^2 mode, is a crucial step in the activation of a C-X bond in 5-chloro-2,4,6-trifluoropyrimidine. Similar intermediates have been discussed in the C-F activation of hexafluorobenzene, octafluoronaphthalene and pentafluoropyridine at Ni(PEt₃₎₂. 4,9,10,13 It has been proposed that these reactions proceed by a concerted oxidative addition mechanism. The observed chemospecificity in the formation of 1 and 2 might therefore be attributed to different intermediates or, more likely, different transition states. 13,14 Although there is a small difference in the electronic properties of PEt₃ and PCy₃ at nickel, we believe that the chemospecificity is determined by steric factors. 15 However,

J. Chem. Soc., Dalton Trans., 2002, 297-299

[†] Electronic supplementary information (ESI) available: synthesis details for compounds 1-3 and crystal data for 1. See http://

NaCl
$$Cy_3P$$
 Ni PCy_3 Cl 3 Cl 3 Cl 3 Cl 4 Cy_3P Ni PCy_3 P

Scheme 2 Reactivity of 2.

Fig. 1 An ORTEP¹⁸ diagram of **2**. Ellipsoids are drawn at the 50% probability level. Note that the rotational disorder (62:38) about Cl(1), N(1), N(2), F(2), F(3) and C(37)–C(40) leads to average locations across the pyrimidyl ring. The two rotamers have identical bond distances within 3*c*. Data for the second rotamer are marked by a #. Selected bond lengths (Å) and angles (°): Ni(1)–F(1) 1.845 (2), Ni(1)–C(37) 1.828(8), Ni(1)–C(37#) 1.863(12), N(2)–C(37) 1.362(7), N(2)–C(40) 1.307(6), N(1)–C(40) 1.297(7), N(1)–C(39) 1.30(2), C(37)–C(38) 1.398(7), C(38)–C(39) 1.40(2), Cl(1)–C(38) 1.713(4), F(2)–C(39) 1.31(2), F(3)–C(40) 1.344(5); C(37)–Ni(1)–F(1) 172.98(18), C(37#)–Ni(1)–F(1) 170.4(3), P(1)–Ni(1)–P(2) 168.74(2).

we also cannot exclude that instead of a concerted oxidative addition mechanism an electron transfer process precedes the activation of the C–X bond. ¹⁶ Further mechanistic investigations are under way.

Treatment of **2** or **3** with an excess HCl in C_6D_6 —diethyl ether affords, after distillation under vacuum, a solution of 5-chloro-2,4-difluoropyrimidine **4** (Scheme 2).¶ The reaction of **2** with iodine in C_6D_6 yields a solution of 5-chloro-2,6-difluoro-4-iodopyrimidine **5**.¶ The reactions are quantitative according to the NMR spectra. We have found no previous description of compound **4** or **5**. Fluorinated pyrimidines are of general interest as building blocks in agrochemicals, dyes and because of their antitumor activity. ^{6,17}

In conclusion, we have shown the first activation of an aromatic carbon–fluorine bond at a metal centre in the presence of a C–Cl bond in the same ring. Comparable C–F activation

reactions at nickel with a unique regioselectivity and a preference for C–F over C–H activation have been studied before. 8–10 We have now demonstrated that the scope of these reactions can be expanded to the activation of a carbon–fluorine bond in 5-chloro-2,4,6-trifluoropyrimidine using a sterically more hindered phosphine. The described reaction provides an unusual entry to new fluoropyrimidines bearing three different substituents by selective replacement of one fluorine atom at the already functionalised heterocycle.

Acknowledgements

We would like to acknowledge the Deutsche Forschungsgemeinschaft (grants BR-2065/1-1 and BR-2065/1-2) for financial support. We are also grateful to Ms. J. Grota for recording the mass spectra. T. B. thanks Professor P. Jutzi for his generous support.

Notes and references

‡ Selected data for **1**, **2** and **3**. **1**: (Found: C, 40.84; H, 6.53; N, 5.99%. $C_{16}H_{30}ClF_3N_2NiP_2$ requires: C, 41.46; H, 6.52; N, 6.04%). ³¹P NMR (202.5 MHz, C_6D_6 , 300 K): δ 15.83 (s). ¹⁹F NMR (470.4 MHz, C_6D_6 , 300 K): δ -37.77 (s, br, 2 F), -55.72 (s, br, 1 F). **2**: (Found: C, 60.50; H, 8.35; N, 3.59%. $C_{40}H_{66}ClF_3N_2NiP_2$ requires: C, 60.97; H, 8.44; N, 3.55%). ³¹P NMR (202.5 MHz, C_6D_6 , 300 K): δ 19.65 (d, J_{PF} 39 Hz). ¹⁹F NMR (470.4 MHz, C_6D_6 , 300 K): δ -49.86 (s, 1 F), -73.67 (s, 1 F), -377.56 (t, J_{PF} 40 Hz, 1 F). **3**: (Found: C, 59.92; H, 8.70; N, 3.10%. $C_{40}H_{66}Cl_2F_2N_2NiP_2$ requires: C, 59.72; H, 8.27; N, 3.48%). ³¹P NMR (202.4 MHz, C_6D_6 , 300 K): δ 15.67 (s). ¹⁹F NMR (470.4 MHz, C_6D_6 , 300 K): δ -48.91 (s, 1 F), -73.77 (s, 1 F). § Crystal data for **2**: $C_{40}H_{66}ClF_3N_2NiP_2$, M = 788.05, monoclinic, space

§ Crystal data for **2**: $C_{40}H_{66}CIF_3N_2NiP_2$, M = 788.05, monoclinic, space group P21/n, a = 13.8320(10), b = 20.2110(15), c = 14.5510(10) Å, $\beta = 90.459(6)^\circ$, U = 4067.7(5) Å³, T = 100 K, μ (Mo-Kα) = 0.665 mm⁻¹, Z = 4, $D_c = 1.287$ g cm⁻³, 28171 reflections measured, 9114 unique ($R_{\rm int} = 0.0409$). The disorder of the pyrimidyl ligand on two positions was refined to an occupancy of 62 : 38. Final R_1 , wR_2 values on all data 0.06457, 0.0942. R_1 , wR_2 values on [$I_o > 2\sigma(I_o)$, 7325 reflections] data 0.0449, 0.0890. CCDC reference number 173741. See http://www.rsc.org/suppdata/dt/b1/b110128e/ for crystallographic data in CIF or other electronic format.

¶ Selected spectroscopic data for **4** and **5**. **4**: NMR (C_6D_6 , 300 K): 1H (500.1 MHz): δ 7.37 (d, br, J_{FH} 11 Hz, CH), ^{19}F (470.4 MHz): δ -45.69 (s, br, 1 F), -59.15 (s, br, 1 F). Mass spectrum (EI) m/z 152 (M⁺, 33%), 150 (M⁺, 100). Accurate mass spectrum (EI) m/z calcd. for $C_4HN_2F_2Cl$, 149.9796; found, 149.9814. **5**: NMR (C_6D_6 , 300 K): ^{19}F (470.4 MHz): δ -45.64 (s, 1 F), -55.36 (s, 1 F). Mass spectrum (EI) m/z 278 (M⁺, 30%), 276 (M⁺, 100).

- J. Burdeniuc, B. Jedlicka and R. H. Crabtree, Chem. Ber., 1997, 130, 145 and references therein; J. L. Kiplinger, T. G. Richmond and C. E. Osterberg, Chem. Rev., 1994, 94, 373 and references therein; E. F. Murphy, R. Murugavel and H. W. Roesky, Chem. Rev., 1997, 97, 3425 and references therein; T. G. Richmond, in Topics in Organometallic Chemistry, vol. 3, ed. S. Murai, Springer, New York, 1999, pp. 243–269 and references therein.
- 2 M. Aizenberg and D. Milstein, *Science*, 1994, 265, 359; M. Aizenberg and D. Milstein, *J. Am. Chem. Soc.*, 1995, 117, 8674; V. P. W. Böhm, C. W. K. Gstöttmayr, T. Weskamp and W. A. Herrmann, *Angew. Chem., Int. Ed.*, 2001, 40, 3387; Y. Kiso, K. Tamao and M. Kumada, *J. Organomet. Chem.*, 1973, 50, C12.
- 3 Y. Ishii, N. Chatani, S. Yorimitsu and S. Murai, *Chem. Lett.*, 1998, 157.
- 4 T. Braun, M. I. Sladek and R. N. Perutz, Chem. Commun., 2001, 2254.
- 5 B. L. Edelbach, B. M. Kraft and W. D. Jones, J. Am. Chem. Soc., 1999, 121, 10327.
- 6 R. Dagani, Chem. Eng. News, 2001, 79, 40.
- 7 T. Braun, S. Parsons, R. N. Perutz and M. Voith, *Organometallics*, 1999, 18, 1710.
- 8 T. Braun, S. P. Foxon, R. N. Perutz and P. H. Walton, *Angew. Chem.*, Int. Ed., 1999, 38, 3326.
- 9 L. Cronin, C. L. Higgitt, R. Karch and R. N. Perutz, Organometallics, 1997, 16, 4920.
- 10 S. J. Archibald, T. Braun, J. F. Gaunt, J. E. Hobson and R. N. Perutz, J. Chem. Soc., Dalton Trans., 2000, 2013.
- 11 M. Crespo, M. Martinez and J. Sales, J. Chem. Soc., Chem. Commun., 1992, 822; see also: M. Crespo, M. Martinez and E. de Pablo, J. Chem. Soc., Dalton Trans., 1997, 1231.

- 12 S. T. Belt, M. Helliwell, W. D. Jones, M. G. Partridge and R. N. Perutz, J. Am. Chem. Soc., 1993, 115, 1429.
- 13 T. Braun, L. Cronin, C. L. Higgitt, J. E. McGrady, R. N. Perutz and M. Reinhold, New J. Chem., 2001, 25, 19; see also: I. Bach, K.-R. Pörschke, R. Goddard, C. Kopiske, C. Krüger, A. Rufinska and K. Seevogel, Organometallics, 1996, 15, 4959; M. W. Holtcamp, J. A. Labinger and J. E. Bercaw, J. Am. Chem. Soc., 1997, 119, 848.
- 14 R. Bosque, E. Clot, S. Fantacci, F. Maseras, O. Eisenstein, R. N. Perutz, K. B. Renkema and K. G. Caulton, J. Am. Chem. Soc., 1998, 120, 12634.
- 15 C. A. Tolman, Chem. Rev., 1977, 77, 313; G. M. Bodner, M. P. May and L. E. McKinney, Inorg. Chem., 1980, 19, 1951.
- 16 M. K. Whittlesey, R. N. Perutz and M. H. Moore, J. Chem. Soc., Chem. Commun., 1996, 787; T. T. Tsou and J. K. Kochi, J. Am. Chem. Soc., 1976, 101, 6319.
- 17 R. E. Banks, B. E. Smart and J. C. Tatlow, Organoftuorine Chemistry, Plenum Press, New York, 1994; A. J. Whittle, in The Chemistry of Some Fluorinated Aryl, Pyridine and Pyrimidone Insecticides, in Fluorine in Agriculture, ed. R. E. Banks, Fluorine Technology Ltd., Cheshire, 1995; T. Benneche, P. Strande, R. Oftebro and K. Undheim, Eur. J. Med. Chem., 1993, 28, 463; J. S. Driscoll, V. E. Marquez, J. Plowman, P. S. Liu, J. A. Kelley and J. J. Barchi Jr., I. Med. Chem., 1991, 34, 3280.
- J. Med. Chem., 1991, 34, 3280.

 18 M. N. Burnett and C. K. Johnson, ORTEP3, Report ORNL-6895, Oak Ridge National Laboratory, Oak Ridge, TN, 1996.