

Tetrahedron: Asymmetry 11 (2000) 1151-1155

TETRAHEDRON: ASYMMETRY

Enantioselective synthesis of 2,3-diphenyl-1,4-butanediol via oxidative coupling of phenylacetic acid chiral 1,1'-bi-2-naphthyl ester using TiCl₄/Et₃N

Vutukuri Dharma Rao and Mariappan Periasamy*

School of Chemistry, University of Hyderabad, Hyderabad-500 046, India

Received 18 December 1999; accepted 21 January 2000

Abstract

Oxidative coupling of phenylacetic acid ester of homochiral 1,1'-bi-2-naphthol **2** was achieved by reaction with TiCl₄/Et₃N to obtain the corresponding 2,3-diphenylsuccinic acid derivative **3**, which on reduction using the NaBH₄/I₂ reagent gives homochiral 2,3-diphenyl-1,4-butanediol. X-Ray structural analysis was carried out for the compounds (R)-(+)-**2** and (R,R,R)-(-)-**3**. © 2000 Published by Elsevier Science Ltd. All rights reserved.

1. Introduction

Oxidative homocoupling of enolate anions of esters is a useful reaction for the synthesis of 2,3disubstituted succinic acids.^{1–7} Diastereoselectivity in such homocoupling reactions has been reported with $Et_3N/TiCl_4$ as oxidising agent (diastereoselectivity 99%)⁸ or by using carboxylic acid dianions⁹ or thioamide α -anions¹⁰ (diastereoselectivity ~92%). Chiral 2,3-disubstituted succinic acids are useful in the preparation of chiral crown ethers,¹¹ diamines¹² and diphosphine ligands.¹³ Enantiomerically pure 2,3-diphenylsuccinic acid is generally prepared through resolution.^{14,15} Recently, intermolecular asymmetric coupling of chiral oxazolidine¹⁶ and imidazolidone¹⁷ derivatives of aliphatic carboxylic acids and intramolecular coupling of chiral imidazolidone^{17,18} with LDA–I₂ or LDA–Cu(II) have been reported. Also, oxidative homocoupling of chiral 3-(arylacetyl)-2-oxazolidones has been reported using TiCl₄/NR₃.^{19,20}

2. Results and discussion

In continuation of our efforts on the use of $TiCl_4/Et_3N$ for organic synthesis,²¹ we report here that the $TiCl_4/Et_3N$ reagent is effective for stereoselective intramolecular oxidative coupling of

^{*} Corresponding author. E-mail: mpsc@uohyd.ernet.in

phenylacetic acid ester of 1,1'-bi-2-naphthol (Scheme 1). The reactions were carried out using 4.4 equiv. of TiCl₄ and 4.4 equiv. of Et₃N in CH₂Cl₂ at -45° C for 3 h. The high stereoselectivity realised in this oxidative coupling obviously results from the 1,1'-bi-2-naphthol auxiliary. The structure of the (*R*)-(+)-binaphthol diester **2** and the product **3** were confirmed by elemental analyses and X-ray structural analysis.²² The ORTEP diagrams of the crystal structures of **2** and **3** are presented in Figs. 1 and 2.

Figure 2. ORTEP diagram of 3

The stereochemistry of the phenyl substituents of the diphenylsuccinic acid ester moiety is *trans* as revealed by the X-ray structural analysis of (R,R,R)-3. This was also further confirmed by HPLC analysis (Chiralcel OD using hexane:isopropanol (95:5) as eluent) and ¹H NMR (200 MHz) analysis using Eu(hfc)₃ in CDCl₃. The HPLC and ¹H NMR analysis for (R,R,R)-3 also indicated the absence of the diastereomer derived from the (R,S)-diphenylsuccinic acid ester moiety. The results are in accordance with the report that the reaction of methyl phenylacetate with TiCl₄/Et₃N under similar conditions gives only *dl*-2,3-diphenylsuccinic acid dimethyl ester without any *meso* isomer.⁸ The conversion of the product (R,R,R)-3 to enantiomerically pure

(*R*,*R*)-2,3-diphenyl-1,4-butanediol was readily achieved in 60% yield using the NaBH₄/I₂ reagent system (Scheme 1).^{23,24,28} After the reduction, the 1,1'-bi-2-naphthol was recovered in good yield (85–90%) without any loss of enantiomeric excess. It was observed that the hydrolysis of (*R*,*R*,*R*)-3 using KOH/MeOH leads to racemisation of the 2,3-diphenylsuccinic acid.

The oxidative coupling of **2** can be explained by a tentative mechanism similar to that considered for the reaction of methyl phenylacetate with $TiCl_4/Et_3N$ (Scheme 2).⁸ The first step involves the formation of complex **A** that may be converted to the titanium enolate **B** through deprotonation. Intramolecular coupling of **B** with concomitant elimination of two molecules of $TiCl_3$ would produce **3**.

Since, the chiral 1,1'-bi-2-naphthol can be readily obtained in large scale through methods developed in this laboratory,^{25–27} the enantioselective coupling process described here should be attractive for further synthetic applications. The following are representative procedures.

3. Experimental

3.1. Preparation of (R)-(+)-1,1'-bi-2-naphthol ester of phenylacetic acid (R)-2

Dicyclohexylcarbodiimide (12 mmol, 2.47 g) and phenylacetic acid (12 mmol, 1.63 g) were taken in dry CH₂Cl₂ (75 mL) and stirred at 0°C for 30 min. (*R*)-(+)-1,1'-Bi-2-naphthol (5 mmol, 1.43 g) and DMAP (0.14 g) were added at 0°C and the contents were stirred at 25°C for 24 h. The solvent was evaporated under reduced pressure and ethyl acetate (75 mL) was added. The precipitate was removed by filtration. The organic layer was washed with 5% HCl solution (25 mL), H₂O (15 mL), brine (20 mL) and dried over anhydrous MgSO₄. The solvent was evaporated and the residue was recrystallised from hexane. Yield: 1.95 g (75%); mp 98–100°C; $[\alpha]_D^{25} = +11.5$ (c 0.872, CHCl₃); IR (KBr): ν (cm⁻¹) 3063, 3032, 1757; ¹H NMR (200 MHz, CDCl₃): δ (ppm) 3.4 (4H, s), 6.8–8.1 (22H, m); ¹³C NMR (50 MHz, CDCl₃): δ (ppm) 40.92, 121.8, 123.4, 125.8, 126.1, 126.8, 128.0, 128.3, 129.1, 129.5, 131.6, 133.1, 133.4, 146.8, 169.8. Anal. calcd for C₃₆H₂₆O₄: C, 82.74; H, 5.01; found: C, 83.34; H, 4.79. The *S*-(-)-**2** was also prepared following the above procedure. $[\alpha]_D^{25} = -11.5$ (c 0.918, CHCl₃). Anal. calcd for C₃₆H₂₆O₄: C, 82.74; H, 5.01; found: C, 83.25; H, 4.65. Identical physical constant and spectral data were obtained as outlined above for the *R*-enantiomer.

3.2. Oxidative coupling of (R)-(+)-2 for (S)-2 starting from (S)-1 with TiCl₄/Et₃N

To a solution of (*R*)-(+)-2 (2 mmol, 1.04 g,) in dry CH_2Cl_2 (30 mL) was added dropwise TiCl₄ (8.8 mmol, 0.96 mL) in CH_2Cl_2 (10 mL) at $-45^{\circ}C$ and the solution was stirred for 30 min. Et₃N

(8.8 mmol, 1.22 mL) in CH₂Cl₂ (10 mL) was added and the solution was stirred at -45° C for 3 h. The reaction was quenched with saturated aqueous NH₄Cl solution (15 mL). The organic layer was separated. The aqueous layer was extracted with CH₂Cl₂ and the combined organic layer was washed with H₂O (10 mL), brine (15 mL) and dried over anhydrous MgSO₄. The solvent was evaporated to obtain a white solid. The solid was chromatographed on silica gel using hexane:ethyl acetate/98:2 as eluent giving (*R*,*R*,*R*)-3. Yield: 0.83 g (80%); mp 228–230°C; $[\alpha]_D^{25} = -102.45$ (c 0.244, CHCl₃); IR (KBr): ν (cm⁻¹) 3065, 3035, 1768; ¹H NMR (200 MHz, CDCl₃): δ (ppm) 4.5 (2H, s), 7.0–8.1 (22H, m); ¹³C NMR (50 MHz, CDCl₃): δ (ppm) 56.7, 121.0, 121.9, 125.9, 126.8, 127.1, 128.1, 128.3, 128.6, 130.3, 131.7, 133.4, 133.6, 148.0, 169.5. Anal. calcd for C₃₆H₂₄O₄: C, 83.07; H, 4.61; found: C, 83.22; H, 4.68. In the case of (*S*)-(-)-2, identical physical constant and spectral data were obtained for (*S*,*S*,*S*)-3. [α]_D²⁵ = +102.5 (c 0.234, CHCl₃). Anal. calcd for C₃₆H₂₄O₄: C, 83.07; H, 4.61; found: C, 82.49; H, 4.31.

3.3. Reduction of the product 3 using $NaBH_4/I_2$

The NaBH₄ (24 mmol, 0.9 g) was taken in dry THF (50 mL) under an N₂ atmosphere. To the slurry, iodine (10 mmol, 2.53 g) dissolved in dry THF (30 mL) was added slowly during 2.5 h at 0°C. The (*R*,*R*,*R*)-(–)-**3** (5 mmol, 2.6 g) in THF (30 mL) was added through a cannula at 0°C. The reaction mixture was refluxed for 6 h and then cooled to 0°C and quenched with 3N HCl solution (10 mL). The organic layer was separated and the aqueous layer was extracted with ether (2×20 mL). The combined organic extract was washed with H₂O (10 mL), brine (20 mL) and dried over anhydrous MgSO₄. The solvent was evaporated and the residue was purified by column chromatography on silica gel using hexane:ethyl acetate/70:30 as eluent to obtain the diol (*R*,*R*)-**4** (0.9 g, 75%). It was recrystallised from hexane to yield 0.72 g (60%); mp 101°C (lit.²⁸ 101–102°C); $[\alpha]_D^{25} = -48.0$ (c 0.266, CHCl₃) (lit.²⁸ $[\alpha]_D^{21} = -48.2$ (c 0.249, CHCl₃)). IR (KBr): ν (cm⁻¹) 3290, 3060, 1602; ¹H NMR (200 MHz, CDCl₃): δ (ppm) 2.2 (2H, bs) 3.25 (2H, m), 4.0 (4H, m), 6.9–7.0 (4H, m), 7.0–7.2 (6H, m); ¹³C NMR (50 MHz, CDCl₃): δ (ppm) 51.0, 65.5, 126.5, 128.1, 128.6, 140.6. The (*S*,*S*,*S*)-(+)-**3** was also reduced using NaBH₄/I₂ reagent as described for (*R*,*R*,*R*)-(–)-**3** to give the diol (*S*,*S*)-**4** (0.75 g, 60%); mp 101°C; $[\alpha]_D^{25} = +48.0$ (c 0.382, CHCl₃).

Acknowledgements

We are grateful to the UGC, New Delhi for support under the Special Assistance Program. V.D.R. thanks CSIR, New Delhi for financial support. X-Ray structure analysis was carried out using the National Single Crystal X-Ray Facility, School of Chemistry, University of Hyderabad, funded by DST, New Delhi.

References

- 1. Kofron, W. G.; Hauser, C. R. J. Org. Chem. 1970, 35, 2085.
- 2. Rathke, M. W.; Lindert, A. J. Am. Chem. Soc. 1971, 93, 4605.
- 3. Brocksom, T. J.; Petragnani, N.; Rodrigues, R.; LaScala Teixeira, H. Synthesis 1975, 396.
- 4. Tokuda, M.; Shigei, T.; Itoh, M. Chem. Lett. 1975, 621.
- 5. Inaba, S.; Ojima, I. Tetrahedron Lett. 1977, 2009.
- 6. Chung, S. K.; Dunn Jr., L. B. J. Org. Chem. 1983, 48, 1125.

- 7. Ojima, I.; Brandstadter, S. M.; Donovan, R. J. Chem. Lett. 1992, 1591.
- 8. Matsumura, Y.; Nishimura, M.; Hiu, H. J. Org. Chem. 1996, 61, 2809.
- 9. Belletire, J. L.; Spletzer, E. G.; Pinhas, A. R. Tetrahedron Lett. 1984, 25, 5969.
- 10. Tamaru, Y.; Harada, T.; Yoshida, Z. J. Am. Chem. Soc. 1978, 100, 1923.
- 11. Naemura, K.; Komatsu, M.; Adachi. K.; Chikamatsu, H. J. Chem. Soc., Chem. Commun. 1986, 1675.
- 12. Nakajima, M.; Tomioka, K.; Koga, K. Tetrahedron 1993, 49, 9735.
- 13. Krause, H.; Sailer, C. J. Organomet. Chem. 1992, 423, 271.
- 14. Wren, H.; Still, C. J. J. Chem. Soc. 1915, 444, 1449.
- 15. Krause, H. W.; Meinicke, C. J. Prakt. Chem. 1985, 6, 1023.
- 16. Porter, N. A.; Su, Q.; Harp, J. J.; Rosenstein, I. J.; McPhail, A. T. Tetrahedron Lett. 1993, 34, 4457.
- 17. Langer, T.; Illich, M.; Helmchen, G. Tetrahedron Lett. 1995, 36, 4409.
- 18. Studer, A.; Hintermann, T.; Seebach, D. Helv. Chim. Acta 1995, 78, 1185.
- 19. Kise, N.; Tokioka, K.; Aoyama, Y.; Matsumura, Y. J. Org. Chem. 1995, 60, 1100.
- 20. Kise, N.; Kumuda, K.; Terao, Y.; Ueda, N. Tetrahedron 1998, 54, 2697.
- 21. Periasamy, M.; Srinivas, G.; Bharathi, P. J. Org. Chem. 1999, 64, 4204.
- 22. The X-ray diffraction measurements were carried out at 293 K on an automated Enraf-Nonious MACH 3 diffractometer using graphite monochromated, Mo-K α (λ = 0.71073 Å) radiation. Intensity data were collected by the ω -scan mode. The data were reduced using the XTAL programme. No absorption correction was applied. Crystal structure data for compound 2: θ range for data collection is 1.92 to 27.98°. Empirical formula C₃₆H₂₆O₄, colourless needles ($0.8 \times 0.5 \times 1.2$ mm), crystal system is orthorhombic, space group $P2_12_12_1$, unit cell dimensions: a = 8.452(13) Å, b = 11.382(4) Å, c = 28.699(9) Å; volume 2761(4) Å³, Z = 4, $D_{calcd} = 1.257$ Mg/m³, absorption coefficient is 0.081 mm⁻¹, F(000) = 1096, index ranges $0 \le h \le 11$, $0 \le k \le 15$, $0 \le l \le 37$, total reflections collected were 3758, of which 2196 were independent reflections with R(int) = 0.000 and R(sigma) = 0.0287. The structure was solved by direct methods and refined by full-matrix least-squares procedure using the SHELX 86 and SHELX 97 programme packages, respectively. The refinement was carried out using 2196 observed $[F > 4\sigma(F)]$ reflections and converged to a final R1 = 0.0729, wR2 = 0.2046 and goodness of fit is 1.130 with largest difference peak and hole at 0.231 and -0.196 e Å⁻³, respectively. Crystal structure data for compound 3: θ range for data collection is 1.72 to 27.47°. Empirical formula $C_{36}H_{24}O_4$, colourless needles ($0.6 \times 0.6 \times 0.6$ mm), crystal system is monoclinic, space group P_{2_1} , unit cell dimensions: a = 9.737(4) Å, b = 16.625(5) Å, c = 17.152(5) Å, $\beta = 101.13(3)$ Å; volume 2724.4(17) Å³, Z=2, $D_{calcd}=1.269$ Mg/m³, absorption coefficient is 0.082 mm⁻¹, F(000)=1088, index ranges $0 \le h \le 12$, $0 \le k \le 21$, $0 \le l \le 21$, total reflections collected were 6457, of which 3477 were independent reflections with R(int) = 0.0130 and R(sigma) = 0.0442. The structure was solved by direct methods and refined by full-matrix least-squares procedure using the SHELX 86 and SHELX 97 programme packages, respectively. The refinement was carried out using 3477 observed $[F > 4\sigma(F)]$ reflections and converged to a final R1 = 0.0433, wR2 = 0.0898and goodness of fit is 0.981 with largest difference peak and hole 0.231 and -0.196 e Å⁻³, respectively. Detailed X-ray crystallographic data are available from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, UK.
- 23. Prasad, A. S. B.; Kanth, J. V. B.; Periasamy, M. Tetrahedron 1992, 48, 4623.
- 24. Periasamy, M.; Kanth, J. V. B. J. Org. Chem. 1991, 56, 5964.
- 25. Periasamy, M.; Prasad, A. S. B.; Kanth, J. V. B.; Reddy, Ch. K. Tetrahedron: Asymmetry 1995, 6, 341.
- 26. Venkatraman, L.; Periasamy, M. Tetrahedron: Asymmetry 1996, 7, 2471.
- 27. Periasamy, M.; Venkatraman, L.; Thomas, K. R. J. J. Org. Chem. 1997, 62, 4302.
- 28. Berova, N. D.; Kurtev, B. J. Tetrahedron 1969, 25, 2301.