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• Simple reaction conditions    • High regioselectivity
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Abstract A diethyl phosphite mediated electrochemical oxidation
strategy for the synthesis of 3,4-dihydroisoquinolin-1(2H)-ones from
tetrahydroisoquinolines under mild conditions has been developed. This
protocol provides an environmentally friendly and simple way for the
construction of C=O bonds in an undivided cell unit.

Key words electrochemistry, oxidation, diethyl phosphite, tetra-
hydroisoquinoline, C=O bond formation

Isoquinoline alkaloids represent an important group of
natural products and exhibit a broad spectrum of biological
activities.1 Isoquinolin-1(2H)-one derivatives exist exten-
sively in naturally and biologically interesting molecules
such as baluchistanamine, ruprechstyril, dorianine, and
thalflavine depicted in Figure 1.2 Traditional methods for
the synthesis of 3,4-dihydroisoquinolin-1(2H)-ones gener-
ally rely on multi-step processes,3 transition-metal cata-
lysts,4 a photocatalyst,5 and/or stoichiometric oxidants,6
which would produce undesired waste. More recently, Lee
and co-workers developed an efficient oxidation reaction of
N-substituted tetrahydroisoquinolines to dihydroisoquino-
lones using eosin Y as an organo-photocatalyst and oxygen
as a green oxidant.7

Organic electrosynthesis, which achieves redox reac-
tions with traceless electric current, is accepted to be an en-
vironment-friendly and enabling synthetic tool.8 In 2013,
Zeng and Little described the electrochemical oxidative
functionalization of benzylic C–H bonds for the synthesis of
N-alkyl tetrahydroisoquinolones using bromide ion/2,2,6,6-
tetramethylpiperidinyl-N-oxyl dual redox catalysts in a
two-phase electrolytic system.9 Recently, we reported a
metal- and reagent-free electrochemical CDC reaction of

tetrahydroisoquinolines with phosphites and indole using
an undivided cell.10 As shown in Scheme 1, when tetrahy-
droisoquinoline 1a was treated with diethyl phosphite 2a
under mild electrochemical conditions to prepare amino-
phosphonate 3a, 2% yield of the lactam 4a was also isolated.
Intrigued by these findings and in continuation of our re-
search into the development of environmentally benign
synthetic methods, we developed an efficient operationally
simple protocol, with no chemical oxidant needed and mild
reaction conditions, for the synthesis of isoquinolones 4
from tetrahydroisoquinolines 1 by a one-pot direct electro-
chemical oxidative C=O bond formation in an undivided
cell. Herein, the details of these studies are presented.

Initially, simple prolonging the reaction time from 4
hours to 11 hours led to the desired lactam 4a in 43% yield
(Scheme 1 and Table 1, entry 1). The choice of electrolyte
has a substantial impact on the reaction outcome.

We identified the optimal reaction conditions for the
oxidation reaction with Et4NOTs instead of nBu4NBr, which
involved constant-current electrolysis using a graphite rod
anode and a Pt plate cathode in CH2Cl2 at room tempera-
ture, and the desired isoquinolone 4a was obtained in 86%

Figure 1  Naturally occurring isoquinolin-1(2H)-one derivatives
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yield (entry 2).11 In comparison, reduced yields were ob-
tained when the reaction conditions were modified in one
of the following manners: changing the electrolyte to
nBu4NPF6 (entry 3), removing (entry 4) or reducing (entry 5)
the amount of diethyl phosphite, switching to other nucleo-
philes including H2O (entry 6), MeOH (entry 7), and mor-
pholine (entry 8), using other solvents such as EtOH (entry
9) or MeCN (entry 10), or adjusting the current to 10 mA
(entry 11). A control experiment revealed that no desired
product 4a was observed in the absence of supplying elec-
tricity (entry 12).

Having optimized the reaction conditions, we next ex-
amined the generality of the oxidation reaction by testing a
series of tetrahydroisoquinoline substrates (Table 2). To our
satisfaction, a variety of functional groups, including strong
electron-donating (ortho-, meta- and para-MeO), a mild
electron-donating (para-Me), moderate electron-with-
drawing (ortho-, meta- and para-F, para-Cl), and strong
electron-withdrawing (para-CF3, para-COMe) substituents
at the N-phenyl ring, were well tolerated in the reaction

system (4a–k). Tetrahydroisoquinolines bearing other N-
aryl rings including naphthalene could be accessed (4m).
Moreover, it is noteworthy that various alkyl substituents,
including (un)substituted benzyl (4n–r), n-butyl (4s), allyl
(4t), 2-ethoxy-2-oxoethyl (4u), and hydroxyethyl (4v), un-
derwent a smooth oxidation reaction, furnishing the de-
sired products 4n–v in moderate to good yields (Table 2).

Table 2  Synthesis of Dihydroisoquinolones 4a

Scheme 1  Electrochemical oxidative C–P and C=O bond formation of tetrahydroisoquinolines
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Table 1  Optimization of the Reaction Conditionsa

Entry Variation from reaction conditions above Yield (%)b

 1 nBu4NBr instead of Et4NOTs, 11 h 43

 2 none 86

 3 nBu4NPF6 instead of Et4NOTs, 8 h 46

 4 no HPO(OEt)2, 7 h 36

 5 0.2 equiv HPO(OEt)2 was used 57

 6 H2O instead of HPO(OEt)2, 6 h 18

 7 MeOH instead of HPO(OEt)2, 7 h 46

 8 morpholine instead of HPO(OEt)2, 5 h 27

 9 EtOH instead of CH2Cl2, 8 h  5

10 CH3CN instead of CH2Cl2, 10 h 25

11 10 mA instead of 5 mA, 5 h 77

12 no electric current, 11 h  0
a Reaction conditions: graphite rod anode (d = 5 mm), Pt plate cathode 
(0.5×0.5 cm), constant current = 5 mA, 1a (0.25 mmol), diethyl phosphite 
(0.3 mmol), Et4NOTs (0.5 mmol), CH2Cl2 (5 mL), undivided cell, rt, 9 h.
b Isolated yield.
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HPO(OEt)2 (1.2 equiv)

CH2Cl2 (wet), rt
constant current = 5 mA, 9 h

Entry R Time (h) Product Yield (%)b

 1 Ph 9 4a 86

 2 p-MeOC6H4 7 4b 76

 3 m-MeOC6H4 9 4c 59

 4 o-MeOC6H4 8 4d 59

 5 p-MeC6H4 5 4e 79

 6 p-FC6H4 7 4f 62

 7 m-FC6H4 6 4g 68

 8 o-FC6H4 8 4h 55

 9 p-ClC6H4 7 4i 70

10 p-CF3C6H4 9 4j 65

11 p-AcC6H4 9 4k 40

12 p-O2NC6H4 9 4l trace

13 naphthalen-1-yl 6 4m 72

14 Bn 5 4n 58

15 m-MeOC6H4CH2 4 4o 43

16 o-MeC6H4CH2 4 4p 54

17 o-ClC6H4CH2 4 4q 52

18 p-NCC6H4CH2 5 4r 73

19 nBu 4 4s 72

20 allyl 6 4t 32

21 EtO2CCH2 6 4u 47

22 HOCH2CH2 6 4v 38
a Reaction conditions: graphite rod anode (d = 5 mm), Pt plate cathode 
(0.5×0.5 cm), constant current = 5 mA, 1 (0.25 mmol), diethyl phosphite 
(0.3 mmol), Et4NOTs (0.5 mmol), CH2Cl2 (5 mL), undivided cell, rt.
b Isolated yield.
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Control experiments showed that 84% yield of product
4a was obtained when intermediate 3a was treated under
the standard conditions (Scheme 2). Moreover, 82% yield of
product 4a was isolated under N2 protection, and no de-
sired product was observed without electricity. These re-
sults further exclude that oxygen is the oxidation source in
this reaction. Additionally, when the above reaction was
conducted in the presence of 3Å molecular sieves, the de-
sired product 4a was suppressed and only 25% yield was
obtained.

Scheme 2  Control experiments

On the basis of the observations above and literature re-
ports,9 a possible mechanism for the electrochemical oxida-
tive reaction was proposed (Scheme 3). As a start, com-
pound 1a loses two electrons and a proton on the surface of
the anode to generate the iminium-ion intermediate I. In-
termediate I is captured by diethyl phosphite to afford com-
pound 3a. Meanwhile, concomitant cathodic reduction of
H2O releases H2 and HO–. Compound 3a undergoes subse-
quent nucleophilic substitution with HO– to generate inter-
mediate II. Intermediate II is further oxidized to give the
desired product 4a. The mechanism is consistent with the
result of entry 1 (Table 1); prolonging the reaction time will
increase the concentration of HO– and favor the formation
of the desired product 4a.

Scheme 3  Proposed mechanism

In summary, we have successfully developed a diethyl
phosphite mediated electrochemical oxidation strategy for
the synthesis of 3,4-dihydroisoquinolin-1(2H)-ones from
tetrahydroisoquinolines using an undivided cell. This reac-

tion could be carried out at room temperature without the
use of any oxidants. This process offers an alternative to
conventional methods that require metal catalysts or chem-
ical oxidants and represents an environmentally benign
tool for oxidative C=O bond formation.
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was charged with diethyl phosphite (42 mg, 0.3 mmol), wet
CH2Cl2 (5.0 mL), 2-phenyl-1,2,3,4-tetrahydroisoquinoline 1a (52
mg, 0.25 mmol), and Et4NOTs (151 mg, 0.5 mmol). The resulting
suspension was stirred until complete dissolution was achieved.
The flask equipped with graphite rod anode (d = 5 mm) and Pt
plate cathode (0.5×0.5 cm). The reaction mixture was stirred
and electrolyzed at a constant current of 5 mA at rt for 9 h. The
reaction mixture was diluted with CH2Cl2 (15 mL), washed suc-
cessively with water (10 mL) and brine (10 mL), dried with

Na2SO4, and concentrated in vacuo. Purification by flash column
chromatography (silica gel, petroleum ether–ethyl acetate 20:1)
afforded the desired product 4a 48 mg (86%) as a white solid;
mp 119–120 °C. 1H NMR (300 MHz, CDCl3):  = 8.19–8.14 (m, 1
H), 7.51–7.34 (m, 6 H), 7.29–7.21 (m, 2 H), 4.04–3.97 (m, 2 H),
3.15 (t, J = 6.6 Hz, 2 H). 13C NMR (75 MHz, CDCl3):  = 162.8,
143.1, 138.3, 132.0, 129.7, 128.9, 128.7, 127.1, 126.9, 126.2,
125.3, 49.4, 28.6.
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