
Investigation of Covalent Warheads in the Design of
2‑Aminopyrimidine-based FGFR4 Inhibitors
Wuqing Deng,▽ Xiaojuan Chen,▽ Kaili Jiang,▽ Xiaojuan Song, Minhao Huang, Zheng-Chao Tu,
Zhang Zhang, Xiaojing Lin, Raquel Ortega, Adam V. Patterson, Jeff B. Smaill, Ke Ding, Suming Chen,*
Yongheng Chen,* and Xiaoyun Lu*

Cite This: ACS Med. Chem. Lett. 2021, 12, 647−652 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Covalent kinase inhibitors are rapidly emerging as a class of therapeutics with clinical benefits. Herein we report a
series of selective 2-aminopyrimidine-based fibroblast growth factor receptor 4 (FGFR4) inhibitors exploring different types of
cysteine-targeting warheads. The structure−activity relationship study revealed that the chemically tuned warheads α-fluoro
acrylamide, vinylsulfonamide, and acetaldehyde amine were suitable as covalent warheads for the design of selective FGFR4
inhibitors. Compounds 6a, 6h, and 6i selectively suppressed FGFR4 enzymatic activity with IC50 values of 53 ± 18, 45 ± 11, and 16
± 4 nM, respectively, while sparing FGFR1/2/3. X-ray crystal structure and MALDI-TOF studies demonstrated that compound 6h
bearing the α-fluoro acrylamide binds to FGFR4 with an irreversible binding mode, whereas compound 6i with an acetaldehyde
amine binds to FGFR4 with a reversible covalent mode. 6h and 6i might provide some fundamental structural information for the
rational design of new selective FGFR4 inhibitors.
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Protein kinases have become important therapeutic targets
for many proliferative human diseases, especially cancer

and inflammation.1 However, designing selective kinase
inhibitors is challenging because the majority target the highly
conserved ATP-binding pocket.2 Covalent targeting of a
noncatalytic cysteine in a kinase represents a successful
strategy in some oncology indications, with reduced risk of
toxicity and higher selectivity. Over the past two decades,
seven covalent kinase inhibitors, such as EGFR inhibitors
(afatinib, neratinib, osimertinib, and dacomitinib) and BTK
inhibitors (ibrutinib, acalabrutinib, and zanubrutinib), have
been approved by the FDA.3 Covalent kinase inhibitors
typically comprise a scaffold connected to an electrophilic
functional group, also known as a “warhead”, such as an
acrylamide moiety and its derivatives.4 These form a covalent
bond with reactive residues in the kinase active site including
cysteine, lysine, and others.5 However, covalent inhibitors can
cause serious toxicity due to their nonspecific conjugation to
proteins and cellular macromolecules.6 To reduce the risk of

toxicity and improve their selectivity, the rational design of
selective covalent kinase inhibitors is critically important.
The fibroblast growth factor receptor (FGFR) family

comprises four members, FGFR1, FGFR2, FGFR3, and
FGFR4, that are high affinity receptors for the fibroblast
growth factors (FGFs), which are involved in many
fundamental biological processes.7 Among these isoforms,
FGFR4 specifically utilizes FGF19 as the intracellular ligand to
stimulate and activate the signaling pathway. Previous studies
have demonstrated that FGFR4 and FGF19 signaling
aberrations are a valid oncogenic driver of cancer, especially
for hepatocellular carcinoma (HCC).8 Therefore, FGFR4 has
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become a novel potential target for the treatment of HCC. As a
result, selective FGFR4 inhibitors are of significant interest as
an alternate therapeutic strategy for the development of pan-
FGFR inhibitors, seeking to avoid the side effects associated
with FGFR1/2/3 on-target inhibition.
Although FGFR1/2/3/4 possess high sequence homology,

one poorly conserved cysteine located at position 552 of
FGFR4 (tyrosine in FGFR1/2/3) has been demonstrated to
be an effective site to obtain FGFR4 isoform selectivity.9

Recently, several selective FGFR4 inhibitors have been
reported that form a covalent bond with Cys552 in
FGFR4,10 such as BLU9931 (1a)9 and BLU554 (1b),11

H3B-6527 (2),12 aminopyrimidine derivative (3),13 developed
by our group, and aldehyde FGF401 (4) (Figure 1).14 FGF401

is a selective reversible covalent FGFR4 inhibitor designed to
overcome the rapid FGFR4 protein resynthesis rate observed
in some HCC cell lines.15 An inhibitor with a rational toxicity
profile that allows for frequent dosing to achieve complete and
continuous FGFR4 inhibition to reach maximum antitumor
efficacy is urgently required. Despite the successful design of
targeted covalent FGFR4 inhibitors, most are still in early
clinical trials. No FGFR4 selective inhibitors have been
approved by the FDA to date. To explore the development
of FGFR4-selective inhibitors with improved isoform binding
specificity, we investigated the cysteine binding efficiency of
different warheads in FGFR4. Several irreversible and
reversible covalent warheads targeting cysteine, such as α,β-
unsaturated acrylamide and its derivatives among others, have
been developed and recently reviewed16 for their promise in
the design of covalent and reversible covalent inhibitors. As
described herein, we designed and synthesized a series of
molecules based on the 2-aminopyrimidine scaffold seeking to
incorporate different types of potential warheads instead of the
original acrylamide warhead (Figure 2).
The synthesis of the designed compounds 6a−6j is outlined

in Scheme 1. In brief, the commercially available 2-
chloropyrimidin-5-ol (8) was reacted with 3-(bromomethyl)-
2,4-dichloro-1,5-dimethoxybenzene (7), giving the corre-
sponding 2-chloro-5-((2,6-dichloro-3,5-dimethoxybenzyl)-
oxy)pyrimidine (9) through a nucleophilic substitution
reaction.11 Intermediate 9 was then coupled to 2-methyl-6-
nitroaniline (10) to afford intermediate 11 through a
Buchwald−Hartwig coupling. The iron dust reduction of 11

under Lewis acid conditions gave N1-(5-((2,6-dichloro-3,5-
dimethoxybenzyl)oxy)pyrimidin-2-yl)-6-methylbenzene-1,2-di-
amine (12). Finally, 12 was reacted with different warheads to
produce the corresponding products 6a−6j utilizing various
reagents and conditions, as described.
The potential irreversible warheads I1-I8 were initially

incorporated into the 2-aminopyrimidine scaffold to give the
corresponding compounds 6a−6h (Table 1). Kinase inhibitory
activities of all compounds against FGFR1−4 were evaluated
by using a well-established FRET-based Z′-Lyte assay.9

Compounds 6a and 6h, containing the vinylsulfonamide (I1)
and α-fluoro acrylamide (I8) warheads, respectively, exhibited
potent inhibitory activity against FGFR4 with biochemical IC50
values of 53 ± 18 and 45 ± 11 nM, respectively.
Encouragingly, compound 6h displayed excellent selectivity
over FGFR1−3, whereas 6a was 10-fold selective over its
closest isoform (FGFR1). Compound 6g containing the epoxy

Figure 1. Structures of representative selective covalent FGFR4
inhibitors.

Figure 2. Design of compounds 6a−6j based on lead 5 by replacing
the acrylamide group with potential covalent warheads I1−I10.

Scheme 1. Synthesis of Compounds 6a−6ja

aReagents and conditions: (a) K2CO3, Bu4N
+·I−, DMF, 60 °C, 2.0 h.

(b) Pd(AcO)2, XantPhos, Cs2CO3, dioxane, 100 °C, overnight. (c)
Fe, NH4Cl, EtOH, H2O, 70 °C, 1.0 h. (d) 6a: 2-chloroethanesulfonyl
chloride, Et3N, dry DCM, 0 °C, 1.0 h; 6b: cyanogen bromide, Cs2O3,
dry THF, rt, 3.0 h; 6c: chloroacetonitrile, K2CO3, NaI, MeCN, reflux,
3.0 h; 6d: cyanoacetic acid, HATU, DIPEA, dry DMF, rt, overnight;
6e: propargylbromide, K2CO3, DMF, rt, 4.0 h; 6f: chloroacetyl
chloride, Et3N, dry DCM, 0 °C to rt, 1.0 h; 6g: (i) glyceric acid,
HATU, DIPEA, dry DMF, rt, overnight; (ii) methanesulfonyl
chloride, pyridine, 0 °C, 1.0 h; (iii) K2CO3, MeOH, 0 °C to rt, 3.0
h; 6h: 2-fluoroacrylic acid, HATU, DIPEA, dry DMF, rt, 1.0 h; 6i: (i)
2-bromoethanol, K2CO3, THF, 65 °C, 16 h; (ii) PCC, dry DCM, 0
°C to rt, 1.0 h; 6j: (i) cyanoacetic acid, HATU, DIPEA, dry DMF, rt,
overnight; (ii) paraformaldehyde, piperidine, dry DCM, 0 °C to rt, 1.0
h.
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amide warhead displayed moderate inhibitory activity against
FGFR4 (IC50 = 0.67 ± 0.19 μM); however, compounds 6b−6f
demonstrated no inhibitory activity against FGFR4. We
hypothesize that the relatively low level of conformational
flexibility of Cys552 in the hinge region of FGFR4 limits the
geometry and size of the electrophilic warheads that can be
employed.17 We further propose that warheads I2−I5 and I7
may not possess a suitable level of chemical reactivity, whereas
the chloroacetamide warhead may be more suitable in the meta
position of the aniline ring based on a recently published paper
on a related scaffold.18 The vinylsulfonamide and α-fluoro
acrylamide warheads are suitable for binding with the
conformationally restricted Cys552 due to their good rota-
tional flexibility.
To elucidate the details of the interactions of compounds 6h

and 6j with FGFR4, we attempted to generate both X-ray
cocrystal structures. However, only the 6h/FGFR4 complex
was obtained. It was confirmed that 6h occupies the ATP
binding site of FGFR4 with a similar binding mode to that of
lead 5 by forming a critical covalent bond with Cys552 (Figure
3A). The warhead α-fluoro acrylamide covalently reacts with

the sulfhydryl group of Cys552, an interaction that drives the
isoform selectivity. It is also noteworthy that the fluorine atom
points toward Ala553 forming van der Waals interactions with
this residue (Figure 3B). The 2-aminopyrimidine core forms
two hydrogen bonds with the backbone amino and carbonyl
groups of Ala553, respectively. The tetra-substituted phenyl
group makes favorable van der Waals contacts with the
hydrophobic back pocket and forms one hydrogen bond with
Asp630.
Novartis researchers have suggested that the rapid resyn-

thesis rate of FGFR4 in some HCC cell lines (<2 h) suggests
that current acrylamide-bearing irreversible covalent inhibitors
may not fully inhibit FGFR4 kinase signaling at a safe dose.19

To achieve complete and continuous FGFR4 inhibition, they
moved their focus to the development of reversible-covalent
inhibitors. In the present study, the potential reversible-
covalent derivatives 6i and 6j (based on the known reversible-
covalent warheads I9 and I10) were synthesized and evaluated
(Table 1). The results indicate that only compound 6i exhibits
potent inhibitory activity against FGFR4, with an IC50 value of
16 ± 4 nM with excellent selectivity over FGFR1−3.
Molecular docking studies indicated that 6i displays a similar
binding mode to that of 6h (Figure 3C). The formyl group is
proposed to form a covalent bond with Cys552 and an
additional hydrogen bond with the carbonyl of Cys552, which
contributes to the activity and selectivity. Compound 6j totally
lost inhibitory activity against FGFR4 (IC50 > 10 μM). The
results demonstrate that the length of the warhead has an
adverse influence on the inhibitory activity. Additionally,
molecular modeling also suggests that 6j with a cyanoacryla-
mide warhead lost inhibitory activity against FGFR4,
presumably due to the steric hindrance between the cyano
group and Ala553 (Figure 3D).
Protein mass spectrometry was performed to confirm the

covalent binding of selected compounds. The molecular weight

Table 1. FGFR1/2/3/4 Biochemical Kinase Inhibitory
Activity of Compounds 6a−6ja

aKinase activity assays were performed using a FRET-based Z′-Lyte
biochemical assay.

Figure 3. Binding mode analysis of compounds 6h, 6j, and 6k with
FGFR4. (A) X-ray crystal structure of FGFR4 with 6h (PDB: 7DTZ).
(B) Fluorine forms van der Waals interactions with Ala553. (C)
Docking model of 6j bound to FGFR4 based on the crystal structure
of 5 bound to FGFR4 (PDB: 6NVH).15 (D) Docking model of 6k
bound to FGFR4 with the 6h crystal structure superimposed. The
cyano group creates significant steric hindrance with Ala553.
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of FGFR4 is 34 652 Da, whereas the mass shifts after the
incubation of compound 6h with FGFR4 (Figure 4A). A

measured m/z of 35 159 Da is consistent with the sum of the
molecular weight of 6h and FGFR4, indicating the formation
of a covalent adduct. In addition, 6h exhibited negligible
inhibition of FGFR4 C552A and FGFR4 C552S with IC50 >
10 μM (data not shown). A dialysis experiment was conducted
to verify the covalent binding mode of 6h with FGFR4. The
inhibitors BLU9931 (irreversible covalent) and FGF401
(reversible covalent) were used as control compounds. As
shown in Figure 4B, very little reversal of FGFR4 inhibition
was observed with 6h and BLU9931 following incubation and
dialysis of the protein adduct over 4 days, indicating the
permanent irreversible binding mode of 6h and BLU9931 with
FGFR4. By way of contrast, FGF401 demonstrated a ∼40%
return of FGFR4 kinase function over this period, consistent
with its known reversible-covalent binding mode.
The same methodology was then applied to compound 6i,

which was found to display a reversible-covalent binding mode
with FGFR4 (Figure 4C,D). Protein mass spectrometry
indicated an m/z at 35 129 Da, consistent with the sum of
the molecular weight of 6i and FGFR4 following incubation.
Additionally, the dialysis assay indicated the complete
restoration of FGFR4 kinase activity after 2 days of dialysis,
suggesting a significantly faster reverse reaction with Cys552
than that observed for FGF401.
Selected compounds were then assessed for their ability to

inhibit the proliferation of cancer cell lines by sulforhodamine
B (SRB) assay following a 5 day continuous exposure (Table
2). For this study, Hep3B HCC and MDA-MB-453 breast
cancer cells were selected as examples of cell lines driven by
high levels of wild-type FGFR4 and mutant FGFR4Y367C

expression, respectively. To investigate the potential of the
compounds to nonselectively inhibit the proliferation of cells,
the FGFR4-independent NRAS mutant H1299 lung cancer cell
line was utilized. Only the α-fluoro acrylamide derivative 6h
demonstrated significant antiproliferative activity selectively in
the FGFR4-dependent cell lines. Whereas the FGFR4 potency
of 6h was four to six times less than that of the positive-control

compound BLU9931, it was encouragingly 20 times less
cytotoxic to the negative-control H1299 cell line than
BLU9931. Surprisingly, the reversible-covalent acetaldehyde
amine 6i failed to demonstrate potent antiproliferative activity
in FGFR4-dependent cells, despite the potent inhibition of
FGFR4 in the biochemical assay (Table 1). The reasons for the
apparent discordance have yet to be fully elucidated, although
we hypothesize that this result is consistent with the metabolic
instability of the acetaldehyde in the cell culture, as observed
for related aldehydes (in particular, in HCC cell lines) during
the discovery of FGF401.
In summary, a series of 2-aminopyrimidine-based FGFR4

inhibitors incorporating different cysteine-targeting warheads
were designed and synthesized. The representative compounds
6a, 6g, 6h, and 6i exhibited potent biochemical inhibitory
activity against FGFR4, whereas 6g, 6h, and 6i, in particular,
were inactive against FGFR1/2/3. FGFR4 protein X-ray
crystallography and MALDI-TOF studies demonstrated that
compound 6h bearing an α-fluoro acrylamide warhead binds to
FGFR4 with an irreversible binding mode, whereas compound
6i with an acetaldehyde amine warhead binds to FGFR4 with a
reversible covalent binding mode. This study also indicates
that the Cys552 binding site of FGFR4 shows high specificity
for covalent inhibitors. Antiproliferative assays in cancer cell
lines harboring dysregulated FGFR4 signaling demonstrated
that 6h possesses significant activity, whereas 6i was
unexpectedly inactive in cells. We propose that our study
might provide some fundamental structural information for the
rational design of new selective FGFR4 inhibitors. Further
structural and pharmacokinetics-oriented optimization of 6h is
ongoing.
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