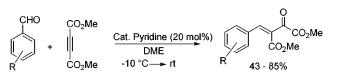
Novel Pyridine-Catalyzed Reaction of Dimethyl Acetylenedicarboxylate with Aldehydes: Formal [2 + 2] Cycloaddition Leading to 2-Oxo-3-benzylidinesuccinates[†]

Vijay Nair,* A. Ramachandran Sreekanth, and A. Unni Vinod

Organic Chemistry Division, Regional Research Laboratory, CSIR, Trivandrum 695 019, India


gvn@csrrltrd.ren.nic.in

Received August 9, 2001

ORGANIC LETTERS 2001 Vol. 3. No. 22

Vol. 3, No. 22 3495–3497

ABSTRACT

The 1,4-zwitterionic intermediate generated from pyridine and DMAD adds to aldehydes in a formal [2 + 2] manner, resulting in the facile synthesis of 2-oxo-3-benzylidinesuccinates.

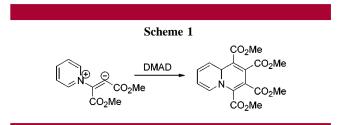
The carbon–carbon bond-forming reaction involving the addition of nucleophiles to acetylenes is of great significance in organic synthesis.¹ The conceptual framework of a 1,4-dipolar cycloaddition provided by Huisgen ² has been realized in the reaction of pyridine with dimethyl acetylenedicar-boxylate (DMAD), leading to the quinazoline derivative, via the 1,4-zwitterionic intermediate (Scheme 1).

This reaction has been studied in detail by Acheson,^{3,4} who has further established the existence of the 1,4-zwitterionic intermediate by trapping it with carbon dioxide.⁵ In another study it was shown that the interception of the intermediate

(2) (a) Huisgen, R.; Grashey; Sauer, J. *The Chemistry of Alkenes*; Patai, S., Ed.; Wiley- Interscience: New York, 1964; p 739. (b) Huisgen, R.; Herbig, K. *Liebigs Ann. Chem.* **1965**, 688, 98.

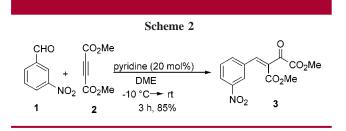
(3) Acheson, R. M. Adv. Heterocycl. Chem. 1963, 1, 125.

(4) (a) Acheson, R. M.; Taylor, G. A. *Proc. Chem. Soc.* **1959**, 186. (b) Acheson, R. M.; Taylor, G. A. *J. Chem. Soc.* **1960**, 1691.


(5) Acheson, R. M.; Plunkett, A. O. J. Chem. Soc. 1964, 2676.

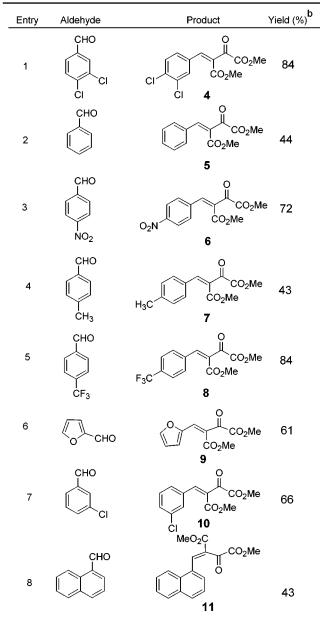
10.1021/ol016550z CCC: \$20.00 © 2001 American Chemical Society Published on Web 10/10/2001

can be effected by phenyl isocyanate.⁶ An isolated example of the intramolecular addition of the 1,4-zwitterionic intermediate to a carbonyl group is also known.⁷


In the context of our general interest in the construction of heterocyclic systems via dipolar intermediates,⁸ we were intrigued by the possibility of intermolecular trapping of the 1,4-zwitterionic intermediate generated from pyridine and DMAD with carbonyl compounds. The preliminary results of our investigation validating the usefulness of this process, leading to a novel formal [2 + 2] cycloaddition, are presented in this Letter.

In our initial experiment, the reaction of DMAD with 3-nitrobenzaldehyde in the presence of pyridine (20 mol %)

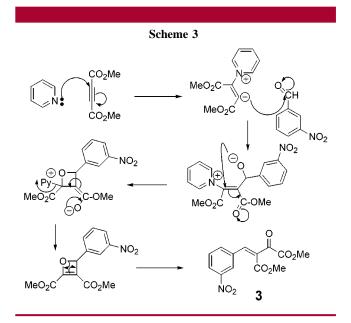
[†] Dedicated with affection, respect, and best wishes to Prof. Gilbert Stork, whose pathbreaking discoveries have profoundly changed the course of organic synthesis, on the occasion of his 80th birthday.


^{(1) (}a) Dickstein, J. I.; Miller, S. I. The Chemistry of Functional Groups. The Chemistry of Carbon-Carbon Triple Bond Part 2, Chapter 19; Patai, S., Ed.; Wiley: Chichester, 1978; pp 813–955. (b) Winterfeldt, E. Chemistry of Acetylenes; Viehe, H. G., Ed.; Dekker: New York, 1969; p 267. (c) Winterfeldt, E. Angew. Chem., Int. Ed. Engl. 1967, 6, 423.

in DME at -10 °C to room temperature afforded 2-oxo-3benzylidenesuccinate **3** in 85% yield (Scheme 2).

The product was characterized on the basis of spectroscopic data. In the ¹H NMR spectrum, the two methoxycar-

Table 1.	Reaction of Aldehydes with DMAD in the Presence	
of a Catal	tic Amount of Pyridine ^a	



^a See ref 9 for general experimental procedure. ^b Isolated yield.

bonyl groups were observed at δ 3.68 and 3.81 as two singlets, supporting the IR absorption at 1719 cm⁻¹. The olefinic proton resonated at δ 7.14. The ¹³C signals for the two carbomethoxy groups were seen at δ 162.8 and 164.0.

The reaction appears to be general with a number of aldehydes, affording the 2-oxo-3-benzylidenesuccinates in moderate to excellent yields.⁹ The results are summarized in Table 1.

Mechanistically, the reaction may be rationalized to involve [2 + 2] cycloaddition of the 1,4-zwitterion generated from pyridine and DMAD to the carbonyl group of the aldehyde to give an unstable oxetene, which undergoes stereospecific ring opening to give the *Z*-isomer (Scheme 3).^{10,11}

In this context it is interesting to note that only few reports involving thermal [2 + 2] cycloaddition between activated alkynes and carbonyl compounds are available in the literature.¹² In conclusion, we have devised a novel method for formal [2 + 2] cycloaddition of dimethyl acetylenedicarboxylate with aldehydes resulting in the facile synthesis of 2-oxo-3-benzylidenesuccinates. Further investigations with other activated alkynes and dipolarophiles are in progress.

⁽⁶⁾ Huisgen, R.; Morikawa, M.; Herbig, K.; Brunn, E. Chem Ber. 1967, 100, 1094.

⁽⁷⁾ Winterfeldt, E. Chem Ber. 1965, 98, 3537.

^{(8) (}a) Nair, V.; Vinod, A. U. Chem. Commun. 2000, 1019. (b) Nair, V.; Vinod, A. U.; Rajesh, C. J. Org. Chem. 2001, 66, 4427. (c) Nair, V.; Bindu, S.; Balagopal, L. Tetrahedron Lett. 2001, 42, 2043.

⁽⁹⁾ **General experimental procedure:** A solution of dimethyl acetylenedicarboxylate (1 equiv) and aldehyde (1 equiv) under an argon atmosphere in dry DME (10 mL) was cooled to -10 °C. To this, pyridine (20 mol %) was added, and the reaction mixture was stirred for 3 h at room temperature. The solvent was then removed under vacuum, and the residue on chromatographic separation on silica gel using hexanes—ethyl acetate (80:20) gave 2-oxo-3-benzylidenesuccinates. Compound **3**: mp 97–99 °C; IR (KBr) 2959, 1719, 1686, 1533, 1440, 1261, 1202, 1016 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 8.63 (s, 1H), 8.45 (d, *J* = 8.1 Hz, 1H), 8.21 (d, *J* = 7.74 Hz, 1H), 7.72 (t, *J* = 7.92 Hz, 1H), 7.14 (s, 1H), 3.81 (s, 3H), 3.68 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 189.9, 164.0, 162.8, 148.5, 144.2, 136.9, 133.8, 131.3, 130.0, 127.8, 123.3, 53.3, 52.6. Anal. Calcd for C₁₃H₁₁NO₇: C, 53.25; H, 3.78; N, 4.78. Found: C, 53.40; H, 3.79; N, 4.91.

Acknowledgment. A.R.S. and A.U.V. thank CSIR, New Delhi, for research fellowships. The authors also thank Ms. Saumini Mathew for high-resolution NMR spectra and Mrs. S. Viji for CHN analysis.

Supporting Information Available: Spectroscopic data (¹H, ¹³C, and IR) for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL016550Z

⁽¹⁰⁾ Recently Shindo et al. have proposed the mechanism for the [2 + 2] cycloaddition reactions of alkynoates with carbonyl compounds involving an oxetene intermediate, see: (a) Shindo, M.; Sato, Y.; Shishido, K. *Tetrahedron Lett.* **1998**, *39*, 4857. (b) Shindo, M.; Sato, Y.; Shishido, K. J. Am. Chem. Soc. **1999**, *121*, 6507. (c) Shindo, M.; Sato, Y.; Shishido, K. J. Org. Chem. **2000**, *65*, 5443.

⁽¹¹⁾ For a similar electrocyclic ring opening of oxetene, see: Friedrich, L. E.; Bower J. D. J. Am. Chem. Soc. **1973**, 95, 6869.

 ^{(12) (}a) Viehe, H. G. Angew. Chem., Int. Ed. Engl. 1967, 6, 767. (b)
Ficini, J. Tetrahedron 1976, 32, 1449. (c) Schollkopf, U.; Hoppe, I. Angew.
Chem., Int. Ed. Engl. 1975, 14, 765. (d) Schollkopf, U.; Hoppe, I. Liebigs
Ann. Chem. 1979, 219.