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Abstract: Dibromophosphines, RPBr2, are obtained by reaction of
tetrabromomethane with 7-substituted 7-phosphanorbornenes in
toluene at ca. 100 °C. The phosphanorbornenes are obtained in situ
by cycloaddition of N-phenylmaleimide with 1-substituted 3,4-di-
methylphospholes. The overall reaction sequence shows a good
compatibility with functional groups.
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Dihalophosphines RPX2 (X = Cl, Br) are certainly among
the most versatile synthetic intermediates in organophos-
phorus chemistry. However, only a restricted number of
methods are available in the literature1 for their prepara-
tion and most of them are not compatible with a wide
range of functional groups on the R substituent. In two
preceding papers,2,3 we have demonstrated that 7-phos-
phanorbornenium salts collapse under nucleophilic attack
to give the tricoordinated products formally derived from
the phosphenium bridging unit. We also demonstrated
that the bromide ion was able to perform this nucleophilic
attack at 120 °C. Hence, we could forecast that a 7-bromo-
7-phosphanorbornenium bromide could be a convenient
source of dibromophosphine upon heating.

In order to have an idea of what could be expected, we de-
cided to compute the structure of the 7-bromo-7-methyl-
7-phosphanorbornenium bromide (1) by DFT at the
B3LYP/6-311+G(d,p) level.4 The results are depicted in
Figure 1. One of the two bromine atoms is bonded to
phosphorus by a normal covalent bond of 2.26 Å (P–Br:
2.22 Å in PBr3)

5 and has a weak negative charge (Mulliken
charge –0.15). The second P–Br bond is very long at 2.64
Å and is partly ionized (bromine Mulliken charge –0.45).

The two P–C bridge bonds are very long at 1.92–1.93 Å
and indicate that the bridge will dissociate readily.

With bromine being excluded because of its high reactiv-
ity toward double bonds and other functional groups, we
decided to use tetrabromomethane for the P-bromination
of 7-phosphanorbornenes. Following the work of Appel6

on the reaction of triphenylphosphine with carbon tetra-
chloride, it is known that this type of reactions produces a
1:1 mixture of dihalophosphorane and dihalomethylene-
phosphorane when using a phosphine/CX4 ratio of 2:1.
This means that half of the phosphanorbornene will be
lost for our purpose, but this drawback is compensated by
the mildness of the experimental conditions. Our starting
7-phosphanorbornenes were easily obtained by reaction

Figure 1  Computed structure of 7-bromo-7-methyl-7-phosphanor-
bornenium bromide (1). Significant distances (Å) and angles (°):
P–Br 20 2.639, P–Br 21 2.259, P–Me 1.840, P–C2 1.932, P–C3
1.919; C2–P–C3 78.63°, Br20–P–Br21 89.76°.
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of 1-substituted 3,4-dimethylphospholes with N-phenyl-
maleimide.7 The reaction with tetrabromomethane was
carried out at 90–120 °C in toluene and monitored by 31P
NMR spectroscopy. The rate of the reaction sharply var-
ied according to the nature of the substituent at phospho-
rus (completion needed between 10 min and 4 h). The
dibromophosphine was characterized by its 31P NMR res-
onance and by complexation with tungsten penta-
carbonyl8 or by reaction with diethylamine and sulfur
(Scheme 1 and Scheme 2).

The yields of 5 from phospholes 2 varied between 13.8%
for 5b to 35% for 5a but it must be recalled that the max-
imum theoretical yield is 50%.9 Even though this one-pot
chemistry is easy to perform, it has no practical interest
for the synthesis of ordinary dibromophosphines. But it is
also possible to apply this scheme to the synthesis of more
sophisticated derivatives which are difficult to get using
the traditional approaches. An example is given in
Scheme 3.

Dibromophosphine 4f was obtained in reasonable purity
by simple extraction with pentane from the crude and an-
alyzed by NMR spectroscopy.10 The 13C NMR spectrum
was interpreted using the data of PhPBr2.

11 It is easy to lo-
cate the four C resonances at 124.23 (JC–P = 5.0 Hz, C–
Br), 137.50 (JC–P = 62.1 Hz, C–P), 139.41 (3JC–P = 8.3 Hz,
C bridge), 143.15 (2JC–P = 43.9 Hz, C bridge). The eight
other CH resonances are more difficult to assign but all
display weak or negligible couplings with phosphorus, in-
cluding the CH ortho to P. Since it is known that 2JC–P is
dominated by the proximity of the coupled carbon with
the P lone pair,12 it is clear that the lone pair of PBr2 is di-
rected toward the bridge. Upon reaction with diethyl-
amine and sulfur, 5f was obtained in 45% yield.13 Full

experimental details are provided in the supplementary
material.
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