Vibrational study of diphenylphosphorus halides $Ph_2PX(X = Cl, Br, I)$

L. VERDONCK, P. H. DE RYCK, F. F. ROELANDT and G. P. VAN DER KELEN

Laboratory for General and Inorganic Chemistry-B, University of Ghent, Krijgslaan 281, B-9000 Ghent,

Belgium

(Received 31 August 1983)

Abstract—The Raman and i.r. spectra of diphenylphosphorus halides, Ph_2PX (X = Cl, Br, I), have been measured and concerted assignments have been made confirmed by an approximate normal coordinate analysis for the skeletal vibrations of Ph_2PCl using a three mass model for the phenyl group.

INTRODUCTION

Serious disagreement exists in the interpretation of the vibrational spectra of diphenylphosphorus chloride [1, 2]. The assignments are tentative in both studies as they were not confirmed by a normal coordinate analysis. Recently, in a vibrational study [3] of various pentadeuterophenylphosphorus compounds, a restricted number of frequencies of Ph_2PCl are assigned based on approximate calculations using a three mass model [4] for the phenyl ring.

We wish to report on the i.r. and Raman spectra of the diphenylphosphorus halides, Ph_2PX (X = Cl, Br, I). Assignments are proposed confirmed by an approximate normal coordinate analysis of the C₂PCl skeletal vibrations.

EXPERIMENTAL

Synthesis. Commercial diphenylphosphorus chloride was used after appropriate purification. $(C_6H_5)_2PBr[5-9]$ (b.p. 146°C/2 mm Hg) was prepared by a halogen exchange reaction between $(C_6H_5)_2PCl$ and PBr₃. By cleaving the P-P bond in $(C_6H_5)_4P_2$ with I_2 , $(C_6H_5)_2PI$ (b.p. 181°C/5 mm Hg) has been synthesized [10].

Spectroscopy. The i.r. spectra of the liquids were recorded on a Perkin-Elmer 580 double-beam spectrometer. A Coderg Raman spectrometer equipped with a He-Ne gas laser, OIP model 181 E, has been used for the Raman study.

RESULTS AND DISCUSSION

The analysis of the vibrational spectra of the Ph_2PX derivatives can be approached by the concept of isolated group vibrations. In a first approximation the phenyl ring vibrations are treated on the base of a $Ph_nY(Y = \text{rest of the molecule})$ system whereas the vibrations involving the phosphorus atom are considered in a C_2PX skeleton.

Vibrational spectra of Ph_nY systems with weak interacting benzene rings are treated in terms of monosubstituted benzene rings belonging to the point group C_{2v} . For the substituent-insensitive vibrations an accidental degeneracy is observed. However the substituent sensitive vibrations give rise to multiple components which are attributed either to nonequiv-

alence of the benzene rings [11] or to in-phase and outof-phase vibrations of the various benzene rings [12]. This leads to symmetrical and asymmetrical normal vibrations. Only the ring vibrations in the frequency region of interest (below 650 cm^{-1}) are considered. The normal vibrations of the pyramidal C₂PCl skeleton (point group C_s) are collected in Table 1. However, in order to avoid double assignment one has to realise that the C_6H_5-X (heavy) stretching vibration (7a) [13] corresponds essentially to the PC₂ stretching vibrations v_2 and v_5 of the C₂PCl skeleton. Furthermore the C_6H_5-X in-plane bending (9b) is clearly associated with the PC₂ bending vibration v_4 . The assignments for the vibrational frequencies below 650 cm⁻¹ are collected in Table 2. Several assignments are straightforward and need no discussion. The absorption bands for v_2 and v_5 are expected in the frequency interval 400-500 cm⁻². The strong, polarized Raman bands at 458 (Cl), 481 (Br) and 476 (I) are assigned to v_2 , the weak depolarized Raman bands at 427 (Cl), 429 (Br) and ~ 430 (I) to v_5 .

In the Raman spectra of Ph_2PCl and Ph_2PBr four bands are observed in the region 300–200 cm⁻¹. The very strong, polarized, X-sensitive bands at 284 (Cl) and 235 (Br) are ascribed to v_3 ; the X-insensitive bands at 263 (Cl) and 261 (Br) to 10b. The depolarized, Xsensitive bands at 232 (Cl) and 221 (Br) are assigned to v_6 ; the X-insensitive bands at 205 (Cl) and 203 (Br) to v_4 .

For Ph₂PI, v_3 is observed at 193 and v_4 is masked by this very strong v_3 band. A shoulder band at 210 cm⁻¹ is assigned to v_6 . In order to confirm the band assignments an approximate normal coordinate analy-

Table 1. Normal vibrations of the C_2PCl skeleton (point group C_s)

Designation	Description	Symmetry type
ν,	vPCl	A'
v2	v.PC,	A'
v3	$\delta_{s}C_{2}PCl$	A'
V4	δPCl ₂	A'
V 5	$v_{as} PC_2$	A "
V ₆	$\delta_{as}C_2PCl$	A "

Р	h,PCl	Ph	PBr	Pl	n-Pl	. .
I.r.	Raman	I.r.	Raman	I.r.	Raman	Assign- ment
617 m	620	618 vw	617 dp	618 vw	617 dp	6 <i>b</i> *
553 w		544 m	~ 550	548 m	~ 550 }	1.01
500 vs	500 p	508 s	~ 500	505 s	~ 500 (160
500 vs	500 p	394 vs	394 p	365 vs	365 p	¥1
458 m	458 p	481 s	481 p	476 m	476 p	¥2] -
427 m	427 dp	430 s	429 dp	428 m	$\sim 430 \mathrm{dp}$	v 5 / /a
402 w	401	405 sh	404 dp	404 vw	402 dp	16 <i>a</i>
	284 p		235 p		193 p	V a
	263 p		261 sh		260 p	10b
	232 dp		221 sh		210 dp	V.
	205 dn		203 sh		P	· 0 V

Table 2. Vibrational frequencies (cm⁻¹) and assignments for the Ph₂PX derivatives

* Wilson notation see Ref. [13].

sis is carried out for the skeletal vibrations of Ph₂PCl using a three mass model [4] as an approximation for the phenyl group. Indeed a rigorous treatment is not possible since the structural data are not available and estimated bond and angle data are used in the calculations. The estimated structural data are: $d_{\rm P \ Cl} = 2.04$ Å, P-C = 1.82 Å, C-Y = 1.40 Å, $\alpha_{\rm C-P-C} = 103^{\circ}$, $\alpha_{\rm C-P-Cl} = 100^{\circ}$ and $\alpha_{\rm P-C-Y} = 120^{\circ}$.

General vibrational analysis programs [14] utilizing the Wilson GF matrix method for a "general unsymmetrized molecule" are used.

The relevant internal coordinates of the $(Y_2C)_2PCl$ skeleton and the optimized set of force constants are summarized in Table 3. Observed and calculated frequencies and the potential energy distribution (PED) for Ph₂PCl are collected in Table 4. Despite the crudeness of the model a fairly good agreement is obtained between the observed and calculated frequencies using a reasonable set of force constants. The PED shows intensive coupling especially between the phenyl ring stretching (breathing), approximated as a Y-C-Y three mass vibration, and the phenyl-P-stretching. This marked mixing of normal vibrations is responsible for the low frequencies of v_{P-C} with respect to the alkylphosphorus compounds ($v_{C-P} = 620-720 \,\mathrm{cm}^{-1}$).

Acknowledgement—The authors wish to thank T. HAEMERS for recording the i.r. and Raman spectra.

Designation	Description	Valence force constants in mdynes/Å		
$ \begin{aligned} r_1 \\ r_2 &= r_3 \\ \alpha_{23} \\ \alpha_{12} &= \alpha_{13} \\ \beta_{45} &= \beta_{67} \end{aligned} $	P - Cl stretch P - C stretch C - P - C bend Cl - P - C bend Y - C - Y bend	$fr_1 = 1.99fr_2 = 3.23f\alpha_{23} = 0.14f\alpha_{12} = 0.28$	$fr_2r_3 = 0.45 f\alpha_{12}\alpha_{13} = 0.05 fr_2\beta_{45} = 0.30$	

Table 3. Relevant internal coordinates of (Y₂C)₂PCl skeleton

Table 4. Observed and calculated frequencies and potential energy distribution (PED) for Ph_2PCl

Designation	Observed	Calculated	PED (> 10 $\frac{0}{\sqrt{0}}$)
v ₁	503	503	$\Delta r_1(70), \Delta \alpha_{12}(18)$
v2	458	457.9	$\Delta r_2(42), \Delta \beta_{45}(26), \Delta \alpha_{12}(18)$
v5	427	427	$\Delta r_2(47), \Delta \beta_{45}(36), \Delta \alpha_{12}(14)$
V3	284	283.9	$\Delta \alpha_{1,2}(63), \Delta r_1(28)$
v ₆	232	232.2	$\Delta \alpha_{12}(80), \Delta r_1(13)$
v ₄	205	204.8	$\Delta \alpha_{23}(89)$

REFERENCES

- [1] J. GOUBEAU and D. LANGHARDT, Z. anorg. allg. Chem. 338, 163 (1965).
- [2] H. SCHINDLBAUER and H. STENZENBERGER,
- Spectrochim. Acta 26A, 1707 (1970). [3] K. HASSLER and F. HOFLER, Mh. Chem. 110, 919 (1979).
- [4] H. T. BECKER and F. HOFLER, Spectrochim. Acta 25A,
- 1703 (1969). [5] W. KUCHEN and W. GRUNEWALD, Chem. Ber. 98, 480 (1965).
- [6] W. KUCHEN and W. GRUNEWALD, Angew. Chem. 75, 576 (1963).
- [7] H. H. ANDERSON, J. Am. chem. Soc. 75, 1576 (1953).

- [8] J. MEISENHEIMER, J. CASPER, M. HORING, W. LAUTER and L. LICHTENSTADT, J. L. Amm. Chem. 449, 213 (1926).
- [9] D. SEYFERTH and K. A. BRAENDLE, J. Am. chem. Soc. 83, 2055 (1961).
- [10] H. HOFFMANN, R. GRUNEWALD and L. HORNER, Chem. Ber. 93, 861 (1960).
- [11] J. E. KATON, W. R. FEAIRHELLER and E. R. LIPPINCOTT, J. molec. Spectrosc. 13, 72 (1964).
- [12] S. HIGUCHI, H. TSUYAMA, S. TANAKA and H. KAMADA, Spectrochim. Acta 30A, 463 (1974).
- [13] E. B. WILSON, Phys. Rev. 45, 706 (1934).
- [14] D. F. McINTOSH and M. R. PETERSON, QCPE 11, 342 (1976).