

Available online at www.sciencedirect.com

Carbohydrate RESEARCH

Carbohydrate Research 341 (2006) 1922-1929

Note

Synthesis of asparagine-linked bacillosamine

Mohammed Nurul Amin,^{a,b} Akihiro Ishiwata^{a,c} and Yukishige Ito^{a,b,c,*}

^aRIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan ^bGraduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama 338-8570, Japan ^cCREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-1102, Japan

> Received 20 February 2006; received in revised form 13 April 2006; accepted 17 April 2006 Available online 15 May 2006

Abstract—Various types of protein glycosylation have been identified from prokaryotes. Recent investigations have revealed the presence of N-linked glycoproteins in the pathogenic bacterium, *Campylobacter jejuni*. The structure of this glycan is unique, consisting of 5 GalNAc and 1 Glc, in addition to 2,4-diacetamido-2,4,6-trideoxy-D-glucopyranose (bacillosamine; Bac), which is N-glycosidically linked to the side chain of asparagine (Asn). We synthesized Bac from a 2-azido-2-deoxy-D-galactose derivative, which was further converted to the Asn-linked form.

© 2006 Published by Elsevier Ltd.

Keywords: N-Linked glycoprotein; Bacillosamine; Campylobacter jejuni

Bacillosamine (Bac), 2,4-diacetamido-2,4,6-trideoxyglucopyranose, is the reducing terminal monosaccharide component of the glycoproteins derived from bacterial species.^{1,2} Bac was first isolated in 1960 from the cell-wall polysaccharides of *Bacillus licheniformis* ATCC9945.³ It is located in polysaccharides, including glycoproteins and lipopolysaccharides of various prokaryotes.⁴ A number of syntheses of Bac⁵ and related compounds such as 2,4-diacetamido-2,4,6-trideoxy-Dgalactopyranose derivatives^{6,7} have been reported.

N-Glycosylation is widespread in eukaryotic proteins, where the attachment of glycan occurs at the Asn-Xaa-Ser/Thr motif. It is believed that only eukaryotes are able to produce the N-glycosylated proteins,^{8,9} while several types of prokaryotic O-glycosylations have been reported, such as O-linked pseudaminic acid and bacillos-amine.¹⁰ Recent investigations revealed the presence of a novel non-flagellin glycoprotein in a pathogenic Gram-negative bacterium, *Campylobacter jejuni*, which was found to be a major antigenic protein designated PEB3 or Cj0289c.¹ This glycoprotein is multiply N-gly-

cosylated with a novel glycan at sites having the eukaryote-like consensus amino acid sequence of Asn-Xaa-Ser/ Thr (Fig. 1).² The structure of this N-linked glycan, $GalNAc-\alpha-(1\rightarrow 4)$ - $GalNAc-\alpha-(1\rightarrow 4)$ - $[Glc-\beta-(1\rightarrow 3)-]Gal-$ NAc- α -(1 \rightarrow 4)-GalNAc- α -(1 \rightarrow 4)-GalNAc- α -(1 \rightarrow 3)-Bac- β (1), is distinct from those of eukaryotic origin.^{10c,d} In the latter case, glycans that share a common pentasaccharide $[Man-\alpha-(1\rightarrow 3)-]Man-\alpha-(1\rightarrow 6)-Man-\beta-(1\rightarrow 4)-$ GlcNAc- β -(1 \rightarrow 4)-GlcNAc- β -(1 \rightarrow Asn) are decorated by various sugar residues. However, their biosynthetic pathways are similar to each other, in a sense that preassembled lipid-linked oligosaccharide (Glc3Man9Glc-NAc₂-PP-Dol or Glc₁GalNAc₅Bac₁-PP-Udp; Dol: dolichyl, Udp: undecaprenyl) is transferred to a nascent peptide either in the ER lumen (eukaryotes) or periplasm (C. jejuni) by oligosaccharyl transferase (OST).^{9,11}

The N-linked glycoprotein from *C. jejuni* was found to be immunodominant, and N-glycosylation is essential for their adhesion to host cells.^{10c,d} Considering the potential utility for immunochemical studies aiming at the development of antibodies and vaccines against this pathogenic bacterium as well as for understanding the mechanisms of protein N-glycosylation, *C. jejuni* Nglycan in Asn-linked form would be attractive as a synthetic target.⁶

^{*} Corresponding author. Tel.: +81 48 467 9430; fax: +81 48 462 4680; e-mail: yukito@riken.jp

^{0008-6215/\$ -} see front matter @ 2006 Published by Elsevier Ltd. doi:10.1016/j.carres.2006.04.031

Figure 1.

We recently completed the synthesis of the hexasaccharide region (Glc₁GalNAc₅) of this glycan using the 2-azido-2-deoxy-D-galactose (GalN₃) derivative **3** as the common precursor of GalNAc components.¹² In order to target the whole structure **1**, we chose the 2,4diazido-2,4,6-trideoxy-D-glucose derivative **5** as the Bac equivalent. This diazide was selected as the acceptor for the oligosaccharide construction toward **1**, because it has been reported that the hydroxyl groups of partially protected *N*-acetylglucosamine derivatives are poor acceptors.¹³ Now, we describe the synthesis of **5** and its conversion to free Bac (**4**) as well as to asparagine-linked Bac (Bac-Asn, **2**), also starting with **3** (Fig. 1).

Our synthesis commenced with *tert*-butyldiphenylsilyl 2-azido-4,6-*O*-benzylidene-2-deoxy- β -D-galactopyranoside **3**,¹⁴ which is readily obtainable from D-galactal. Protection of the 3-hydroxyl group with a 3-*O*-naphthylmethyl (NAP) gave **6** (Scheme 1).¹⁵ Protection with NAP proved to be highly suitable for our purpose, because of its stability under various reaction conditions, including acetal hydrolysis and reductive dehalogenation, and chemoselective removal under oxidative conditions. Removal of the benzylidene acetal of **6** in 4:1:1 AcOH–H₂O–MeOH gave diol **7** in 92% yield.^{15c,16} Since attempted iodination of **7** with Ph₃P, imidazole and I₂¹⁷ resulted in the reduction of the azide, diol **7** was first tosylated regioselectively to give **8**, then converted to iodide **9**. Chemoselective reduction was conducted with NaBH₃CN¹⁸ in diglyme to afford 6-deoxy derivative **10** without affecting the N₃ groups.¹⁹ In a large-scale preparation, this compound was obtained in 67% yield through a one-pot transformation from **8**.

An additional azido group was introduced at the 4position with inversion of configuration. Thus, by treatment with Tf₂O and pyridine, compound **10** was converted to triflate **11**, which was subjected to nucleophilic substitution with NaN₃,²⁰ to give 4-azide **12** in 91% yield in two steps. The D-gluco configuration was rigorously confirmed by the ¹H NMR spectrum, which

Scheme 1. Reagents and conditions: (a) 2-(bromomethyl)naphthalene, NaH, Bu₄NI, THF, 95%; (b) 4:1:1 AcOH–H₂O–MeOH, 80 °C, 92%; (c) TsCl, pyridine, DMAP, 94%; (d) NaI, diglyme, 120 °C, 91%; (e) NaCNBH₃, diglyme, 120 °C, 70%; (f) (CF₃SO₂)₂O, pyridine, CH₂Cl₂; (g) NaN₃, DMF, 91% in two steps; (h) DDQ, 10:1 CH₂Cl₂–H₂O, quant; (i) Pd(OH)₂/C, H₂, MeOH; (j) Ac₂O, MeOH, 98% in two steps; (k) NH₄F, MeOH, 90%.

revealed a triplet (J 9.6 Hz) at 3.09 ppm, assignable as H-4. Removal of the NAP ether was achieved by DDQ oxidation^{15c} to afford **5** in quantitative yield.

To complete the synthesis of Bac, the azido groups were reduced with hydrogen–Pd(OH)₂/C to afford **13**, which was acetylated to give **14** in 98% yield. Bacillosamine **4** was obtained in 90% yield through deprotection of the anomeric TBDPS group by NH_4F in MeOH.^{5a,21}

Synthetic Bac (4) was converted to the glycosylamine, according to Kochetkov's procedure²² (satd ammonium bicarbonate), which was isolated as an allyl carbamate **15** (Scheme 2). At this stage, the stereochemical homogeneity was confirmed by ¹H NMR, which revealed the H-1 signal at 4.73 ppm (J_{H1-H2} 10.0 Hz). It was subjected to coupling with a protected aspartoyl fluoride in the presence of Pd(PPh₃)₄ and PhSiH₃²³ to provide **2** in 86% yield as a pure β anomer (δ 4.86 ppm, J 9.6 Hz).

In conclusion, we developed the synthesis of N-asparagine-linked bacillosamine from D-galactose by employing: (1) NAP ether as a compatible protection group; (2) regioselective formation of iodide 9 from diol 7 and chemoselective reduction of 9 in the presence of NAP ether and azide; and (3) inversion at the 4-position of 10 via triflate 11 to efficiently introduce nitrogen functionality. Furthermore, *N*-asparagine-linked bacillosamine 2 was obtained through the synthesis of Allocprotected glycosyl amine 15, followed by one-pot Pd(0)-PhSiH₃-mediated removal of Alloc and coupling with an aspartoyl fluoride. Synthetic studies of the novel N-glycan (1) from *C. jejuni* are now in progress.¹²

1. Experimental

1.1. General procedures

All reactions sensitive to air and/or moisture were carried out under nitrogen or argon atmosphere with anhydrous solvents. Column chromatography was performed on silica gel 60N, 100–210 mesh (Kanto Kagaku Co., Ltd). Preparative TLC was performed on Silica Gel 60 F_{254} , 0.5-mm plates (E. Merck). Melting points were determined with a Büchi 510 melting point apparatus. Optical rotations were measured with a JASCO DIP 370 polarimeter. ¹H NMR spectra were recorded at 400 MHz on a JEOL JNM-AL 400 spectrometer, and chemical shifts are referred to internal CDCl₃

Scheme 2. Reagents and conditions: (a) NH₄HCO₃, H₂O, 45 °C; (b) NaHCO₃, AllocCl, 10:1 dioxane–H₂O, 71% in two steps; (c) NaHCO₃, FmocAsp(F)O*t*-Bu, PhSiH₃, Pd(PPh₃)₄, 10:1 dioxane–H₂O, 86%.

(7.24 ppm), D₂O (4.65 ppm), or CD₃OD (3.30 ppm). ¹³C NMR spectra were recorded at 100 MHz on the same instrument, and chemical shifts are referred to internal CDCl₃ (77.00 ppm), CD₃OD (49.00 ppm), or dioxane (67.19 ppm) in D₂O. MALDI-TOF mass spectra were recorded on a SHIMADZU Kompact MALDI AXI-MA-CFR spectrometer with 2,5-dihydroxybenzoic acid as the matrix. ESI-TOF mass spectra were recorded on a JEOL AccuTOF JMS-T700LCK with CF₃CO₂Na as the internal standard. Elemental analyses were performed with a Fisons EA1108 instrument.

1.2. *tert*-Butyldiphenylsilyl 2-azido-4,6-*O*-benzylidene-2deoxy-3-*O*-naphthylmethyl-β-D-galactopyranoside (6)

To a solution of tert-butyldiphenylsilyl 2-azido-4,6-Obenzylidene-2-deoxy- β -D-galactopyranoside (3) (9.00 g, 16.9 mmol) in dry tetrahydrofuran 2-(bromomethyl)naphthalene (3.93 g, 17.8 mmol) was added sodium hydride (570 mg, 23.8 mmol), followed by tetrabutylammonium iodide (500 mg, 1.35 mmol), under Ar atmosphere at room temperature. The reaction was stirred at ambient temperature for 6 h. TLC (7:3 hexane-EtOAc) indicated a single faster moving product ($R_{\rm f}$ 0.65) than the starting materials ($R_{\rm f}$ 0.50). Ice chips were added to the mixture, which was extracted twice with EtOAc. The combined organic layers were washed with brine and dried over MgSO₄, concentrated in vacuo and subjected to silica gel chromatographic purification (using a gradient solvent system of 8:1 to 7:1 to 6:1 hexane-EtOAc) to afford the title compound as a white foamy amorphous solid (10.8 g, 95%): $[\alpha]_D^{25}$ +39.6 (*c* 1.00, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz): δ 1.12 (s, t-Bu, 9H), 2.83 (br s, H-5, 1H), 3.27 (dd, J 3.6 Hz, 10.4 Hz, H-3, 1H), 3.75 (dd, J 1.6, 12.0 Hz, H-6a, 1H), 3.89 (dd, J 1.2, 12.4 Hz, H-6b, 1H), 3.91-4.11 (m, H-2, H-4, 2H), 4.37 (d, J 8.0 Hz, H-1, 1H), 4.83 and 4.87 (2d, J 12.8 Hz, ArCH₂, 1H each), 5.37 [s, PhCH(O)₂, 1H], 7.29–7.54 (m, Ar, 14H), 7.69–7.82 (m, Ar, 8H); ¹³C NMR (CDCl₃, 100 MHz): δ 19.29, 26.93, 64.73, 66.19, 68.79, 71.65, 72.39, 77.73, 96.75, 101.05, 125.60, 125.93, 126.09, 126.39, 126.44, 127.16, 127.39, 127.61, 127.78, 128.14, 128.17, 128.99, 129.50, 129.64, 132.96, 135.23, 135.78, 135.93; MALDI-TOF MS: [M+Na]⁺ calcd for C₄₀H₄₁N₃O₅SiNa, 694.27; found, 694.72; HRMS ESI-TOF: $[M+Na]^+$ calcd for $C_{40}H_{41}N_3O_5Si$ -Na, 694.2729; found, 694.2713. Anal. Calcd for C₄₀H₄₁N₃O₅Si: C, 71.51; H, 6.15; N, 6.25. Found: C, 71.26; H, 6.15; N, 6.10.

1.3. *tert*-Butyldiphenylsilyl 2-azido-2-deoxy-3-*O*-naphthylmethyl-β-D-galactopyranoside (7)

Compound 6 (15.12 g, 22.53 mmol) was dissolved in THF. A mixture of 4:1:1 AcOH $-H_2O$ -MeOH was added to the solution, and the mixture was stirred at

80 °C for 22 h. The concentrated crude mixture was purified by silica gel column chromatography (5:2 hexane-EtOAc) to provide the title compound as a white solid (12.06 g, 92%): mp 117–118 °C; $[\alpha]_D^{27}$ +9.09 (*c* 1.00, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz): δ 1.12 (s, t-Bu, 9H), 3.02 (m, H-5, 1H), 3.24 (dd, J 3.2, 10.0 Hz, H-3, 1H), 3.44 (dd, J 4.0, 12.0 Hz, H-6a, 1H), 3.66 (dd, J 7.2, 12.0 Hz, H-6b, 1H), 3.74 (dd, J 7.6, 10.4 Hz, H-2, 1H), 3.79 (d, J 2.8 Hz, H-4, 1H), 4.44 (d, J 7.6 Hz, H-1, 1H), 4.82 (s, ArCH₂, 2H), 7.34–7.50 (m, Ar, 9H), 7.69–7.85 (m, Ar, 8H); ¹³C NMR (CDCl₃, 100 MHz): δ 19.12, 26.82, 62.22, 65.37, 66.13, 72.27, 74.40, 78.91, 96.97, 125.56, 126.16, 126.27, 126.84, 127.37, 127.64, 127.82, 128.46, 129.80, 129.90, 132.53, 133.05, 133.56, 134.41, 135.65, 135.70; MALDI-TOF MS: [M+Na] calcd for C₃₃H₃₇N₃O₅SiNa, 606.24; found, 606.10; HRMS ESI-TOF: $[M+Na]^+$ calcd for $C_{33}H_{37}N_3O_5SiNa$, 606.2424; found, 606.2400. Anal. Calcd for C₃₃H₃₇N₃O₅-Si: C, 67.90; H, 6.39; N, 7.20. Found: C, 67.62; H, 6.28; N, 6.87.

1.4. *tert*-Butyldiphenylsilyl 2-azido-2-deoxy-3-*O*-naphthylmethyl-6-*O*-(*p*-toluenesulfonyl)-β-D-galacto-pyranoside (8)

A solution of compound 7 (5.20 g, 8.92 mmol) in dry pyridine was treated with TsCl (1.87 g, 9.81 mmol) in the presence of 4-dimethylaminopyridine (DMAP, 49.0 mg, 0.40 mmol) under Ar atmosphere at ambient temperature for 72 h. Monitoring of the reaction by TLC (5:2 hexane-EtOAc) showed a single product $(R_{\rm f}, 0.60)$. Ice chips were added in order to quench the excess reagent. The reaction mixture was extracted with EtOAc and the organic layer was washed with NaHCO₃, H₂O, and brine, dried over Na₂SO₄, and concentrated. The crude product was purified by silica gel column chromatography (5:2 hexane-EtOAc) to afford the title compound as a white amorphous solid (6.18 g, 94%): $[\alpha]_{\rm D}^{27}$ +17.19 (c 1.00, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz): δ 1.11 (s, t-Bu, 9H), 2.39 (s, CH₃Ar, 3H), 2.49 (br s, 4-OH, 1H), 3.17 (dd, J 2.4, 10.0 Hz, H-3, 1H), 3.23 (br t, J 6.4 Hz, H-5, 1H), 3.66 (dd, J 8.0, 9.2 Hz, H-2, 1H), 3.77 (d, J 3.2 Hz, H-4, 1H), 3.91 (dd, J 7.2, 10.0 Hz, H-6a, 1H), 4.12 (dd, J 7.2, 9.6 Hz, H-6b, 1H), 4.24 (d, J 8.0 Hz, H-1, 1H), 4.74 (s, ArCH₂, 2H), 7.33-7.47 (m, Ar, 10H), 7.65–7.83 (m, Ar, 11H); ¹³C NMR (CDCl₃, 100 MHz): δ 19.10, 21.59, 26.75, 60.33, 64.97, 67.93, 71.69, 72.23, 78.72, 96.45, 125.46, 126.13, 126.23, 126.77, 127.33, 127.47, 127.59, 127.76, 127.78, 128.39, 129.66, 129.71, 129.77, 132.18, 132.33, 132.61, 132.96, 132.97, 134.22, 135.69, 135.76, 144.75; MALDI-TOF: $[M+Na]^+$ calcd for C₄₀H₄₃N₃O₇SSiNa, 760.24; found, 760.41. Anal. Calcd for C₄₀H₄₃N₃O₇SSi: C, 65.10; H, 5.87; N, 5.69; S, 4.35. Found: C, 65.09; H, 5.76; N, 5.57; S. 4.59.

1.5. *tert*-Butyldiphenylsilyl 2-azido-2,6-dideoxy-6-iodo-3-*O*-naphthylmethyl-β-D-galactopyranoside (9)

A mixture of compound 8 (2.50 g, 3.39 mmol) and NaI (2.54 g, 17.0 mmol) in diethylene glycol dimethyl ether was stirred in a brown flask under Ar atmosphere at 120 °C for 10 h until TLC (5:2 hexane-EtOAc) showed the complete conversion of starting materials into a faster moving ($R_{\rm f}$ 0.70) product. The reaction mixture was co-evaporated with toluene and then purified by flash chromatography (5:1 hexane-EtOAc) to afford the title compound as a white, foamy solid mass (2.14 g, 91%): $[\alpha]_{D}^{24}$ +4.96 (c 0.30, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz): δ 1.10 (s, t-Bu, 9H), 2.29 (br s, 4-OH), 2.99 (dd, J 6.0, 10.0 Hz, H-6a, 1H), 3.19 (m, H-5, 1H), 3.23–3.29 (m, H-3, H-6b, 2H), 3.66 (dd, J 8.0, 10.0 Hz, H-2, 1H), 4.04 (br s, H-4, 1H), 4.28 (d, J 8.0 Hz, H-1, 1H), 4.82 (br s, ArCH₂, 2H), 7.32–7.49 (m, Ar, 9H), 7.69–7.85 (m, Ar, 8H); ¹³C NMR (CDCl₃, 100 MHz): δ 19.27, 26.92, 53.46, 64.89, 65.69, 72.38, 74.76, 79.19, 96.4, 125.47, 126.09, 126.18, 126.8, 127.24, 127.43, 127.58, 127.76, 128.4, 129.58, 129.74, 132.35, 132.73, 132.98, 134.2, 135.75, 135.86; MALDI-TOF MS: $[M+Na]^+$ calcd for C₃₃H₃₆N₃O₄ISiNa, 716.14; found, 716.65; HRMS ESI-TOF: $[M+Na]^+$ calcd for C₃₃H₃₆IN₃O₄SiNa, 716.1395; found, 716.1417. Anal. Calcd for C33H36N3O4ISi: C, 57.14; H, 5.23; N, 6.06; I, 18.30. Found: C, 57.09; H, 5.00; N, 5.98; I, 18.07.

1.6. *tert*-Butyldiphenylsilyl 2-azido-2,6-dideoxy-3-*O*-naphthylmethyl-β-D-galactopyranoside (10)

A mixture of compound 8 (7.50 g, 10.17 mmol) and NaI (6.10 g, 40.7 mmol) in diethylene glycol dimethyl ether was stirred at 120 °C in a brown flask under Ar atmosphere until TLC (5:2 hexane-EtOAc) indicated the complete conversion of starting materials ($R_{\rm f}$ 0.60) into a faster moving product ($R_{\rm f}$ 0.70, compound 9). The mixture was cooled to room temperature and then $NaCNBH_{3}^{-}$ (7.67 g, 0.122 mol) was added. The mixture was stirred at 120 °C under argon atmosphere for 1 day. Monitoring of the reaction by TLC (5:2 hexane-EtOAc) revealed the absence of starting materials and two slower moving products at $R_{\rm f}$ 0.50 and $R_{\rm f}$ 0.20, which correspond to the desired product and compound 7, respectively. The reaction mixture was diluted with EtOAc and washed with water and brine, dried over Na₂SO₄, and concentrated. The crude product was purified by silica gel column chromatography (5:2 hexane-EtOAc) to afford the title compound as a colorless pasty mass (3.86 g, 67%): $[\alpha]_D^{27}$ +11.03 (*c* 0.47, CH₂Cl₂): FTIR (KBr, thin film) ν (cm⁻¹): 2112 (*N*₃); ¹H NMR (CDCl₃, 400 MHz): δ 1.12 (s, t-Bu, 9H), 1.13 (d, J 6.0 Hz, H-6, 3H), 2.32 (br s, 4-OH, 1H), 3.10 (m, H-5, 1H), 3.23 (dd, J 3.6 Hz, 10.0 Hz, H-3, 1H), 3.62 (br s, H-4, 1H),

3.67 (dd, *J* 8.0 Hz, 10.0 Hz, H-2, 1H), 4.29 (d, *J* 8 Hz, H-1, 1H), 4.82 (br s, ArC H_2 , 2H), 7.33–7.51 (m, Ar, 9H), 7.70–7.85 (m, Ar, 8H); ¹³C NMR (CDCl₃, 100 MHz): δ 16.03, 19.23, 26.87, 65.25, 68.21, 70.01, 72.01, 79.52, 96.55, 125.6, 126.08, 126.19, 126.77, 127.19, 127.39, 127.63, 127.82, 128.4, 129.55, 129.66, 132.82, 133.02, 133.04, 133.14, 134.58, 35.82, 135.93; MALDI-TOF MS: [M+Na]⁺ calcd for C₃₃H₃₇N₃O₄Si-Na, 590.24; found, 590.58; HRMS ESI-TOF: [M+Na]⁺ calcd for C₃₃H₃₇N₃O₄Si-Na, 590.2451.

1.7. *tert*-Butyldiphenylsilyl 2,4-diazido-2,4,6-trideoxy-3-O-naphthylmethyl-β-D-glucopyranoside (12)

To a solution of compound 10 (1.33 g, 2.34 mmol) in dry CH₂Cl₂ (15 mL) at 0 °C was added anhydrous pyridine (470 µL, 5.86 mmol) and trifluoromethanesulfonic anhydride (590 µL, 3.51 mmol). The solution was stirred at the same temperature under Ar atmosphere for 1.5 h. The reaction was monitored by TLC (3:1 hexane-EtOAc), which showed a faster moving product ($R_{\rm f}$ (0.75) and the absence of starting materials. Ice chips were added, and the mixture was extracted with CH₂Cl₂. The organic layer was washed with H₂O, NaHCO₃, and brine, followed by drying over Na₂SO₄. It was concentrated to give the crude triflate 11 as a light yellow oil, which was immediately dissolved in anhydrous N,Ndimethylformamide (10 mL) and treated with NaN₃ (0.763 g, 11.7 mmol) at ambient temperature under argon atmosphere. After 3 h, TLC (6:1 hexane-EtOAc) revealed a single faster moving product ($R_{\rm f}$ 0.75). The reaction mixture was diluted with EtOAc and washed with water and brine. The organic phase was dried over Na₂SO₄, concentrated, and purified by silica gel column chromatography (8:1 hexane-EtOAc) to provide 12 as a pale-yellow semisolid product (1.26 g, 91%): $[\alpha]_{D}^{24}$ +30.27 (c 0.30, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz): δ 1.09 (d, J 6.0 Hz, H-6, 3H), 1.10 (s, t-Bu, 9H), 2.79 (m, H-5, 1H), 3.09 (t, J 9.6 Hz, H-4, 1H), 3.17 (t, J 9.6 Hz, H-3, 1H), 3.46 (dd, J 8.0, 9.2 Hz, H-2, 1H), 4.33 (d, J 7.6 Hz, H-1, 1H), 4.91 and 5.00 (2d, J 11.0 Hz, ArCH₂, each 1H), 7.32-7.52 (m, Ar, 9H), 7.66-7.69 (m, Ar, 4H), 7.80–7.84 (m, Ar, 4H); ¹³C NMR (CDCl₃, 100 MHz): δ 18.20, 19.28, 26.93, 67.83, 69.09, 70.51, 75.41, 81.39, 96.47, 125.90, 125.95, 126.01, 127.12, 127.42, 127.54, 127.89, 128.09, 129.62, 129.77, 132.47, 132.95, 132.97, 133.11, 134.65, 135.68, 135.74; MALDI-TOF MS: $[M+Na]^+$ calcd for C₃₃H₃₆N₆O₃SiNa, 615.25; found, HRMS ESI-TOF: $[M+Na]^+$ calcd for 615.34: C₃₃H₃₆N₆O₃SiNa, 615.2518; found, 615.2516.

1.8. *tert*-Butyldiphenylsilyl 2,4-diazido-2,4,6-trideoxy-β-D-glucopyranoside (5)

To a mixture of compound 12 (1.20 g, 2.03 mmol), CH_2Cl_2 (15 mL), and H_2O (1.5 mL) was added 2,3-di-

chloro-5,6-dicyano-1,4-benzoquinone (DDO, 0.552 g, 2.43 mmol) at room temperature under Ar atmosphere. The mixture was stirred for 15 h. TLC (25:1 hexane-EtOAc) showed a slower moving spot ($R_{\rm f}$ 0.20). The reaction was quenched with ascorbic acid-citric acid buffer (1.5 g of L-ascorbic acid, 1.8 g of citric acid monohydrate, and 1.38 g of NaOH in 150 mL of H₂O) and extracted with EtOAc. The combined organic layers were washed with satd aq NaHCO₃ and brine and dried over Na₂SO₄. The dried organic phase was concentrated and purified by silica gel column chromatography (25:1 hexane-EtOAc) to afford compound 5 as a white solid (0.916 g, quant): mp 76–78 °C; $[\alpha]_D^{25}$ +12.48 (*c* 1.00, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz): δ 1.08 (d, *J* 6.0 Hz, H-6, 3H), 1.10 (s, t-Bu, 9H), 2.53 (d, J 9.6 Hz, 3-OH, 1H), 2.81 (qd, J 6.0, 10.0 Hz, H-5), 3.03 (t, J 9.6 Hz, H-4, 1H), 3.25 (dt, J 3.6, 9.4 Hz, H-3, 1H), 3.34 (dd, J 7.6, 9.6 Hz, H-2, 1H), 4.34 (d, J 7.6 Hz, H-1, 1H), 7.32-7.42 (m, Ar, 6H), 7.65-7.69 (m, Ar, 4H); ¹³C NMR (CDCl₃, 100 MHz): δ 18.00, 19.17, 26.86, 67.57, 69.14, 70.61, 74.13, 96.47, 127.27, 127.49, 129.71, 129.88, 132.49, 132.93, 135.74, 135.82; MAL-DI-TOF MS: $[M+Na]^+$ calcd for $C_{22}H_{28}N_6O_3SiNa$, 475.18; found, 475.36. Anal. Calcd for C₂₂H₂₈N₆O₃Si: C, 58.38; H, 6.24; N, 18.57. Found: C, 58.22; H, 6.12; N, 18.48.

1.9. *tert*-Butyldiphenylsilyl 2,4-diacetamido-2,4,6-trideoxy-β-D-glucopyranoside (14)

Compound 5 (75.0 mg, 0.166 mmol) was dissolved in dry MeOH and Pd(OH)₂/C (20 wt %) (6 mg) was added to the solution (Caution! Extreme fire hazard!). The mixture was stirred under a hydrogen atmosphere for 4 h. Monitoring of the reaction mixture by TLC (3:1 CHCl₃–MeOH) showed a polar spot ($R_f 0.05$) that gave a purple color with ninhydrin. The reaction mixture was filtered and the filtrate was treated with AC₂O (0.30 mL, 3.1 mmol). After 10 min, TLC (3:1 CHCl₃-MeOH) revealed a faster moving product ($R_{\rm f}$ 0.65). The reaction mixture was concentrated and dried under vacuum overnight to afford the title compound as a white solid (79 mg, 98%): mp 204–205 °C; $[\alpha]_{\rm D}^{27}$ –14.32 (c 1.00, CH₃OH); ¹H NMR (CD₃OD, 400 MHz): δ 1.05 (d, J 6.0 Hz, H-6, 3H), 1.07 (s, t-Bu, 9H), 1.93 (s, CH₃CO, 3H), 1.95 (s, CH₃CO, 3H), 3.06 (qd, J 6.0, 10.0 Hz, H-5), 3.43 (t, H-4, J 10.0 Hz, 1H), 3.50 (t, J 10.0 Hz, H-3, 1H), 3.78 (dd, J 8.4, 10.4 Hz, H-2, 1H), 4.55 (d, J 8.4 Hz, H-1, 1H), 7.34-7.44 (m, Ar, 6H), 7.66-7.72 (m, Ar, 4H); ¹³C NMR (CD₃OD, 100 MHz): δ 18.20, 20.04, 22.87, 23.20, 27.36, 59.09, 60.21, 72.01, 72.10, 97.23, 128.27, 128.48, 130.74, 130.78, 134.38, 134.41, 136.86, 137.05, 173.41, 173.49; MALDI-TOF MS: $[M+Na]^+$ calcd for C₂₆H₃₆N₂O₅SiNa, 507.23; found, 507.28; HRMS ESI-TOF: $[M+Na]^+$ calcd for C₂₆H₃₆N₂O₅SiNa, 507.2291; found, 507.2292. Anal.

Calcd for $C_{26}H_{36}N_2O_5Si$: C, 64.43; H, 7.49; N, 5.78. Found: C, 64.74; H, 7.22; N, 5.66.

1.10. 2,4-Diacetamido-2,4,6-trideoxy-D-glucopyranose (4)

To a solution of compound 14 (33.0 mg, 0.068 mmol) in dry MeOH (5 mL) was added NH₄F (13 mg, 0.34 mmol) under Ar atmosphere at ambient temperature. The resultant mixture was stirred for 10 h at room temperature and then 4 h at 40 °C. TLC (2:1 CHCl₃-MeOH) indicated the completeness of the reaction. Silica gel (300 mg) was added to the reaction mixture, and the solvent was removed under reduced pressure. The dried silica gel was transferred to a silica column and eluted with 3:1 CHCl₃-MeOH. Concentration of the proper fraction gave the title compound as a white solid (15.0 mg, 90%): mp 259–261 °C, dec (lit.⁴ mp 262–264 °C, dec); $[\alpha]_{D}^{26}$ -144.74 (c 1.00, H₂O); ¹H NMR (D₂O, 400 MHz): (α anomer, major), δ 1.03 (d, J 6.4 Hz, H-6, 3H), 1.88 (s, CH₃CO, 3H), 1.89 (s, CH₃CO, 3H), 3.48 (t, J 10.0 Hz, H-4, 1H), 3.61 (t, J 10.8 Hz, H-3, 1H), 3.79 (dd, J 3.6, 10.8 Hz, H-2, 1H), 3.85 (qd, J 6.4, 10.0 Hz, H-5, 1H), 5.04 (d, J 3.6 Hz, H-1, 1H); ¹³C NMR (D₂O, 100 MHz): δ 17.65, 22.63, 22.86, 22.87, 22.90, 55.29, 57.68, 58.02, 67.25, 69.11, 71.67, 72.36, 91.28, 95.22, 174.85, 174.89, 174.97, 175.11; MALDI-TOF MS: $[M+Na]^+$ calcd for $C_{10}H_{18}N_2O_5Na$, 269.11; found, 268.88; HRMS ESI-TOF: [M+Na]⁺ calcd for C₁₀H₁₈N₂O₅Na, 269.1105; found, 269.1113. ¹H NMR (D₂O, 400 MHz): (β anomer, minor), δ 1.06 (d, J 6.0 Hz, H-6, 3H), 1.96 (s, CH₃CO, 3H), 1.97 (s, CH₃CO, 3H), 3.40–3.60 (m, H-2, 3, 4, 5, 4H), 4.54 (d, J 8.8 Hz, H-1, 1H).

1.11. *N*-Allyloxycarbonyl 1-amino-2,4-diacetamido-2,4,6trideoxy-β-D-glucopyranose (15)

To a solution of 2,4-diacetamido-2,4,6-trideoxy-β-D-glucopyranose (4) (20.0 mg, 0.081 mmol) in H₂O was added enough amount of solid NH4HCO3 to make the solution satd. It was stirred at 45 °C for 60 h. TLC (1:1 CHCl₃-MeOH) revealed a single slower moving ($R_f 0.15$) product. Water was added and evaporated in vacuo twice. The product was lyophilized, the white crude solid was dissolved in 10:1 dioxane-water. To the solution NaH- CO_3 (50.0 mg, 0.59 mmol) was added, and the mixture was stirred at 0 °C for 0.5 h. Allyl chloroformate (65 µL, 0.61 mmol) was then added dropwise. The reaction mixture was stirred for 13 h at ice-bath to room temperature. TLC analysis (3:1 CHCl₃-MeOH) indicated the formation of a product ($R_{\rm f}$ 0.55). Small pieces of ice were added, and the mixture was concentrated under reduced pressure. Concentrated crude was purified by silica gel column chromatography (3:1 CHCl₃-MeOH) to give compound 15 as an off-white solid (19.0 mg, 71%): mp 248–259 °C (dec); $[\alpha]_D^{25}$ –46.56 (c 0.50, H₂O); ¹H NMR (CD₃OD, 400 MHz): δ 1.17 (d, J 6.0 Hz, H-6, 3H), 1.96 (s, CH₃CO, 3H), 1.97 (s, CH₃CO, 3H), 3.46–3.54 (m, H-3, H-4, H-5, 3H), 3.71 (dd, J 10.0, 11.2 Hz, H-2, 1H), 4.54 (d, J 5.2 Hz, CH_AH_BCHCH₂–, 2H), 4.73 (d, J 10.0 Hz, H-1, 1H), 5.18 (dd, J 1.2, 6.4 Hz, CH_AH_B=CHCH₂–, 1H), 5.28 (dd, J 1.2, 17.2 Hz, CH_AH_B=CHCH₂–, 1H), 5.91 (m, CH_AH_B= CHCH₂–, 1H); ¹³C NMR (CD₃OD, 100 MHz): δ 18.45, 22.81, 22.94, 56.80, 58.88, 66.63, 73.79, 82.66, 117.55, 133.83, 157.88, 173.43, 174.10; MALDI-TOF MS: [M+Na]⁺ calcd for C₁₄H₂₃N₃O₆Na, 352.14; found, 352.39; HRMS ESI-TOF: [M+Na]⁺ calcd for C₁₄H₂₃N₃O₆Na, 352.1496; found, 352.1485.

1.12. N^{α} -Fluoren-9-ylmethyloxycarbonyl- N^{γ} -(2,4-diacetamido-2,4,6-trideoxy-β-D-glucopyranosyl)-L-asparagine *t*-butyl ester (2)

A mixture of compound 15 (3.0 mg, 0.009 mmol), Na- HCO_3 (8 mg, 0.1 mmol), $FmocAsp(F)O^tBu$ (6.0 mg, 0.15 mmol), and PhSiH₃ (10 µL, 0.081 mmol) in 10:1 dioxane-water was treated with $Pd(PPh_3)_4$ (1 mg, 0.9 µmol) at 0 °C. The stirring was continued at ambient temperature for 21 h. Monitoring of the reaction by TLC (4:1 CHCl₃-MeOH) indicated the formation of a UV-active product ($R_f 0.60$). The mixture was filtered, and the filtrate was concentrated. The concentrated mass was subjected to preparative thin layer chromatography (6:1 CHCl₃-MeOH) to provide compound 2 (5.0 mg, 86%) as a white solid: mp 233–234 °C (dec); $[\alpha]_D^{24}$ 14.0 (c 0.15, CHCl₃–CH₃OH, 1:1); ¹H NMR (CDCl₃– CD₃OD, 1:1, 400 MHz): δ 1.17 (d, J 6.0 Hz, H-6, 3H), 1.42 (s, t-Bu, 9H), 1.92 (s, CH₃CO, 3H), 1.97 (s, CH₃CO, 3H), 2.70 (dd, J 6.4, 6.8 Hz, Asn-CH₂, 2H), 3.40-3.47 (m, H-3, H-5, 2H), 3.55 (dd, J 9.6, 10.0 Hz, H-4, 1H), 3.73 (dd, J 9.6, 10.0 Hz, H-2, 1H), 4.19 (br t, J 6.4 Hz, FmocCH, 1H), 4.28 (dd, J 7.2, 10.4 Hz, FmocCH_AH_B, 1H), 4.41 (dd, J 7.2, 10.4 Hz, FmocCH_AH_B, 1H), 4.46 (t, J 5.6 Hz, Asn-\alpha CH), 4.86 (d, J 9.6 Hz, H-1, 1H), 7.26-7.38 (m, Fmoc, 4H), 7.60 (d, J 7.2 Hz, Fmoc, 2H), 7.74 (d, J 7.6 Hz, Fmoc, 2H); ¹³C NMR (CDCl₃-CD₃OD, 1:1, 100 MHz): *δ* 18.29, 22.89, 22.92, 28.14, 38.16, 47.66, 51.77, 56.08, 58.00, 67.52, 73.05, 73.32, 78.21, 79.48, 82.69, 120.22, 125.37, 125.42, 127.38, 128.03, 141.59, 141.61, 141.61, 144.06, 144.15, 157.15, 170.77, 171.63, 172.84, 173.78; MALDI-TOF MS: $[M+Na]^+$ calcd for C₃₃H₄₂N₄O₉Na, 661.28; found, 661.21; HRMS ESI-TOF: $[M+Na]^+$ calcd for C₃₃H₄₂N₄O₉Na, 661.2819; found, 661.2850.

Acknowledgments

This work was partly supported by Grant-in-Aid for Creative Scientific Research from the Japan Society for the Promotion of Science (Grant No. 17GS0420) and the 'Ecomolecular Science' and 'Chemical Biology' programs of RIKEN. We also thank Ms. A. Takahashi for technical assistance.

References

- Wacker, M.; Linton, D.; Hitchen, P. G.; Nita-Lazar, M.; Haslam, S. M.; North, S. J.; Panico, M.; Morris, H. R.; Dell, A.; Wren, B. W.; Aebi, M. *Science* 2002, 298, 1790– 1793.
- Young, N. M.; Brisson, J.-R.; Kelly, J.; Watson, D. C.; Tessier, L.; Lanthier, P. H.; Jarrell, H. C.; Cadotte, N.; Michael, F. St.; Aberg, E.; Szymanski, C. M. J. Biol. Chem. 2002, 277, 42530–42539.
- Schäffer, C.; Scherf, T.; Christian, R.; Kosma, P.; Zayni, S.; Messner, P.; Nathan, S. *Eur. J. Biochem.* 2001, 268, 857–864.
- 4. Sharon, N.; Jeanloz, R. W. J. Biol. Chem. 1960, 235, 1-5.
- (a) Liav, A.; Hildesheim, J.; Zehavi, U.; Sharon, N. Carbohydr. Res. 1974, 33, 217–227; (b) Bundle, D.; Josephson, S. Can. J. Chem. 1980, 58, 2679–2685.
- Chemoenzymatic syntheses of undecaprenylpyrophosphate-linked glycans have been reported. (a) Weerapana, E.; Glover, K. J.; Chen, M. M.; Imperiali, B. J. Am. Chem. Soc. 2005, 127, 13766–13767; (b) Glover, K. J.; Weerapana, E.; Imperiali, B. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 14255–14259.
- (a) Medgeyes, A.; Farkas, E.; Lipták, A.; Pozsgay, V. *Tetrahedron* 1997, 53, 4159–4178; (b) Hermans, J. P. G.; Elie, C. J. J.; van der Marel, G. A.; van Boom, J. H. J. *Carbohydr. Chem.* 1987, 6, 451–462.
- 8. Dwek, R. A. Chem. Rev. 1996, 96, 683-720.
- Essentials in Glyochiology; Varki, A., Cummings, R., Esko, J., Freeze, H., Hart, G., Marth, J., Eds.; Cold Spring Harbor Laboratory Press: New York, 1999.
- (a) Benz, I.; Schmidt, M. A. Mol. Microbiol. 2002, 45, 267–276; (b) Kornfeld, R.; Kornfeld, S. Annu. Rev. Biochem. 1985, 54, 631–664; (c) Szymanski, C. M.; Yao, R.; Ewing, C. P.; Trust, T. J.; Guerry, P. Mol. Microbiol. 1999, 32, 1022–1030; (d) Linton, D.; Allan, E.; Karlyshev, A. V.; Cronshaw, A. D.; Wren, B. W. Mol. Microbiol. 2002, 43, 497–508; (e) Schmidt, M. A.; Riley, L. W.; Benz, I. Trends Microbiol. 2003, 11, 554–561.
- Szymanski, C. M.; Logan, S. M.; Linton, D.; Wren, B. W. Trends Microbiol. 2003, 11, 233–238.
- Chemical synthesis of Glc₁GalNAc₅ has been completed very recently. Ishiwata, A.; Ohta, S.; Ito, Y. *Carbohydr. Res.* in press, doi:10.1016/j.carres.2006.03.011.
- Crich, D.; Dudkin, V. J. Am. Chem. Soc. 2001, 123, 6189– 6825.
- 14. Nakahara, Y.; Iijima, H.; Shibayama, S.; Ogawa, T. Carbohydr. Res. 1991, 216, 211–225.
- (a) Gaunt, M. J.; Yu, J.; Spencer, J. B. J. Org. Chem. 1998, 63, 4172–4173; (b) Gaunt, M. J.; Boschetti, C. E.; Yu, J.; Spencer, J. B. Tetrahedron Lett. 1999, 40, 1803–1806; (c) Xia, J.; Abbas, S. A.; Locke, R. D.; Piskorz, C. F.; Alderfer, J. L.; Matta, K. L. Tetrahedron Lett. 2000, 41, 169–173; (d) Liao, W.; Locke, R. D.; Matta, K. L. Chem. Commun. (Cambridge) 2000, 369–370; (e) Lipták, A.; Borbás, A.; Jánossy, L.; Szilágyi, L. Tetrahedron Lett. 2000, 41, 4949–4953; (f) Csávás, M.; Borbás, A.; Szilágyi, L.; Lipták, A. Synlett 2002, 887–890.
- Smith, M.; Rammler, D. H.; Goldberg, I. H.; Khorana, H. G. J. Am. Chem. Soc. 1962, 84, 430–440.

- 17. Millar, J. G.; Underhill, E. W. J. Org. Chem. 1986, 51, 4726–4728.
- Hutchins, R. O.; Kandasamy, D.; Maryanoff, A.; Masilamani, D.; Maryanoff, B. E. J. Org. Chem. 1977, 42, 82–91.
- 19. Kuzuhara, H.; Sato, K.; Emoto, S. Carbohydr. Res. 1975, 43, 211–225.
- Bruce, I.; Fleet, G. W. J.; Girdhar, A.; Haraldsson, M.; Peach, J. M.; Watkin, D. J. *Tetrahedron* 1990, 46, 19–32.
- 21. Zhang, W.; Robins, M. J. Tetrahedron Lett. 1992, 33, 1177–1180.
- (a) Likhosherstov, L. M.; Novikova, O. S.; Derevitskaja, V. A.; Kochetkov, N. K. *Carbohydr. Res.* 1986, 146, c1– c5; (b) Lubineau, A.; Augé, J.; Droillat, B. *Carbohydr. Res.* 1995, 266, 211–219.
- Ishiwata, A.; Takatani, M.; Nakahara, Y.; Ito, Y. Synlett 2002, 634–636.