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ABSTRACT:  In this study, the coupling of 2-phenylpyridine derivatives and potassium cyanate 

through C-H bond functionalization in the presence of a copper salt is developed for the first 

time. By this protocol, various heteroarylated acetanilide derivatives are synthesized in good 

yields. 2-phenylpyridines containing electron-donating and electron-withdrawing groups appear 

to be well tolerated by this transformation. 

 

    Aryl pyridine derivatives are important building blocks in organic synthesis.
1
 They have found 

widespread application in natural products, herbicides, surfactants, insecticides, pharmaceuticals 

and biologically active compounds.
2
 The C–N bond forming reactions through C-H 

functionalization have emerged as one of the most important strategy  in synthetic chemistry due 

to elimination of prefunctionalization step of the coupling partners.
3 

Buchwald and co-workers 

developed tandem directed C−H functionalization and amide arylation for the efficient 
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construction of substituted carbazoles as the pioneering study in this area.
4
 Based on Buchwald’s 

study, Inamoto reported a palladium-catalyzed C−H activation/intramolecular amination reaction 

to obtain 3-aryl/alkylindazoles.
5 

In 2008, the Pd(II)-catalyzed intramolecular amination of sp
2
 

and sp
3
 C−H bonds was developed by Yu’s group.

6
  

Direct C-H bond amidation reaction has also been investigated
7
 and nitrogen sources such as 

aroyloxy- or acyloxycarbamates, 1,4,2-dioxazol-5-ones, N-hydroxycarbamates, dioxazolones 

have been used as amidation reagents. The use of cyanate salts as a coupling partner to form C-N 

bond have been rarely reported.
8
 We reported the copper-catalyzed coupling of arylboronic acids 

with potassium cyanate as a new approach to the synthesis of aryl carbamates in 2011 as the first 

example of the use of potassium cyanate in the Chan-Lam-Evans type coupling reaction.
8a

 

(Scheme 1, eq. 1) The reaction was performed in air, at room temperature and, importantly, no 

base, ligand, or additive was required. Since then. the use of cyanate salts in metal catalyzed C-N 

bond forming reactions has been investigated and improved by others (Scheme 1). In 2012, 

Zhang and Ma reported copper-catalyzed coupling of aryl halides with potassium cyanate as 

affording the corresponding aryl carbamates.
8b

 (Scheme 1, eq. 3) An efficient protocol for the 

synthesis of unsymmetrical ureas that proceeds via palladium-catalyzed cross-coupling of aryl 

chlorides and triflates with sodium cyanate was reported by Buchwald’s group in the same year.
 

8c
 (Scheme 1, eq. 2) A palladium-catalyzed cross-coupling reaction of aryl chlorides and triflates 

with sodium cyanate in the presence of alcohols as the nucleophiles was reported by the same 

group in 2013.
8d

 (Scheme 1, eq. 4) Synthesis of aryl thiocyanates via copper-catalyzed aerobic 

oxidative cross-coupling between arylboronic acids and KSCN was reported by Hu in the same 

year.
8e

 (Scheme 1, eq. 5). Assembly of N,N-disubstituted-N-arylureas via a copper-catalyzed 

one-pot three-component reaction of aryl bromides, potassium cyanate, and secondary amines 
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was also reported in the same year.
8f 

(Scheme 1, eq. 6) Synthesis of acyl carbamates via four 

component Pd-catalyzed carbonylative coupling of aryl halides, potassium cyanate, and alcohols 

was reported by Skrydstrup and Lindhardt in 2015.
8g

 (Scheme 1, eq. 7).  
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Scheme 1. Synthetic strategies using cyanate salts. 
 

 

The use of prefunctionalized substrates such as arylboronic acids, halides and triflates as 

coupling partners along with cyanate salts is essential in all the previous reports. To the best of 

our knowledge, direct C-H functionalization through C-N bond formation using a cyanate salt as 

the coupling partner has not been reported yet. As a continuation of our interest in the field of C-
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H functionalization reactions,
9
 we herein report the first example of a chelation-assisted, copper-

mediated, direct and regioselective acetylamination of C-H bonds of 2-arylpyridines using a 

cyanate salt as a coupling partner. We began our study with the selection of 2-phenylpyridine 

(1a) and potassium cyanate as a model (Table 1). Various conditions were screened to optimize 

the reaction condition. After preliminary screening of solvents, the results revealed that toluene 

was the best choice (Table 1, entries 1-4), which was then used to optimize the reaction 

conditions. 

Table 1. Optimization of the Reaction Conditions.
a 

 

Entry Copper-salt (equiv.) co-oxidant
b
 Solvent Additive 

Temp 

(°C) 
Yield (%) 

1 Cu(OAc)2.H2O (2) air DMF PivOH 125 0 

2 Cu(OAc)2.H2O (2) air PhCl PivOH 125 11 

3 Cu(OAc)2.H2O (2) air toluene PivOH 125 43 

4 Cu(OAc)2.H2O (2) air p-xylene PivOH 125 23 

5 CuI (2) air toluene PivOH 125 0 

6 CuBr2 (2) air toluene PivOH 125 0 

7 CuBr (2) air toluene PivOH 125 0 

8 CuO (2) air toluene PivOH 125 0 

9 Cu(OAc)2.H2O (3) air toluene PivOH 125 38 

10 Cu(OAc)2.H2O (1) air toluene PivOH 125 32 

11 Cu(OAc)2.H2O (2) air toluene PivOH 100 trace 

12 Cu(OAc)2.H2O (2) air toluene PivOH 140 51 

13 Cu(OAc)2.H2O (2) Na2S2O8 toluene PivOH 140 65
 

14 Cu(OAc)2.H2O (2) Ag2CO3 toluene PivOH 140 23
 

15 Cu(OAc)2.H2O (2) K2S2O8 toluene PivOH 140 78
 

16 Cu(OAc)2.H2O (2) - toluene PivOH 140 0
c 

17 Cu(OAc)2.H2O (2) K2S2O8 toluene TFA 140 26 

18 Cu(OAc)2.H2O (2) K2S2O8 toluene AcOH 140 14 

19 Cu(OAc)2.H2O (2) K2S2O8 toluene - 140 24 

a
The reaction was performed on a 0.25 mmol scale for 20 hours. 

b
 Co-oxidant : 1.5 equiv.  

c
 Under an argon atmosphere. 
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The control experiment showed that copper acetate is crucial for this reaction and the desired 

product 2a was not obtained using other copper salts (Table 1, entries 5-8). The amount of the 

copper acetate was also examined and the best result was obtained with 2.0 equiv. of this salt 

(Table 1, entries 3, 9 and 10). Unfortunately, the reaction was not successful with the catalytic 

amounts of the copper salt (please see the supporting information).The yield of the reaction was 

satisfyingly increased with the increase of the reaction temperature from 100 to 140 °C (Table 1, 

entries 3, 11 and 12). To our delight, when the reaction was performed under 1.5 equiv of 

potassium persulfate as a co-oxidant with the combination of air atmosphere at 140°C, the yield 

of 2a was increased to 78% (Table 1, entry 15). It is worth noting that the reaction was 

suppressed under an argon atmosphere (Table 1, entry 16). 
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Table 2. substrate scope
a 
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a
Reaction conditions: 2-phenylpyridines (0.25 mmol), Cu(OAc)2.H2O (2.0 equiv), PivOH (1.0 
equiv), K2S2O8 (1.5 equiv) in toluene at 140 °C for 20 h. 

 

Finally, the results showed that pivalic acid was the best additive to obtain the desired products 

(Table 1, entries 15, 17 and 18). The best yield was achieved under the following optimal 

conditions: 2.0 equiv. of Cu(OAc)2.H2O, 1.5 equiv. of K2S2O8 and 1.0 equiv. of PivOH in 

toluene (2.0 ml) under an air atmosphere at 140 °C for 20 h (Table 1, entry 15). The yield of the 

reaction was not improved by increasing the reaction time beyond 20 h. Having identified the 

optimized reaction conditions, we next examined the scope of this reaction (Table 2). It could be 

seen that electron-donating substituents on the aryl ring of 2-phenylpyridines were more 

compatible with this protocol and gave a higher yield relative to the substrates containing 

electron-withdrawing substituents such as 2d and 2o. It can also be observed from Table 2 that 

the alkyl group at the para position of the phenyl ring provided the desired product in higher 

yield, whereas meta-alkyl groups somehow decreased the reactivity of the reaction (Table 2, 2b, 

2c, 2e and 2i). Gratifyingly, we have been able to isolate the reaction intermediate, during the 

investigation of the reaction scope, to gain further insight into the reaction mechanism. When the 

reaction of 2-(4-methylphenyl)-4-phenylpyridine was suppressed after 10 hours, 2-(2-isocyanato-

4-methylphenyl)-4-phenylpyridine (3) was isolated from the reaction mixture. (Scheme 2, 

equation 1). Surprisingly, when the reaction of 2-(3-methoxyphenyl)pyridine was investigated 

under the optimized conditions the reaction did not lead to the desired acetylamination product 

and 2-(2-isocyanato-5-methoxyphenyl)-4-phenylpyridine (4)  was isolated as the major product. 
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On the basis of the above results and the previous reports, a plausible mechanism for the reaction 

is proposed in Scheme 3.
10

 Initially, copper acetate is coordinated to 2-phenylpyridine to give 

intermediate A. Subsequent ligand exchange between acetate and the isocyanate anion gives 

intermediate B. A single electron transfer (SET) from the aryl ring to the coordinated Cu(II) 

leads to the formation of a radical cation intermediate C in the next step. Subsequent trapping of 

the radical cation part of the substrate with the nearby isocyanate in the presence of the oxidants 

accounts for the ortho regioselection and gives the cationic species D. Deprotonation of the 

intermediate D affords the isocyanate derivative E which in the presence of copper acetate and 

pivalic acid leads to the formation of F. Decarboxylation of F under the reaction conditions gives 

the product G.
11

 

 

 

Scheme 2.  Exploring the mechanistic study. 
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In summary, we have developed a one-pot, efficient and practical copper-mediated direct 

acetylamination of C-H bonds of 2-phenylpyridine derivatives by potassium cyanate for the first 

time to access a variety of new heteroarylated acetanilide compounds. K2S2O8 and pivalic acid, 

which serve as co-oxidant and additive respectively, were of crucial importance and the reaction 

led to considerably lower yields in the absence of each. The regioselectivity of the reaction was 

also very high and all the products were formed in the ortho position of the phenyl ring.   

 

 

Scheme 3.  Plausible reaction mechanism 
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EXPERIMENTAL SECTION 

General Information. Solvents, Cu(OAc)2.H2O, K2S2O8, , KOCN, PivOH and toluene were 

purchased from the market. 2-Arylpyridine derivatives were synthesized via Suzuki-Miyaura 

coupling of the corresponding aryl boronic acids with 2-bromopyridine and 2-chloropyrimidine, 

respectively.
12 

Other reagents were purchased from commercial distributors and used without 

further purification. Analytical thin layer chromatography (TLC) was performed on precoated 

silica gel 60 F254 plates. The products were purified by preparative column chromatography on 

silica gel (0.063-0.200 mm). 
1
H and 

13
C-NMR Spectra: were recorded on 500, 400 or 300 MHz 

spectrometers in CDCl3; δ in ppm, J in Hz. High resolution mass spectra were recorded with a 

Q-TOF mass spectrometer, equipped with an ESI source. 

General Procedure.  

A 10 mL microwave vial was charged with 2-phenylpyridines (1.0 equiv), Cu(OAc)2.H2O (2 

equiv), K2S2O8 (1.5 equiv), PivOH (1.0 equiv) and toluene (2 ml). The vial was then sealed and 

immersed in an oil bath, which was preheated at 140 °C, for 20 h. After this time the reaction 

mixture was cooled to room temperature and then diluted with DCM and filtered. The residue was 

then purified by using column chromatography (n-hexane/EtOAc, 1/1) to yield the desired 

products.  

N-(2-(pyridin-2-yl)phenyl)acetamide (2a).
8a,b

 The general procedure was followed using 2-

phenylpyridine (0.25 mmol, 39 mg), K2S2O8 (102 mg, 0.38 mmol), KOCN (40 mg, 0.50 mmol), 

Cu(OAc)2.H2O (100 mg, 0.50 mmol), PivOH (25 mg, 0.25 mmol), and toluene (2 mL). 

Purification by column chromatography (silica gel, n-hexane/ EtOAc 1:1)  gave the final product 

2a (41 mg, 78% yield) as a brown oil;  1
HNMR (500 MHz, , CDCl3) δ 11.99 (s, 1H), 8.66 (s, 

1H), 8.49 (d, J = 8.2 Hz, 1H), 7.88 (t, J = 7 Hz, 1H), 7.75 (d, J = 8 Hz, 1H), 7.64 (d, J = 8 Hz, 

1H), 7.43 (t, J = 8 Hz, 1H), 7.32 (t, J = 6.3 Hz, 1H), 7.19 (t, J = 7.5 Hz, 1H), 2.186 (s, 3H)  
13

CNMR (125 MHz, CDCl3) δ 168.6, 158.2, 147.2, 137.9 137.5, 130.1, 128.9, 125.7, 123.6, 

123.3, 122.1, 122.0, 25.1; IR(Film) 3178, 3059, 1686, 1589, 1529, 1435, 1311, 756 cm
-1 

;  

HRMS (EI) m/z calculated for C13H12ON2 (M+): 212.0950 found: 212.0950.  
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N-(5-methyl-2-(pyridin-2-yl)phenyl)acetamide (2b). The general procedure was followed 

using 2-(p-tolyl)pyridine (0.25 mmol, 42 mg), K2S2O8 (102 mg, 0.38 mmol), KOCN (40 mg, 

0.50 mmol), Cu(OAc)2.H2O (100 mg, 0.50 mmol), PivOH (25 mg, 0.25 mmol), and toluene (2 

mL). Purification by column chromatography (silica gel, n-hexane/ EtOAc 1:1)  gave the final 

product 2b (47 mg, 83% yield) as a white solid; mp: 81 °C; 
1
HNMR (400 MHz, , CDCl3) δ 

12.03 (s, 1H), 8.60  (d, J = 4.4Hz, 1H), 8.29 (s, 1H), 7.83 (t, J = 7.8Hz, 1H), 7.70 (d, J = 8Hz, 

1H),  7.50 (d, J = 8 Hz, 1H), 7.26 (t, J = 3.4 Hz, 1H), 6.97 (d, J = 8 Hz, 1H), 2.36 (s, 3H), 2.15 

(s, 3H) ; 
13

CNMR (100 MHz, CDCl3) δ 168.7, 146.8, 140.7, 138.2, 137.2, 128.7, 124.6, 123.1, 

122.8, 121.7, 25.1, 21.6; IR(Film) 3055, 1680, 1585, 1539, 1471, 1419, 783; HRMS (EI) m/z 

calculated for C14H14ON2 (M+): 226.1106. found: 226.1112. 

N-(4-methyl-2-(pyridin-2-yl)phenyl)acetamide (2c). The general procedure was followed 

using 2-(m-tolyl)pyridine (0.25 mmol, 42 mg), K2S2O8 (102 mg, 0.38 mmol), KOCN (40 mg, 

0.50 mmol), Cu(OAc)2.H2O (100 mg, 0.50 mmol), PivOH (25 mg, 0.25 mmol), and toluene (2 

mL). Purification by column chromatography (silica gel, n-hexane/ EtOAc 1:1)  gave the final 

product 2c (42 mg, 74% yield) as a pale yellow oil; 
1
HNMR (400 MHz, , CDCl3) δ 11.74 (s, 

1H), 8.61 (d, J = 4.4 Hz, 1H), 8.30 (d, J = 8.4 Hz, 1H), 7.84 (t, J = 8 Hz, 1H), 7.71 (d, J = 8 Hz, 

1H), 7.39 (s, 1H), 7.27 (t, J = 6.2 Hz, 1H), 7.20 (d, J = 8.4Hz, 1H), 2.35 (s, 1H), 2.12 (s, 1H); 
13

CNMR (100 MHz, CDCl3) δ 168.5, 158.2, 147.2, 138.0, 134.8, 133.1, 130.8, 129.4, 125.9, 

123.3, 122.3, 121.9, 25.1, 21.0; IR(Film) 3244, 2972, 1720, 1684, 1593, 1522, 1413, 791; 

HRMS (EI) m/z calculated for C14H14ON2 (M+): 226.1106. found: 226.1109. 

N-(5-acetyl-2-(pyridin-2-yl)phenyl)acetamide (2d). The general procedure was followed using 

1-(4-(pyridine-2-yl)phenyl)ethan-1-one (0.25 mmol, 49 mg), K2S2O8 (102 mg, 0.38 mmol), 

KOCN (40 mg, 0.50 mmol), Cu(OAc)2.H2O (100 mg, 0.50 mmol), PivOH (25 mg, 0.25 mmol), 

and toluene (2 mL). Purification by column chromatography (silica gel, n-hexane/ EtOAc 1:1)  

gave the final product 2d (31 mg, 49% yield) as a yellow oil; mp: 99 °C; 1HNMR (300 MHz, , 

CDCl3) δ 12.19 (s, 1H), 9.15 (s, 1H), 8.66 (d, J = 4.2 Hz, 1H), 7.87 (td, J = 6.5 Hz & J = 1.8 Hz, 

1H), 7.79-7.70 (m, 3H), 7.34 (td, J = 6.2Hz & J = 1 Hz, 1H), 2.64 (s, 3H), 2.19 (s, 3H); 
13

CNMR (100 MHz, CDCl3) δ; 197.7, 169.1, 156.4, 146.6, 139.1, 138.3, 137.6, 131.9, 129.3, 

124.2, 123.6, 123.1 HRMS (EI) m/z calculated for C15H14O2N2 (M+): 254.1055. found: 

254.1060. 

N-(5-methyl-2-(4-phenylpyridin-2-yl)phenyl)acetamide(2e). The general procedure was 

followed using 4-phenyl-2-(p-tolyl)pyridine (0.25 mmol, 61 mg), K2S2O8 (102 mg, 0.38 mmol), 

KOCN (40 mg, 0.50 mmol), Cu(OAc)2.H2O (100 mg, 0.50 mmol), PivOH (25 mg, 0.25 mmol), 

and toluene (2 mL). Purification by column chromatography (silica gel, n-hexane/ EtOAc 1:1)  

gave the final product 2e (61 mg, 81% yield) as a yellow oil; 
1
HNMR (400 MHz, , CDCl3) δ 

11.35 (s, 1H), 8.69 (s, 1H), 7.95 (s, 1H), 7.71 (d, J = 6 Hz, 2H), 7.63 (s, 1H), 7.55 (m, 5H), 7.09 

(d, J = 8.1 Hz, 1H), 2.42 (s, 3H), 2.16 (s, 3H); 
13

CNMR (100 MHz, CDCl3) δ 169.3, 141.9, 

136.5, 130.9, 130.4, 130.1, 129.5, 129.4, 129.0, 128.8, 128.6, 128.1, 127.4, 126.1, 120.5, 23.7, 

21.6; IR(Film) 2927, 2864, 1720, 1591, 1539, 1470, 1417, 1379, 1238, 761, 700; HRMS (EI) 

m/z calculated for C20H18ON2 (M+): 302.1419. found: 302.1416.  
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N-(5-chloro-2-(4-phenylpyridin-2-yl)phenyl)acetamide (2f). The general procedure was 

followed using 2-(4-chlorophenyl)-4-phenylpyridine (0.25 mmol, 66 mg), K2S2O8 (102 mg, 0.38 

mmol), KOCN (40 mg, 0.50 mmol), Cu(OAc)2.H2O (100 mg, 0.50 mmol), PivOH (25 mg, 0.25 

mmol), and toluene (2 mL). Purification by column chromatography (silica gel, n-hexane/ 

EtOAc 1:1)  gave the final product 2f (38 mg, 47% yield) as a white solid; mp: 136 °C; 
1
HNMR 

(300 MHz, , CDCl3) δ 11.69 (s, 1H), 8.67 (d, J = 5.4 Hz, 1H), 8.38 (s, 1H), 7.91 (s 1H), 7.70-

7.67 (m, 2H), 7.60 (d, J = 8.4 Hz, 2H), 7.55-7.51 (m, 3H), 7.20 (d, J = 8.4 Hz, 1H), 2.16 (s, 3H); 
13

CNMR (75 MHz, CDCl3) δ 169.3, 145.1, 137.8, 130.6, 130.4, 129.5, 127.4, 125.2, 122.6, 

121.1, 24.5; HRMS (EI) m/z calculated for C19H15ON2Cl  (M+): 322.0873. found: 322.0876. 

N-(3-(pyridin-2-yl)biphenyl-4-yl)acetamide (2g). The general procedure was followed using 2-

(biphenyl-3-yl)pyridine (0.25 mmol, 58 mg), K2S2O8 (102 mg, 0.38 mmol), KOCN (40 mg, 0.50 

mmol), Cu(OAc)2.H2O (100 mg, 0.50 mmol), PivOH (25 mg, 0.25 mmol), and toluene (2 mL). 

Purification by column chromatography (silica gel, n-hexane/ EtOAc 1:1)  gave the final product 

2g (42 mg, 58% yield) as a yellow solid; mp: 144 °C; 1
HNMR (400 MHz, , CDCl3) δ 11.86 (s, 

1H), 8.66 (dd, J = 4.8Hz & J = 0.8 Hz, 1H), 8.50 (d, J = 8.8 Hz, 1H), 7.88 (td, J = 7.8 Hz & J = 

1.6 Hz, 1H), 7.82-7.79 (m, 2H), 7.64 (dd, J = 8.8 Hz & J = 2.2 Hz, 1H) 7.60-7.58 (m, 2H), 7.43 

(t, J = 7.2 Hz, 2H), 7.35-7.31 (m, 2H), 2.17 (s, 3H); 
13

CNMR (100 MHz, CDCl3) δ 168.7, 157.8, 

146.9, 140.3, 138.4, 136.7, 128.7, 127.7, 127.2, 126.8, 126.1, 123.6, 122.9, 122.2, 25.1; IR(Film) 

3236, 3051, 1681, 1587, 1506, 1442, 1392, 1294, 765, 596; HRMS (EI) m/z calculated for 

C19H16ON2 (M+): 288.1263. found: 288.1271. 

N-(5-chloro-2-(pyridin-2-yl)phenyl)acetamide(2h). The general procedure was followed using 

2-(4-chlorophenyl)pyridine (0.25 mmol, 47 mg), K2S2O8 (102 mg, 0.38 mmol), KOCN (40 mg, 

0.50 mmol), Cu(OAc)2.H2O (100 mg, 0.50 mmol), PivOH (25 mg, 0.25 mmol), and toluene (2 

mL). Purification by column chromatography (silica gel, n-hexane/ EtOAc 1:1)  gave the final 

product 2h (33 mg, 53% yield) as a white solid; mp: 127 °C; 
1
HNMR (300 MHz, , CDCl3) δ 

11.75 (s, 1H), 8.65 (d, J = 4.2 Hz, 1H), 8.39 (s, 1H), 7.96 (t, J = 7.5 Hz, 1H), 7.74 (d, J = 8.1 Hz, 

1H), 7.53 (d, J = 8.4 Hz, 1H), 7.40 (t, J = 6 Hz, 1H), 7.17 (dd, J = 8.4 Hz & J = 2.4 Hz, 1H), 2.14 

(s, 3H);
13

CNMR (75 MHz, CDCl3) δ 168.9, 145.9, 139.6, 138.2, 136.6, 130.0, 124.4, 124.0, 

123.3, 122.7, 24.8; IR(Film) 3417, 2925, 1685, 1587, 1523, 1469, 1367, 1278, 783, 665; HRMS 

(EI) m/z calculated for C13H11ON2Cl (M+): 246.0560. found: 246.0547. 

N-(4-ethyl-2-(pyridin-2-yl)phenyl)acetamide(2i). The general procedure was followed using 2-

(3ethylphenyl)pyridine (0.25 mmol, 46 mg), K2S2O8 (102 mg, 0.38 mmol), KOCN (40 mg, 0.50 

mmol), Cu(OAc)2.H2O (100 mg, 0.50 mmol), PivOH (25 mg, 0.25 mmol), and toluene (2 mL). 

Purification by column chromatography (silica gel, n-hexane/ EtOAc 1:1)  gave the final product 

2i (46 mg, 76% yield) as a yellow oil; 
1
HNMR (300 MHz, , CDCl3) δ 11.76 (s,1H), 8.61 (d, J = 

4.2 Hz, 1H), 8.33 (d, J = 8.4 Hz, 1H), 7.83 (td, J = 7.8 Hz, J = 1.8 Hz, 1H), 7.71 (d, J = 8.1 Hz, 

1H), 7.41 (d, J = 1.8 Hz, 1H), 7.27 (td, J = 3.7 Hz, J = 1.2 Hz, 1H), 7.21 (d, J = 1.8 Hz, 1H), 2.67 

(q, J = 6.0 Hz  , 2H), 2.12 (s,3H), 1.23 (t, J = 7.8 Hz,3H); 
13

CNMR (75 MHz, CDCl3) δ 168.5, 

158.3, 147.2, 139.5, 138.0, 135.0, 129.6, 128.3, 125.9, 123.3, 122.4, 121.9, 28.4, 25.0, 15.7; 

IR(Film) 3170, 2966, 1683, 1591, 1523, 1473, 1413, 1301, 790, 596; HRMS (EI) m/z calculated 

for C15H16ON2 (M+): 240.1263. found: 240.1253. 
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N-(4,5-dimethyl-2-(pyridin-2-yl)acetamide (2j). The general procedure was followed using 2-

(3,4-dimethylphenyl)pyridine (0.25 mmol, 46 mg), K2S2O8 (102 mg, 0.38 mmol), KOCN (40 

mg, 0.50 mmol), Cu(OAc)2.H2O (100 mg, 0.50 mmol), PivOH (25 mg, 0.25 mmol), and toluene 

(2 mL). Purification by column chromatography (silica gel, n-hexane/ EtOAc 1:1)  gave the final 

product 2j (41 mg, 68% yield) as a white solid; mp: 111 °C; 
1
HNMR (300 MHz, , CDCl3) δ 

11.62 (s, 1H), 8.61 (d, J = 4.2 Hz, 1H), 8.13 (s, 1H), 7.87 (td, J = 7.8 Hz & J = 1.5Hz, 1H), 7.72 

(d, J = 8.1Hz, 1H), 7.35 (s, 1H),  7.29 (t, J = 6.2Hz, 1H), 2.29 (s, 3H), 2.26 (s, 3H), 2.12 (s, 3H); 
13

CNMR (75 MHz, CDCl3) δ 168.7, 157.5, 146.3, 139.4, 138.7, 134.9, 132.4, 129.9, 124.1, 

123.7, 123.4, 121.8, 24.9, 19.9, 19.3; IR(Film) 3236, 2923, 1678, 1585, 1521, 1448, 1396, 1290, 

790, 590; HRMS (EI) m/z calculated for C15H16ON2 (M+): 240.1263. found: 240.1266. 

N-(4-chloro-2-(pyridin-2-yl)phenyl)acetamide(2k). The general procedure was followed using 

2-(3-chlorophenyl)pyridine (0.25 mmol, 47 mg), K2S2O8 (102 mg, 0.38 mmol), KOCN (40 mg, 

0.50 mmol), Cu(OAc)2.H2O (100 mg, 0.50 mmol), PivOH (25 mg, 0.25 mmol), and toluene (2 

mL). Purification by column chromatography (silica gel, n-hexane/ EtOAc 1:1)  gave the final 

product 2k (28 mg, 45% yield) as a white solid; mp:103 °C;  
1
HNMR (400 MHz, , CDCl3) 12.10 

(s, 1H), 8.59 (d, J = 4.0 Hz, 1H), 8.49 (d, J = 8.0Hz, 1H), 7.77 (td, J = 4.0 Hz & J = 1.6Hz, 1H), 

7.62 (d, J = 8.0Hz, 1H), 7.53 (d, J = 2.4 Hz, 1H),  7.25 (m, 2H), 2.12 (s, 3H);  
13

CNMR (100 

MHz, CDCl3) δ 168.5, 156.8, 147.5, 137.9, 136.2, 129.9, 129.5, 128.3, 128.1, 123.0, 122.9, 

121.7, 25.1; IR(Film) 3416, 2928, 1689, 1587, 1526, 1473, 1369, 1281, 784, 666; MS(EI) m/z 

(relative intensity) 246 (M+ , 52), 231 (100), 203 (92), 168 (39), 140 (15), 79 (23). Anal. Calcd. 

for C13H11ClN2O: C, 63.40; H, 4.51; N, 11.38; found: C, 63.35; H, 4.49; N, 11.36. 

N-(4-(pyridin-2-yl)biphenyl-3-yl)acetamide (2l). The general procedure was followed using 2-

(biphenyl-4-yl)pyridine (0.25 mmol, 58 mg), K2S2O8 (102 mg, 0.38 mmol), KOCN (40 mg, 0.50 

mmol), Cu(OAc)2.H2O (100 mg, 0.50 mmol), PivOH (25 mg, 0.25 mmol), and toluene (2 mL). 

Purification by column chromatography (silica gel, n-hexane/ EtOAc 1:1)  gave the final product 

2l (39 mg, 54% yield) as a brown oil; 
1
HNMR (400 MHz, , CDCl3) 12.30 (s, 1H), 8.90 (s, 1H), 

8.69 (d, J = 4.8 Hz, 1H), 7.89 (td, J = 8.0 Hz & J = 1.6Hz, 1H), 7.82 (d, J = 8.0Hz, 1H), 7.74 (t, 

J = 8.4 Hz, 2H),  7.47 (m, 3H), 7.39 (m, 2H), 7.32 (td, J = 5.2 Hz & J = 1.2 Hz, 1H), 2.25 (s, 

3H);  
13

CNMR (100 MHz, CDCl3) δ 168.7, 158.1, 147.5, 142.7, 137.7, 129.1, 128.8, 128.7,  

128.3, 127.7, 127.2, 127.1, 122.9, 121.9, 121.8, 120.4, 25.3; IR(Film) 3235, 3047, 1677, 1586, 

1505, 1438, 1390, 1291, 764, 595; MS(EI) m/z (relative intensity) 288 (M+ , 41), 273 (100), 245 

(71), 217 (23), 178 (39), 78 (18). Anal. Calcd. for C19H16N2O: C, 79.13; H, 5.60; N, 9.72; found: 

C, 79.16; H, 5.59; N, 9.70 

N-(2-(1H-pyrazol-1-yl)phenyl)acetamide (2m). The general procedure was followed using 1-

phenyl-1H-pyrazole (0.25 mmol, 36 mg), K2S2O8 (102 mg, 0.38 mmol), KOCN (40 mg, 0.50 

mmol), Cu(OAc)2.H2O (100 mg, 0.50 mmol), PivOH (25 mg, 0.25 mmol), and toluene (2 mL). 

Purification by column chromatography (silica gel, n-hexane/ EtOAc 1:1)  gave the final product 

2m (16 mg, 31% yield) as a yellow oil; 
1
HNMR (500 MHz, , CDCl3) δ 10.23 (s, 1H), 8.44 (d, J 

= 8.5 Hz, 1H), 7.79 (d, J = 2 Hz, 1H), 7.64 (d, J = 3 Hz, 1H), 7.34 (m, 2H), 7.13 (t, J = 7.8 Hz, 

1H), 6.49 (t, J = 2.2 Hz, 1H), 2.12 (s, 3H); 
13

CNMR (125 MHz, CDCl3) δ 168.5, 141.4, 131.6, 

130.2, 128.1, 127.1, 122.9, 122.4, 122.1, 107.2, 25.1; IR(Film) 3441, 2924, 2856, 1691, 1597, 
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1515, 1461, 1394, 1047, 752; HRMS (EI) m/z calculated for C11H11ON3 (M+): 201.0902. found: 

201.0895 

2-(2-isocyanato-4-methylphenyl)-4-phenylpyridine(3). The general procedure was followed 

using 4-phenyl-2-(p-tolyl)pyridine (0.25 mmol, 61 mg), K2S2O8 (102 mg, 0.38 mmol), KOCN 

(40 mg, 0.50 mmol), Cu(OAc)2.H2O (100 mg, 0.50 mmol), PivOH (25 mg, 0.25 mmol), and 

toluene (2 mL). Purification by column chromatography (silica gel, n-hexane/ EtOAc 1:1)  gave 

the final product 3 (25 mg, 35% yield) as a yellow solid; mp:82 °C; 
1
HNMR (500 MHz, CDCl3) 

δ 8.81 (d, J = 5 Hz, 1H), 8.07 (s, 1H), 7.90 (d, J = 8 Hz, 1H), 7.72 (dd, J = 8 Hz & J = 1 Hz, 2H), 

7.63 (s, 1H), 7.55- 7.48 (m, 5H), 2.45 (s, 3H); 
13

CNMR (100 MHz, CDCl3) δ 155.7, 150.3, 

149.4, 140.8, 139.2, 138.0, 134.4, 133.8, 129.9, 129.3, 129.2, 127.2, 121.4, 121.1, 119.0, 110.9, 

20.9; IR(Film) 2466, 1595, 1461, 1383, 831, 767, 694; HRMS (EI) m/z calculated for 

C19H14ON2 (M+): 286.1106, found: 286.1115. 

2-(2-isocyanato-5-methoxyphenyl)pyridine(4). The general procedure was followed using 2-

(3-methoxyphenyl)pyridine (0.25 mmol, 46 mg), K2S2O8 (102 mg, 0.38 mmol), KOCN (40 mg, 

0.50 mmol), Cu(OAc)2.H2O (100 mg, 0.50 mmol), PivOH (25 mg, 0.25 mmol), and toluene (2 

mL). Purification by column chromatography (silica gel, n-hexane/ EtOAc 1:1)  gave the final 

product 4 (17 mg, 31% yield) as a yellow oil; 
1
HNMR (400 MHz, , CDCl3) δ 8.84 (s, 1H), 8.06 

(t, J = 8 Hz, 1H), 7.99 (d, J = 8 Hz, 1H), 7.72 (d, J = 8.4 Hz, 1H), 7.56 (t, J = 6.2 Hz, 1H), 7.52 

(d, J = 2 Hz, 1H), 7.06 (dd, J = 8.4 Hz & J = 2.2 Hz, 1H), 3.97 (s, 3H); 
13

CNMR (100 MHz, 

CDCl3) δ 163.1, 153.2, 147.4, 135.9, 124.9, 124.4, 121.7, 119.6, 118.5, 116.9, 115.5, 102.6, 56.1; 

IR(Film) 2938, 2839, 2219, 1604, 1562, 1491, 1465, 1305, 1225, 1029, 790; HRMS (EI) m/z 

calculated for C13H10O2N2 (M+): 226.0742. found: 226.0768. 
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