Steric and "Indenyl" Effects in the Chemistry of **Alkylidyne Complexes of Tungsten and Molybdenum**

Stephen Anderson, Anthony F. Hill,* and Bashir A. Nasir

Department of Chemistry, Imperial College, London SW7 2AY, U.K.

Received January 24, 1995[®]

Reaction between LiC_5Me_5 or KC_9H_7 and $[M \equiv C_6H_3Me_2 - 2.6)(CO)_2(NC_5H_4Me - 4)_2Br]$ affords the complexes $[M \equiv CC_6H_3Me_2 - 2, 6)(CO)_2L]$ (L = η -C₅Me₅, M = W (1a); Mo (1b); L = η^5 - C_9H_7 , M = Mo (1c)). The complexes 1a and 1b react with PMe₃ to give η^2 -ketenyl compounds $[M\{\eta^2-C(O)CC_6H_3Me_2-2,6\}(CO)(PMe_3)(\eta-C_5Me_5)]$ (M = W (2a), Mo (2b)) while the reaction of 1c with PMe₃ or P(OMe)₃ gives $[Mo(\equiv CC_6H_3Me_2 - 2, 6)(CO)L'(\eta^5 - C_9H_7)]$ (L' = PMe₃ (3a), $P(OMe)_3$ (3b)). Thermolysis of 2a provides 1a rather than the anticipated complex $[W = CC_6H_3Me_2-2,6)(CO)(PMe_3)(\eta-C_5Me_5)]$. Compound 1b has been employed to prepare the range of heterobimetallic compounds [MoFe(μ -CC₆H₃Me₂-2,6)(CO)₅(η -C₅Me₅)] (4), [MoFe(μ - $CC_{6}H_{3}Me_{2}-2,6)(CO)_{3}(\mu-dppm)(\eta-C_{5}Me_{5})]$ (5), $[MoFe(\mu-\eta^{2}-SeCC_{6}H_{3}Me_{2}-2,6)(CO)_{5}(\eta-C_{5}Me_{5})]$ (6), and $[MoCu(\mu-CC_6H_3Me_2-2,6)(CO)(\mu-CO)(\eta-C_5Me_5)_2]$ (8b), with bonds between molybdenum and iron or copper supported by the xylylmethylidyne unit, to assess the effects of steric encumbrance on bridge-assisted cluster asembly.

Introduction

The compounds $[M(\equiv CR)(CO)_2L]$ (M = Cr, Mo, W, Mn⁺, Re⁺; R = alkyl, aryl, alkynyl; L = η -C₅H₅, η -C₅-Me₅, HB(pyrazol-1-yl)₃) have proven to be useful precursors for the synthesis of metal cluster compounds in which alkylidyne groups bridge metal-metal bonds.¹ In these studies, however, it has become increasingly obvious that considerations of steric bulk are of primary importance in dictating the geometries and degree of coordinative saturation in the resulting polymetallic species.² In particular, the reactions of the (alkylidyne)tungsten complex [W(=CC₆H₄Me-4)(CO)₂(η -C₅Me₅)] were informative: with $[Fe_2(CO)_9]$ the major products are the bimetallic species [WFe(μ -CC₆H₄Me-4)(CO)_n(η -C₅Me₅)] (n = 5, 6),³ while similar treatment of [W(=CC₆H₄Me- $4(CO)_2(\eta - C_5H_5)$] leads to the trinuclear derivatives $[WFe_2(\mu_3-CC_6H_4Me-4)(\mu-CO)(CO)_8(\eta-C_5H_5)]$ and $[WFe_2\{\mu_3 C_2(C_6H_4Me-4)_2$ (CO)₆(η -C₅H₅)].⁴ Alternatively, the steric bulk may be increased by variation of the alkylidyne substituent, as shown by the reaction of $[W = CC_6H_3$ - $Me_2-2,6)(CO)_2(\eta-C_5H_5)$ with [Fe₂(CO)₉], which produces exclusively the dinuclear 32-valence-electron complex $[WFe(\mu-CC_6H_3Me_2-2,6)(CO)_5(\eta-C_5H_5)]^{2a}$ with no indication of the formation of complexes of higher nuclearity or coordinative saturation.

We describe herein the synthesis and reactions of complexes $[M = CC_6H_3Me_2 - 2, 6)(CO)_2L]$ (L = $\eta - C_5Me_5$, M = W (1a), M₀ (1b); L = η^{5} -C₉H₇, M = M₀ (1c)) which combine steric congestion at the metal center and alkylidyne substituent. The effect of this steric encum-

Chart 1. Alkylidyne and Ketenyl Complexes of Tungsten and Molybdenum^a

	•	
η ⁵ -L	1a	$M = W; L = C_5 M e_5$
OCHINI M	1b	$M = Mo; L = C_5 Me_5$
OC R	1c	$M = Mo, L = C_9H_7$
η^{s} -C _s Me _s	2a	M = W
Me ₃ P R	2b	M = Mo
η ⁵ -C ₉ H ₇	3a	$L' = PMe_3$
OCIDIO MO	3b	$L' = P(OMe)_3$
$^{a} \mathbf{R} = \mathbf{C}_{6}\mathbf{H}_{3}\mathbf{M}\mathbf{e}_{2}\textbf{-}2\textbf{,}6.$		

brance is then assessed in reactions expected to be sensitive to such pressures. In ligand addition reactions of **1c** there is strong evidence for "indenvl" effects.

Results and Discussion

The γ -picoline-stabilized (alkylidyne)metal complexes $[M(=CR)(CO)_2(NC_5H_4Me-4)_2Br](R = C_6H_3Me_2-2,6)$ offer increased thermal stability over the tetracarbonyl derivatives $[M(\equiv CR)(CO)_4X]$, and this feature greatly enhances the convenience and yields involved in the introduction of the ligands η -C₅H₅, η -C₅Me₅, and η ⁵- C_9H_7 . For our work we employed a modification of Mayr's method for the preparation of $[W(\equiv CPh)(CO)_2$ - $(py)_2(O_2CCF_3)$ ⁵ via the reaction of $[W(CO)_6]$ with PhLi, followed by cation metathesis to provide [NMe4]- $[W{C(=O)R}(CO)_5]$, which is then reacted with $(CF_3 CO)_2O$ and pyridine. We find that if the cation metathesis step is omitted, then the process may be conveniently carried out in one pot to provide $[W = CC_6H_3$ -

^{*} Abstract published in Advance ACS Abstracts, May 1, 1995. Stone, F. G. A. Pure Appl. Chem. 1986, 58, 529; ACS Symp. Ser.
 1983, No. 211, 383; Angew. Chem., Int. Ed. Engl. 1984, 23, 89.

^{(2) (}a) Dossett, S. J.; Hill, A. F.; Jeffery, J. C.; Marken, F.; Sherwood, P.; Stone, F. G. A. J. Chem. Soc., Dalton Trans. **1988**, 2453. (b) Dossett, S. J.; Hill, A. F.; Howard, J. A. K.; Nasir, B. A.; Spaniol, T. P.; Sherwood, P.; Stone, F. G. A. J. Chem. Soc., Dalton Trans. **1989**, 1871. (c) Hart, I. J.; Hill, A. F.; Stone, F. G. A. J. Chem. Soc., Dalton Trans. 1989, 2261.

⁽³⁾ Delgado, E.; Hein, J.; Jeffery, J. C.; Ratermann, A. L.; Stone, F. G. A.; Farrugia, L. J. J. Chem. Soc., Dalton Trans. 1987, 1191.
(4) Busetto, L.; Jeffery, J. C.; Mills, R. M.; Stone, F. G. A.; Went, M.

J.; Woodward, P. J. Chem. Soc., Dalton Trans. 1983, 101.

⁽⁵⁾ Mayr, A.; McDermott, G. A.; Dorries, A. M. Organometallics 1985, 4, 608.

Tal	ble	1.	Analy	rticala	and	Ph	ysical	Data	for	the	Comp	lexes
-----	-----	----	-------	---------	-----	----	--------	------	-----	-----	------	-------

			analyses (%)		
$\texttt{compd} \ (\texttt{R} = \texttt{C}_6\texttt{H}_3\texttt{M}\texttt{e}_2\textbf{-}2\textbf{,}6)$	yield (%)	IR $\nu_{\max}(CO)^{b}/cm^{-1}$	C	Н	
$[W(\equiv CR)(CO)_2(\eta\text{-}C_5Me_5)] (1a, red)$	67	1970 vs, 1892 vs	51.5 (51.2)	5.2 (4.9)	
$[M_0(\equiv CR)(CO)_2(\eta\text{-}C_5Me_5)] \text{ (1b, red)}$	70	1979 vs, 1903 vs	$\begin{array}{c} 62.4\\ (62.4)\end{array}$	6.4 (6.0)	
$[M_0(\equiv CR)(CO)_2(\eta^5-C_9H_7)](1c, red)$	63	1998 vs, 1925 vs	$\begin{array}{c} 62.4\\ (62.5)\end{array}$	4.3 (4.2)	
$[W(\eta^2 \text{-}OCCR)(CO)(PMe_3)(\eta\text{-}C_5Me_5)] \ (\textbf{2a, violet})$	84	1898 vs, 1729 m (br)	49.2 (50.7)	5.9 (5.5)	
$[Mo(\eta^2 \text{-}OCCR)(CO)(PMe_3)(\eta\text{-}C_5Me_5)] \text{ (2b, violet)}$	80	1888 vs, 1733 w (br)	60.2 (60.0)	7.2 (6.9)	
$[Mo(\equiv CR)(CO)(PMe_3)(\eta^5 - C_9H_7)] \ (\textbf{3a})$	62	1887 vs	60.3 (61.1)	6.1 (5.8)	
$[M_0(\equiv CR)(CO){P(OMe)_3}(\eta^5-C_9H_7)]$ (3b, yellow)	66	1910 vs	55.4 (55.0)	4.4 (5.3)	
$[MoFe(\mu-CR)(CO)_5(\eta-C_5Me_5)] (\textbf{4}, violet)$	61	2038 vs, 1975, 1965 s, 1859 w (\mathbf{br})	52.8 (53.0)	4.5 (4.4)	
$[MoFe(\mu-CR)(CO)_3(\mu-dppm)(\eta-C_5Me_5)] \ ({\bf 5},\ green)$	89	1962 vs, 1907 s, 1748 w (br)	64.1 (64.7)	5.8 (5.3)	
$[MoFe(\mu\text{-}\eta^2\text{-}SeCR)(CO)_5(\eta\text{-}C_5Me_5)](\textbf{6},orange)$	83	2038 vs, 1976 s, 1962 m (sh), 1945 w (sh) 1903 w (br)	46.0 (46.3)	4.2 (3.9)	
$[MoCu(\mu\text{-}CR)(CO)_2(\eta\text{-}C_5Me_5)_2](\textbf{8b},blue)$	60	1950 vs, 1856 s	60.3 (61.7)	6.7 (6.5)	
$[Mo(\kappa^2 - S_2 CR)(CO)_2(\eta - C_5 Me_5)] (9, pink)$	71	1952 vs, 1876 s	53.1 (53.8)	5.4 (5.2)	

^a Calculated values given in parentheses. ^b Data for dichloromethane solutions.

Me₂-2,6)(CO)₂(NC₅H₄Me-4)₂Br]. The presence of a bromide ligand in the final product was initially surprising; however, this originates from the 1 equiv of lithium bromide present as a consequence of the lithium reagent synthesis. The γ -picoline ligand was chosen purely for spectroscopic (¹H NMR) purposes.

Heating a solution of $[W(=CC_6H_3Me_2-2,6)(CO)_2(NC_5H_4-$ Me-4)₂Br] and LiC₅Me₅ in tetrahydrofuran leads to clean formation of the pentamethylcyclopentadienyl complex $[W = CC_6H_3Me_2 - 2, 6)(CO)_2(\eta - C_5Me_5)]$ (1a) in high yield. The molybdenum alkylidynes [$Mo = CC_6 H_3$ - $Me_2-2,6)(CO)_2(L)$] (L = η -C₅ Me_5 (1b), η^5 -C₉ H_7 (1c)) are obtained in a similar manner from $[Mo(\equiv CC_6H_3Me_2 (2,6)(CO)_2(NC_5H_4Me-4)_2Br$ and LiC_5Me_5 or KC_9H_7 , respectively, with the exception that the reactions proceed readily at room temperature. Data for the complexes 1a-c are given in Tables 1 and 2 and are unremarkable. Indenyl(alkylidyne)molybdenum complexes have been prepared previously by hydrogen-transfer reactions of suitable σ,π -vinyl precursors, a reaction clearly not applicable to the synthesis of arylmethylidyne complexes.6

The reactions of the complexes 1a-c with trimethylphosphine were investigated in order to compare the results with those obtained previously and in view of the current interest in the formation of ketenyl complexes *via* alkylidyne-carbonyl coupling.^{7,8} Typically, reaction of the compounds $[M(\equiv CR)(CO)_2(\eta-C_5H_5)]$ with phosphines leads to either simple substitution of a carbonyl ligand or formation of ketenyl ligands. In some cases the ketenyl complexes formed may be decarbonylated to give the phosphine-substituted product;⁹ however, this is not generally the case. Reaction of the compounds 1a and 1b with PMe₃ in tetrahydrofuran both lead to the η^2 -ketenyl complexes $[M\{\eta^2-C(O)CC_6H_3Me_2-2,6\}(CO)(PMe_3)(\eta-C_5Me_5)]$ (M = W (2a), Mo (2b)), in contrast with the corresponding reaction of $[W(\equiv CC_6H_3Me_2-2,6)(CO)_2(\eta-C_5H_5)]$ (1c), in which a mixture of $[W(\equiv CC_6H_3Me_2-2,6)(CO)(PMe_3)(\eta-C_5H_5)]$ (3c) and $[W\{\eta^2-C(O)CC_6H_3Me_2-2,6\}(CO)(PMe_3)-(\eta-C_5H_5)]$ (2c) is obtained. Excess phosphine fails to induce formation of a monodentate ketenyl complex, as has been observed in the reaction of $[W(\equiv CC_6H_4Me-4)-(CO)_2(\eta-C_5H_5)]$ with excess PMe₃ to provide $[W\{C(CO)-C_6H_4Me-4\}(CO)(PMe_3)_2(\eta-C_5H_5)]$.¹⁰ Surprisingly, heating 2a in tetrahydrofuran results in loss of PMe_3 rather than CO, as might have been expected with re-formation of the dicarbonyl precursor 1a.

Substitution reactions at metal centers ligated by the η^5 -indenyl ligand are often faster than for analogous η -C₅H₅ and η -C₅Me₅ derivatives, this being the so-called "indenyl effect" attributed to transient coordinatively unsaturated η^3 -indenyl species.¹¹ The reaction of 1c with PMe_3 was therefore of interest. Treating 1c with PMe₃ leads to rapid formation of the phosphinesubstituted alkylidyne complex $[Mo(=CC_6H_3Me_2-2,6) (CO)(PMe_3)(\eta^5-C_9H_7)$] (3a), with no evidence for the formation of ketenyl intermediates. Similarly, reaction of 1c with trimethyl phosphite leads to $[M_0] = CC_6H_3$ - $Me_2-2,6)(CO)\{P(OMe)_3\}(\eta^5-C_9H_7)\}$ (3b). The related complex $[Mo(=CC_6H_4OMe-2)(CO)\{P(OMe)_3\}(\eta-C_5H_5)]$ (3c) may be prepared either by photolysis (12 h, low-power visible light) of $[M_0 = CC_6H_4OMe-2)(CO)_2(\eta-C_5H_5)]$ in the presence of trimethyl phosphite or by reaction of

⁽⁶⁾ Allen, S. R.; Green, M.; Orpen, A. G.; Williams, I. D. J. Chem. Soc., Chem. Commun. 1982, 826.

⁽⁷⁾ Mayr, A.; Hofmeister, H. Adv. Organomet. Chem. 1992, 32, 227.
(8) Mayr, A.; Bastos, C. M. Prog. Inorg. Chem. 1992, 40, 1.

⁽⁹⁾ Geoffroy, G. L.; Bassner, S. L. Adv. Organomet. Chem. 1988, 28,

 ⁽¹⁰⁾ Uedelhoven, W.; Eberl, K.; Kreissl, F. R. Chem. Ber. 1979, 112, 3376. Kreissl, F. R.; Friedrich, P.; Huttner, G. Angew. Chem., Int. Ed. Engl. 1977, 16, 102.

⁽¹¹⁾ O'Connor, J. M.; Casey, C. P. Chem. Rev. 1987, 87, 307.

Table 2. Hydrogen-1 NMR Data^a for the Complexes

compd	IH (ð)
$\mathbf{1a}$ (CDCl ₃)	$2.19~[\rm{s},~15~\rm{H},~C_5 \textit{M} e_5],~2.46~[\rm{s},~6~\rm{H},~C_6 \rm{H}_3 \textit{M} e_2],~6.87,~7.11~[\rm{m}~\times~2,~3~\rm{H},~C_6 \rm{H}_3 \rm{M} e_2]$
$1b \; (CD_2Cl_2)$	$2.06~[m s,~15~H,~C_5 Me_5],~2.53~[m s,~6~H,~C_6 H_3 Me_2],~6.85,~6.99~[m m imes 2,~3~H,~C_6 H_3 Me_2]$
1c (CDCl ₃)	2.48 [s, 6 H, C ₆ H ₃ Me ₂], 5.89 [t, 1 H, H ² (C ₉ H ₇), J (HH) 3.1 Hz], 6.15 [d, 2 H, H ^{1,3} (C ₉ H ₇), J (HH) 3.1 Hz], 6.86, 6.96, 7.42 [m × 3, 7 H, C ₆ H ₄ and C ₆ H ₃]
$\boldsymbol{2a}\left(CD_{2}Cl_{2}\right)$	1.49 [d, 9 H, PMe ₃ , J(PH) 9.2 Hz], 1.85 [s, 3 H, C ₆ H ₃ Me ₂], 1.93 [s, 15 H, C ₅ Me ₅], 2.21 [s, 3 H, C ₆ H ₃ Me ₂], 6.91, 7.02 [m \times 2, 3 H, C ₆ H ₃]
$\mathbf{2b}\;(CD_2Cl_2)$	1.38 [d, 9 H, PMe ₃ , J(PH) 8.8 Hz], ca 1.78 [s(br), 3 H, C ₆ H ₃ Me ₂], 1.82 [s, 15 H, C ₅ Me ₅], 2.17 [s(br), 3 H, C ₆ H ₃ Me ₂], 6.96, 7.00 [m × 2, 3 H, C ₆ H ₃]
3a (CDCl ₃)	1.18 [d, 9 H, PMe ₃ , J(PH) 8.4 Hz], 2.47 [s, 6 H, C ₆ H ₃ Me ₂], 5.85 [d, 2 H, H ^{1,3} (C ₉ H ₇), J(HH) 2.8 Hz], 6.23 [t, 1 H, H ² (C ₉ H ₇), J(HH) 3.11 Hz], 6.82, 6.8, 7.30 [m × 3, 7 H, C ₆ H ₄ and C ₆ H ₃]
3b (CDCl3)	2.51 [s, 6 H, C ₆ H ₃ Me ₂], 3.22 [d, 9 H, POCH ₃ , J(PH) 14 Hz], 5.84 [t, 1 H, H ² (C ₉ H ₇), J(HH) 3.1 Hz], 5.98, 6.22 [m × 2, 2 H, 2 H, H ^{1,3} (C ₉ H ₇)], 6.82, 6.84, 6.91, 7.3–7.4 [m × 4, 7 H, C ₆ H ₄ and C ₆ H ₃]
4 (CDCl ₃)	$1.55 [s, 6 H, C_6H_3Me_2], 1.71 [s, 15 H, C_5Me_5], 7.04 [m, 3 H, C_6H_3]$
5 (CDCl ₃)	1.46 [s, 15 H, C ₅ <i>Me</i> ₅], 1.83, 1.92 [s × 2, 6 H, C ₆ H ₃ <i>Me</i> ₂], 4.48, 5.24 [m × 2, 2 H, P ₂ CH ₂], 6.44, 6.69, 6.74, 7.00, 7.11, 7.36, 7.78 [m × 6, 23 H, C ₆ H ₅ and C ₆ H ₃]
6 (CDCl ₃)	1.88 [s, 15 H, C ₅ <i>Me</i> ₅], 2.47, 2.63 [s \times 2, 6 H, C ₆ H ₃ <i>Me</i> ₂], 7.13 [m, 3 H C ₆ H ₃]
8b (CDCl ₃)	1.67 [s, 30 H, MoC ₅ Me ₅ and CuC ₅ Me ₅], 1.99 [s, 6 H, C ₆ H ₃ Me ₂], 7.00 [m, 3 H, C ₆ H ₃]
$9 \ (CD_2Cl_2)$	1.95 [s, 15 H, C ₅ <i>Me</i> ₅], 2.00, 2.27 [s × 2, 6 H, C ₆ H ₃ <i>Me</i> ₂], 7.02, 7.12 [m × 2, 3 H, C ₆ H ₃]

^a Chemical shifts (δ) in ppm, coupling constants in Hz, measurements at room temperature.

 $[Mo(\equiv CC_6H_4OMe-2)Cl(CO){P(OMe)_3}]$ with sodium cyclopentadienide. The formation of the simple phosphite substitution complex 3c by photolysis is itself somewhat unusual, since Geoffroy has shown that ketenyl complexes are usually the photoproducts in related systems.⁹ These transformations are summarized in Scheme 1.

The reactions of complex 1b with metal-ligand fragments were addressed next. As mentioned above, permethylation of the cyclopentadienyl ligand or the 2,6positions of the arylmethylidyne ligand in the complex $[W(\equiv C-aryl)(CO)_2(\eta-C_5H_5)]$ introduces considerable steric congestion into the tungsten coordination sphere.^{2,3} This is manifest in the reactions of $[W(\equiv CC_6H_4Me-4) (CO)_2(\eta - C_5Me_5)]$,³ where treatment with coordinatively unsaturated metal-ligand fragment precursors lead in general to complexes of lower nuclearity than do those reactions involving the analogous cyclopentadienyl derivatives.

Reaction of 1b with $[Fe_2(CO)_9]$ leads to exclusive formation of the 32-valence-electron bimetallic complex $[MoFe(\mu-CC_6H_3Me_2-2,6)(CO)_5(\eta-C_5Me_5)]$ (4a). Most conspicuous among the spectroscopic data for such a complex² is the abnormally low field shift in the ¹³C resonance due to the bridging carbyne carbon nucleus. This has been interpreted³ by reference to similar downfield shifts observed in the ¹³C NMR data for coordinatively unsaturated complexes of alkynes which have been extensively documented by Templeton and co-workers.¹² Such a low-field resonance is observed for 4a at δ 404.2 ppm. The formal coordinative unsaturation of 4a is reflected in its reactions with bis(diphenylphosphino)methane (dppm) and elemental selenium to provide respectively $[Fe(\mu-CC_6H_3Me_2-2,6)(CO)_3(\mu-CC_6H_3Me_2-2)$

 $dppm)(\eta - C_5Me_5)$] (5) and [Fe($\mu - \eta^2 - SeCC_6H_3Me_2 - 2,6$)(CO)₅- $(\eta$ -C₅Me₅)] (6), which are analogous to derivatives of the simple cyclopentadienyl-ligated compounds.^{2a,13,14}

A departure in the reactivity of 1b from that of $[M \equiv CC_6H_4Me-4)(CO)_2(\eta-C_5H_5)]$, which is clearly steric in origin, is observed in its reaction with the "Cu(η -C₅- Me_5)" transfer reagent obtained from CuCl and LiC₅-Me₅ in tetrahydrofuran.¹⁵ This reagent (presumably $[Cu(thf)(\eta - C_5Me_5)])$ reacts with $[W(\equiv CC_6H_4Me-4)(CO)_2$ - $(\eta$ -C₅H₅)] to provide the trimetallic complex [WCu₂(μ ₃- $CC_6H_4Me-4)(CO)_2(\eta-C_5H_5)(\eta-C_5Me_5)_2$ (7), with no evidence being obtained for the presumed transient intermediate bimetallic complex [WCu(µ-CC₆H₄Me-4)- $(CO)_2(\eta - C_5H_5)(\eta - C_5Me_5)]$ (8a). Such a complex is, however, isolated in the reaction of 1b with the transfer reagent. The deep blue species [WCu(µ-CC₆H₃Me₂- $(2,6)(CO)_2(\eta - C_5H_5)(\eta - C_5Me_5)$] (8b) is the only product isolated from this reaction even when the organocopper reagent is used in excess. The presence of a carbyne group bridging two metals is supported by the low-field shift of the carbyne carbon resonance (δ 319.2 ppm), which is considerably lower than that for 7 which is observed at δ 275.5 ppm. Infrared data for the carbonyl ligands ($\nu(CO)$ 1950, 1856 cm⁻¹) suggest that one of these adopts a semibridging role, partially alleviating the excessive electron density at the electron-rich d^{10} (formally) copper center. ¹³C NMR data, however, indicate that the terminal and semibridging carbonyls interchange in solution (single resonance at δ 228.5 ppm).

⁽¹³⁾ Byrne, P.; Garcia, M. E.; Jeffery, J. C.; Sherwood, P.; Stone, F.
G. A. J. Chem. Soc., Dalton Trans. 1987, 1215.
(14) Hill, A. F.; Nasir, B. A.; Stone, F. G. A. Polyhedron 1989, 8,

^{179.}

⁽¹⁵⁾ Carriedo, G. A.; Howard, J. A. K.; Stone, F. G. A. J. Chem. Soc., Dalton Trans. 1984, 1555; J. Organomet. Chem. 1983, 250, C28.

⁽¹²⁾ Templeton, J. L. Adv. Organomet. Chem. 1989, 29, 1.

^a $L = C_5H_5$, C_5Me_5 , C_9H_7 ; * = vacant coordination site.

Two different types of ligands result from the reactions of terminal carbyne complexes with elemental sulfur. The electron-rich osmium carbyne $[Os(=CC_6H_4-Me-4)Cl(CO)(PPh_3)_2]$ reacts to provide the thiobenzoyl complex $[Os(\eta^2-SCC_6H_4Me-4)Cl(CO)(PPh_3)_2]$,¹⁶ which fails to react with further sulfur. In contrast, the halfsandwich carbyne complex $[W(=CC_6H_4Me-4)(CO)_2(\eta-C_5H_5)]$ reacts with either sulfur or selenium to provide the dithio- or diselenobenzoate complexes $[W(\kappa^2-A_2-CC_6H_4Me-4)(CO)_2(\eta-C_5H_5)]$ (A = S, Se).¹⁷ Employing a deficiency of chalcogen fails to lead to any isolable chalcogenoacyl complex of the form $[W(\eta^2-ACC_6H_4Me-4)(CO)_2(\eta-C_5H_5)]$. It seemed reasonable that steric pressures might partially explain this dichotomy of reactivity; however, this appears not to be the case. Reaction of 1b with sulfur leads exclusively to the pink dithiobenzoate complex $[Mo(\kappa^2-S_2CC_6H_3Me_2-2,6)(CO)_2-(\eta-C_5Me_5)]$ (9), spectroscopic data for which are completely analogous to those reported for $[Mo(\kappa^2-S_2CC_6H_4-Me-4)(CO)_2(\eta-C_5H_5)]$.¹⁷ It therefore appears likely that electronic, rather than steric, effects determine the outcome of this reaction.

Experimental Section

General Procedures. All manipulations were carried out under an atmosphere of prepurified dinitrogen using conventional Schlenk-tube techniques. Solvents were purified by distillation from an appropriate drying agent (ethers and paraffins from sodium/potassium alloy with benzophenone as indicator; halocarbons from CaH₂). ¹H, ¹³C{¹H}, and ³¹P{¹H} NMR spectra were recorded on either a JEOL GX270 or FX90 NMR spectrometer and calibrated against internal Me₄Si (¹H), internal CDCl₃ (¹³C), or external H₃PO₄ (³¹P). Infrared spectra were recorded using a Perkin-Elmer 1720-X FT-IR spectrometer. Light petroleum ether refers to that fraction with bp 40– 60 °C. Data for the new complexes are given in Tables 1–5.

 $[W(\equiv CC_6H_3Me_2-2,6)(CO)_2(\eta-C_5Me_5)] (1a). A solution of$ $[W(\equiv CC_6H_3Me_2-2,6)(CO)_2(NC_5H_4Me-4)_2Br] (10.0 g, 15.2 mmol)$ $in tetrahydrofuran (100 cm³) was treated with LiC_5Me_5 (2.84 g, 20.0 mmol; from MeLi and C_5Me_5H) and heated under reflux$

⁽¹⁶⁾ Clark, G. R.; Marsen, K.; Roper, W. R.; Wright, L. J. J. Am. Chem. Soc. **1980**, 102, 6570.

⁽¹⁷⁾ Gill, D. S.; Green, M.; Marsden, K.; Moore, I.; Orpen, A. G.; Stone, F. G. A.; Williams, I. D.; Woodward, P. J. Chem. Soc., Dalton Trans. **1984**, 1343.

Table 3. Carbon-13 NMR Data^a for the Complexes

compd	$^{13}\mathrm{C}\left(\delta ight)$
1a (CDCl ₃)	299.9 [W=C, J (WC) 212 Hz], 226.4 [WCO, J (WC) 195 Hz], 147.8 [C ¹ (C ₆ H ₃), J (WC) 38 Hz], 139.1, 127.8, 127.1 [C ²⁻⁶ (C ₆ H ₃)], 104.4 [C ₅ Me ₅] 20.6 [C ₆ H ₃ Me ₂], 11.2 [C ₅ Me ₅]
$1b\;(CD_2Cl_2)$	312.4 [Mo=C], 234.1 [MoCO], 144.5 [C ¹ (C ₆ H ₃)], 140.5, 128.8, 127.5 [C ²⁻⁶ (C ₆ H ₃)], 106.0 [C ₅ Me ₅], 20.8 [C ₆ H ₃ Me ₂], 11.4 [C ₅ Me ₅]
$\boldsymbol{1c}~(CDCl_3)$	312.5 [Mo=C], 228.6 [MoCO], 144.0 [C ¹ (C ₆ H ₃)], 140.0, 128.8, 127.3 [C ²⁻⁶ (C ₆ H ₃)], 124.3, 122.6 [C ⁴⁻⁷ (C ₉ H ₇)], 117.3 [C ^{8,9} (C ₉ H ₇)], 98.3 [C ² (C ₉ H ₇)], 78.3 [C ^{1,3} (C ₉ H ₇)], 21.0 [C ₆ H ₃ Me ₂]
$2a~(CD_2Cl_2)$	231.9 [WOCCC ₆ H ₃ Me ₂ , J(PC) 8.5, J (WC) 167 Hz], 201.6 [WCO, J(PC) not resolved], 195.4 [WOC CC ₆ H ₃ Me ₂ , J(PC) not resolved, J (WC) 68 Hz], 141.7 [C ¹ (C ₆ H ₃)], 131.0, 129.6 [C ^{2.6} (C ₆ H ₃)], 126.2, 125.7 [C ^{3.5} (C ₆ H ₃)], 124.4 [C ⁴ (C ₆ H ₃)], 105.0 [C ₅ Me ₅], 20.7, 20.1 [C ₆ H ₃ Me ₂], 18.3 [d, PMe ₃ , J(PC) 34 Hz], 10.0 [C ₅ Me ₅]
$\mathbf{2b}\;(CD_2Cl_2)$	238.8 [MoOCCC ₆ H ₃ Me ₂ , <i>J</i> (PC) 17.0 Hz], 213.4 [MoCO, <i>J</i> (PC) 8.5 Hz], 205.0 [MoOCCC ₆ H ₃ Me ₂], 141.2 [C ¹ (C ₆ H ₃)], 131.0, 129.2 [C ^{2,6} (C ₆ H ₃)], 125.9 [C ^{3,5} (C ₆ H ₃)], 124.4 [C ⁴ (C ₆ H ₃)], 106.1 [<i>C</i> ₅ Me ₅], 20.5, 20.0 [C ₆ H ₃ Me ₂], 17.2 [d, PMe ₃ , <i>J</i> (PC) 30 Hz], 9.7 [C ₅ Me ₅]
3b (CDCl ₃)	302.4 [d, Mo=C, $J(PC)$ 28 Hz], 242.1 [d, MoCO, $J(PC)$ 17.0 Hz], 143.7 [C ¹ (C ₆ H ₃)], 137.8, 126.1, 125.9 [C ²⁻⁶ (C ₆ H ₃)], 122.4, 121.9, 121.7 [C ⁴⁻⁷ (C ₉ H ₇)], 117.3, 115.3[C ^{8,9} (C ₉ H ₇)], 95.9 [C ² (C ₉ H ₇)], 75.8 [C ^{1,3} (C ₉ H ₇)], 50.0 [POMe], 20.0 [C ₆ H ₃ Me ₂]
4 (CDCl ₃)	404.2 [MeFe(μ -C)], 236.0 [MoCO], 212.7 [FeCO], 158.5 [C ¹ (C ₆ H ₃)], 126.3 [C ^{3,5} (C ₆ H ₃)], 124.8 [C ⁴ (C ₆ H ₃)], 123.4 [C ^{2,6} (C ₆ H ₃)], 107.8 [C ₅ Me ₅], 20.3 [C ₆ H ₃ Me ₂], 9.0 [C ₅ Me ₅]
5 (CDCl ₃)	376.6 [d, MoFe(μ-C)], 253.1 [d, MoFe(μ-CO)], 220.7, 217.7 [MoFe(CO) ₂], 162.2 [C ¹ (C ₆ H ₃)], 140–123 [C ₆ H ₅ and C ₆ H ₃], 105.1 [C ₅ Me ₅], 43.7 [dd, P _A P _B CH ₂ , J(PC) 15, 32 Hz], 23.1, 22.3 [C ₆ H ₃ Me ₂], 10.3 [C ₅ Me ₅]
6 (CDCl ₃)	231.8, 230.8 [MoCO], 211.9 [FeCO], 144.9 [C ¹ (C ₆ H ₃)], 136.6, 133.2 [C ^{2,6} (C ₆ H ₃)], 129.4 [C ^{3,5} (C ₆ H ₃)], 124.4 [C ⁴ (C ₆ H ₃)], 103.4 [C ₅ Me ₅], 27.4, 23.1 [C ₆ H ₃ Me ₂], 10.5 [C ₅ Me ₅]
8b (CDCl ₃)	319.2 [MoCu(μ -C)], 228.5 [MoCO], 154.7 [C ¹ (C ₆ H ₃)], 132.3 [C ^{3,5} (C ₆ H ₃)], 128.0 [C ^{2,6} (C ₆ H ₃)], 127.0 [C ⁴ (C ₆ H ₃)], 107.5 [MoC ₅ Me ₅], 93.3 [CuC ₅ Me ₅], 21.8 [C ₆ H ₃ Me ₂], 9.5 [CuC ₅ Me ₅ and MoC ₅ Me ₅]
$9 \; (CD_2Cl_2)$	255.1 [MoCO], 237.7 [MoS ₂ C], 150.3 [C ¹ (C ₆ H ₃)], 134.5, 128.8, 127.8, 127.6, 127.0 [C ²⁻⁶ (C ₆ H ₃)], 106.4 [C ₅ Me ₅], 20.3 [C ₆ H ₃ Me ₂], 11.3 [C ₅ Me ₅]

^{*a*} Chemical shifts (δ) in ppm, coupling constants in Hz, measurements at room temperature in CDCl₃. Spectra are hydrogen-1 decoupled; chemical shifts are positive to high frequency of SiMe₄.

	Ta	ble	e 4.	Mas	38 S	Spectral	. D)ata	for	Se	lected	. 0	omp	lexes
--	----	-----	------	-----	------	----------	------------	------	-----	----	--------	-----	-----	-------

compd	m/z (%) [assignt]
1a	$492(57) [M]^+, 436(100) [M - 2CO]^+$
1b	$406 [M]^+$, 378 $[M - CO]^+$, 438 $[M - 2CO]^+$
2a	$524\ (1.9)\ [W(HPCC_6H_3Me_2)(CO)_2(C_5Me_5)\ ?],\ 451\ (5.7)\ [W(CO)_2(PMe_3)(C_5Me_5)]^+,\ 423\ (3.3)\ [W(CO)(PMe_3)(C_5Me_5)]^+$
4	$406 (34)[M - 5CO]^+, 406 (100) [M - Fe - 5CO]^+$
5	$734 (3.2) [M - Fe - 3CO]^+$
6	$624~(3.5)~[M]^+,~566~(2.8)~[M-2CO]^+,~542~(11.2)~[M-3CO]^+,~512~(7.6)~[M-4CO]^+$
8b	$ \begin{array}{l} 604\ (3.0)\ [M]^+,\ 546\ (0.9)\ [M-\ 2CO\]^+,\ 469\ (3.5)\ [M-\ C_5Me_5]^+,\ 438\ (2.2)\ [M-\ C_5Me_5-\ CO]^+,\ 413\ (34.1)\ [M-\ C_5Me_5-\ 2CO]^+,\ 348\ [Mo(CC_6H_3Me_2)(C_5Me_5)]^+ \end{array} $
9	$470~(27.0)~[M]^+,~414~(100)~[M-2~CO]^+,~380~(14.9)~[M-S-2CO]^+,~264~(54.4)~[MoSC_5Me_5]^+$

Table 5.	Phosphorus-31 NMR Data ^a for	the
	Complexes	

Complexes					
compd	$^{31}P(\delta)$				
2a	-16.6 [J(WP) 397 Hz]				
2b	9.6				
3a	12.7				
3b	198.4				
5	41.0 [J(AB) 76 Hz]				
	48.2				

^a Chemical shifts (δ) in ppm, coupling constants in Hz, measurements at room temperature in CDCl₃. Spectra are hydrogen-1 decoupled; chemical shifts are positive to high frequency of H₃PO₄.

for 5 h. After the mixture was cooled to room temperature, the solvent was removed under reduced pressure and the residue extracted with a mixture of dichloromethane and light petroleum ether (1:2) and the combined extracts chromatographed on a cryostatically cooled (-40 °C) column loaded with

silica gel. Elution with dichloromethane developed a red band, which was freed of solvent in vacuo. The residue was then crystallized from light petroleum ether; yield 5.02 g (67%).

Similar procedures were used for the molybdenum complexes **1b** and **1c**, except that the reaction mixture was not heated but rather, stirred for 18 h. Reaction of $[Mo(\equiv CC_6H_3-Me_2-2,6)(CO)_2(NC_5H_4Me-4)_2Br]$ with LiC₅Me₅ and KC₉H₇ (from potassium and indene) provided the compounds **1b** (yield 4.98 g (70%)) and **1c** (yield 4.26 g (63%)).

 $[W(\eta^2-OCCC_6H_3Me_2-2,6)(CO)(PMe_3)(\eta-C_5Me_5)]$ (2a). A solution of 1a (1.00 g, 2.03 mmol) in diethyl ether (20 cm³) was treated with PMe₃ (0.20 g, 2.63 mmol) and the mixture stirred for 12 h. The solvent was removed under reduced pressure and the residue crystallized from a mixture of dichloromethane and light petroleum ether (1:3) at -20 °C; yield 0.97 g (84%). Analogous treatment of 1b provided 2b; yield 0.95 g (80%).

 $[Mo(≡CC_6H_3Me_2-2,6)(CO)(PMe_3)(\eta^5-C_9H_7)]$ (3a). A solu-

tion of 1c (1.00 g, 2.06 mmol) in diethyl ether (20 cm³) was treated with PMe₃ (0.20 g, 2.63 mmol) and the mixture was stirred for 6 h. The solvent was removed in vacuo and the residue extracted with a mixture of dichloromethane and light petroleum ether (1:2), and the combined extracts were chromatographed on a cryostatically cooled (-40 °C) column loaded with silica gel. Elution with a mixture of dichloromethane and light petroleum ether (1:2) developed an orange band which was freed of solvent in vacuo. The residue was then crystallized from light petroleum ether; yield 0.74 g (62%). Similar treatment of 1c with P(OMe)₃ provided **3b** (yield 0.87 g (66%)).

[MoFe(μ -CC₆H₃Me₂-2,6)(CO)₅(η -C₅Me₅)] (4). A mixture of compound 1b (2.00 g, 4.94 mmol) and [Fe₂(CO)₉] (3.64 g, 10 mmol) in THF (50 cm³) was stirred for 12 h and then freed of solvent and [Fe(CO)₅] (*Caution*!) in vacuo. The black residue was dissolved in CH₂Cl₂ (10 cm³), light petroleum ether (10 cm³) was added, and the solution was chromatographed on an alumina-loaded cryostatically cooled (-20 °C) column. Elution with the same solvent mixture removed a yellow zone ([Fe-(CO)₅]) and a green zone ([Fe₃(CO)₁₂]), which were discarded. Further elution provided a violet fraction from which solvent was slowly removed in vacuo to provide deep violet microcrystals, yield 1.35 g (61%).

[MoFe(μ -CC₆H₃Me₂-2,6)(CO)₃(μ -dppm)(η -C₅Me₅)] (5). A solution of 4 (1.00 g, 1.84 mmol) in diethyl ether (30 cm³) was treated with dppm (0.71 g, 1.84 mmol) and the mixture stirred for 10 h, by which time a deep green precipitate had formed. This was isolated by filtration, washed with light petroleum ether, and dried in vacuo; yield 1.43 g (89%).

 $[MoFe(\mu-\eta^2-SeCC_6H_3Me_2-2,6)(CO)_5(\eta-C_5Me_5)]$ (6). A solution of 4 (0.50 g, 0.92 mmol) in diethyl ether (50 cm³) was

treated with elemental black selenium (0.3 g, excess) and the mixture stirred rapidly for 1 day. The solution was filtered through a plug of diatomaceous earth and then freed of solvent under reduced pressure. The residue was extracted twice with a mixture of CH_2Cl_2 (6 cm³) and light petroleum ether (14 cm³). The combined extracts were chromatographed on a watercooled column with the same solvent mixture as eluent. The major orange band was collected and reduced to ca. 4 cm³ in vacuo and cooled to -78 °C to provide orange microcrystals of **6**, yield 0.48 g (83%).

[MoCu(μ -CC₆H₃Me₂-2,6)(CO)₂(η -C₅Me₅)₂] (8b). A solution of "Cu(η -C₅Me₅)" (0.50 mmol) in THF prepared according to the literature procedure at -80 °C¹⁵ was treated with 1b (1.00 g, 0.25 mmol) and the mixture stirred at -80 °C for 24 h and then warmed to room temperature. The solvent was removed in vacuo and the residue extracted with a mixture of dichloromethane and light petroleum ether (1:3). The combined extracts were chromatographed on a cryostatically cooled (-20 °C) column loaded with silica gel. The deep blue band was collected and freed of solvent under reduced pressure. The residue was then crystallized from light petroleum ether at -78 °C; yield 0.90 g (60%).

Acknowledgment. We are grateful to Professor F. G. A. Stone for guidance and the generous provision of research facilities at the University of Bristol. We thank the Royal Society and the SERC (U.K.) for support and for a research studentship (to S.A.)

OM950060R