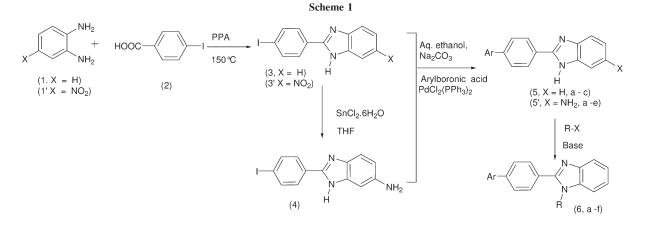

Microwave-Mediated Synthesis and Antibacterial Activity of Some Novel 2-(Substituted Biphenyl) Benzimidazoles *via* Suzuki-Miyaura Cross Coupling Reaction and Their *N*-Substituted Derivatives

Changdev Namdev Raut,^a Shailendra Mitharam Bharambe,^b Yogesh Ashok Pawar,^b and Pramod Pandurang Mahulikar^b*

 ^aGlenmark Research Center, T.T.C. Industrial Area, M.I.D.C., Mahape, Navi Mumbai-400 709, India
 ^bSchool of Chemical Sciences, North Maharashtra University, Jalgaon-425 001, India
 *E-mail: mahulikarpp@rediffmail.com Received March 28, 2010 DOI 10.1002/jhet.610
 Published online 21 January 2011 in Wiley Online Library (wileyonlinelibrary.com).

A series of some novel 2-(substituted biphenyl) benzimidazoles and their N-substituted derivatives were synthesized via microwave-mediated Suzuki-Miyaura coupling of 2-(4-iodophenyl)-1H-benzimidazole or 2-(4-iodophenyl)-6-amino-1H-benzimidazole and arylboronic acids. The method reported herein offers advantageous shorter reaction times, higher yields and is applicable to a large set of substrates. All the synthesized compounds were screened for their antibacterial activity against *Staphylococcus aureus* and *Salmonella typhimurium* bacterial species.

J. Heterocyclic Chem., 48, 419 (2011).


INTRODUCTION

Various substituted benzimidazoles are important compounds because of their varied biological activities [1-10]. These classes of compounds, which act as angiotensin II AT1 receptor blockers and used in the treatment of hypertension, are Sartans [11] that possess biphenyl moiety as an integral part. Losartan potassium is commercially known as Covance, Lorzaar and Losaprex; Telmisartan as Kinzalmono, Micardis and Pritor; Candesartan cilexetil as Amias, Atacand and Blopress; Olmesartan medoxomil as Benevas, Benicar and Olmetec and Irbesartan as Aprovel, Avapro and Karvea. Bifonazol having biphenyl as an integral part exhibits antifungal and antimycotic activity [12]. Fluoro substituted biphenyls like Diflunisal and Flurbiprofen sodium exhibit anti-inflammatory activity and Diflunisal [13] is commercially known as Dolobid and Flurbiprofen sodium as Ocufen [14].

The Suzuki-Miyaura cross coupling reaction has emerged as one of the most powerful platform for carbon–carbon bond formation because of its mild reaction conditions and its compatibility with a broad range of functional groups [15]. Suzuki-Miyaura cross coupling reactions on the multifunctional molecules requires protection and deprotection, which unnecessarily increases the number of steps in organic synthesis, thereby decreasing the yields and increases pollution level and time wastage [16–18]. Therefore organic chemists are engaged in efforts to find new reagents with increased selectivity.

Green chemistry is destined to be a global goal in the near future. In the course of studies on green chemistry one of our goals has been to design microwave-mediated synthetic methods in aqueous medium and make them more ecofriendly and consistent with higher atom economy. Microwave (MW) irradiation is widely used to promote chemical reactions and a number of reviews have advocated the use of MW technology in organic synthesis [19,20]. Microwave activation as a nonconventional energy source is becoming a very popular and useful technique in organic chemistry. The combination of solvent-free reaction conditions and microwave irradiation leads to significantly reduced reaction times, enhanced conversions and sometimes higher selectivity with several advantages for the ecofriendly approach, termed green chemistry [21].

Looking the importance of microwave irradiation in organic synthesis, we nicely demonstrated the use of microwave conditions for Suzuki-Miyaura cross coupling of unprotected halogen-substituted benzimidazoles. The synthesized compounds were tested for their antibacterial action against two different bacterial species namely, *Staphylococcus aureus* and *Salmonella*

Compd. No.	Arylboronic acid	Compd. No.	R-X
5a	2-Methoxyphenylboronic acid	6a	Ethyl chloroformate
5 b	4-Trifluoromethanephenylboronic acid	6b	Methanesulfonyl chloride
5c	2-[2,3-dihydro-1-methyl-2- triphenylmethyl-1 <i>H</i> -5-isoindolyl]- 1,3,6,2-dioxazaborocane	6с	Benzyl bromide
5'a	Phenylboronic acid	6d	4-Fluorobenzyl bromide
5'b	4-Chlorophenylboronic acid	6e	3,5-Difluorobenzyl bromide
5'c	2-Methoxyphenylboronic acid	6f	4-Chlorobenzyl bromide
5'd	4-Trifluoromethanenhenvlboronic acid		

- **5'd** 4-Trifluoromethanephenylboronic acid
- **5'e** 2-[2,3-dihydro-1-methyl-2triphenylmethyl-1*H*-5-isoindolyl]-1,3,6,2-dioxazaborocane

typhimurium in comparison with Cephalexin as a reference standard.

RESULT AND DISCUSSION

All the reactions were carried out under both microwave irradiation and conventional methods.

The condensation *o*-phenylenediamine (OPDA) (1) or 4-nitrobenzene 1,2-diamine (1') with 4-iodobenzoic acid (2) in presence of polyphosphoric acid (PPA) was carried out in microwave oven at 100 W for 5–10 minutes at 150°C to obtain the 2-(4-iodophenyl)-1*H*-benzimidazole (3) or 2-(4-iodophenyl)-6-nitro-1*H*-benzimidazole (3'). The reduction of (3') using SnCl₂.6H₂O in ethyl acetate and tetrahydrofuran yielded 2-(4-iodophenyl)-6amino-1*H*-benzimidazole (4).

Suzuki-Miyaura coupling of compounds 3, 4 ideally, the approach should allow access to the free NH and NH_2 benzimidazoles utilizing readily available components and catalysts directly without the need for subse-

quent deprotection to obtain a series of novel 2-(substituted biphenyl)-1*H*-benzimidazoles (**5**, **a-c**), or 2-(substituted biphenyl)-6-amino-1*H*-benzimidazoles (**5**', **a-e**).

The Suzuki-Miyaura coupling product **5b** was then alkylated or acylated at the benzimidazole -NH with different electrophilic reagents leading to functionalized derivatives (**6**, **a-f**) (Scheme 1). The structure of synthesized compounds was confirmed by IR, ¹H-NMR, Mass, and ¹³C-NMR.

EXPERIMENTAL

Melting points were recorded on a MRVIS series, Lab India Instrument and are uncorrected. The monitoring of reaction and checking of purity of the product were done using precoated silica gel plates and visualization using iodine chamber/ UV lamp. IR spectra were recorded on a Perkin-Elmer Spectrum One FTIR spectrometer. ¹H (300 MHz) and ¹³C (75 MHz) NMR spectra were recorded on a (Varian Mercury Vx) SWBB 300 MHz spectrometer. Chemical shifts (δ) are reported in ppm from internal TMS standard. The solvents for NMR spectra were CD₃OD. Mass spectra were recorded from an HP 1100 LC/MSD mass spectral instrument (positive and negative APCI ion source, 50–200 V, nitrogen). Elemental analysis was carried out on a Perkin-Elmer Series-II CHNS/O Analyzer 2400. All microwave reactions were carried out in Biotage (InitiatorTM Eight) microwave synthesizer. Arylboronic acid, *o*-phenylenediamine, 4-nitrobenzene-1,2-diamine, and 4-iodobenzoic acid were obtained from S. D. Fine Chem, Mumbai, India. Palladium catalyst was obtained from Aldrich, India.

Synthesis of compounds 3 and 3' via microwave irradiation method. A mixture of *o*-phenylenediamine (1) (1.29 g, 12 mmole) or 4-nitrobenzene-1,2-diamine (1') (1.83 g, 12 mmole), 4-iodobenzoic acid (2) (2.47 g, 10 mmole) and polyphosphoric acid (PPA) (20 g) were stirred and irradiated in microwave oven at 100 W for 10 min at 150°C in sealed vessel (monitored by TLC, Hexane: Ethyl acetate, 7:3). The reaction mixture was then cooled to room temperature and neutralized with aqueous ammonia solution. The product was extracted with ethyl acetate (10 mL \times 2). The combined organic layer was washed with 5N HCl (10 mL) and sodium bicarbonate solution (5%, 10 mL), water (10 mL) and then organic layer was dried over anhydrous sodium sulphate. The solvent was evaporated under reduced pressure to obtain crude product, which was recrystallized from ethyl acetate to afford an off-white solid 2-(4-iodophenyl)-1H-benzimidazole (3) or 2-(4-iodophenyl)-6-nitro-1H-benzimidazole (3').

General procedure for the synthesis of compounds 3 and 3'. A mixture of *o*-phenylenediamine (1) (1.29 g, 12 mmole) or 4-nitrobenzene-1, 2-diamine (1') (1.83 g, 12 mmole), 4-iodobenzoic acid (2) (2.47g, 10 mmole), and PPA (20 g) was stirred at 150°C for 6 h (monitored by TLC, Hexane: Ethyl acetate, 7:3). The reaction mixture was then cooled to room temperature and neutralized with aqueous ammonia solution. The product was extracted with ethyl acetate (10 mL \times 2). The combined organic layer was washed with 5N HCl (10 mL) and sodium bicarbonate solution (5%, 10 mL), water (10 mL) and then organic layer was dried over anhydrous sodium sulphate. The solvent was evaporated under reduced pressure to obtain crude product, which was recrystallized from ethyl acetate to afford an off-white solid 2-(4-iodophenyl)-1*H*-benzimidazole (3) or 2-(4-iodophenyl)-6-nitro-1*H*-benzimidazole (3').

Synthesis of 2-(4-iodophenyl)-6-amino-1*H*-benzimidazole (4). A solution of compound 3' (3.65 g, 10 mmole) dissolved in tetrahydrofuran (15 ml) and water (15 mL). Stannous chloride hexahydrate (10 g, 36 mmole) was added in the reaction mass room temperature. After complete addition, the mixture was stirred at room temperature for 30 min. Thereafter, the solution was allowed to the 40–45°C and stirring continued for 2 h (monitored by TLC, Hexane: Ethyl acetate 1:1). The mixture was again cooled to room temperature and then ethyl acetate (50 mL), and aqueous ammonia solution (20 mL) was added at same temperature. The ethyl acetate layer was separated, dried over anhydrous sodium sulphate and the solvent was evaporated under reduced pressure to obtain the crude product, which was recrystallized from ethyl acetate to afford a white solid of 2-(4-iodophenyl)-6-amino-1*H*-benzimidazole (4).

Synthesis of compound 4 by alternative method. A solution of compound 3' (3.65 g, 10 mmole) dissolved in methanol (20 mL). Palladium carbon (5%, 0.5 g) was added under nitrogen atmosphere. The reaction was hydrogenated in an autoclave at 60 psig pressure for 3 h (monitored by TLC, Hexane:

Ethyl acetate 1:1). After completion of reaction the mixture was filtered and solvent was evaporated under reduced pressure to obtain the crude product, which was recrystallized from ethyl acetate to afford a white solid **4**.

Synthesis of compounds (5, a-c) and (5', a-e) via microwave irradiation method. To the solution of compound 3 (3.19 g, 10 mmole) or 4 (3.35 g, 10 mmole) in ethanol (20 mL), arylboronic acids (12 mmole), aqueous sodium carbonate solution 10% (20 mmole) and bis(triphenylphosphine)palladium(II)dichloride (0.87 g, 0.125 mmole) were irradiated in microwave oven at 100 W for 5-15 min at 80°C in sealed vessel (monitored by TLC, Hexane: Ethyl acetate, 7:3). After completion of reaction, the mixture was cooled to room temperature and filtered through celite. The filtrate was extracted with ethyl acetate (25 mL \times 2), and the organic layer was washed with water (25 mL \times 2) and dried over anhydrous sodium sulphate. Evaporation of the solvent yielded crude products which were subjected to column chromatography (silica gel) using hexane and ethyl acetate mixture (9:1) to isolate the pure products (5, a-c) or (5', a-e), respectively.

Synthesis of compounds (5, a-c) and (5', a-e) by conventional heating method. To the solution of compound 3 (3.19 g, 10 mmole) or 4 (3.35 g, 10 mmole) in ethanol (50 mL), arylboronic acids (12 mmole), 10% aqueous sodium carbonate solution (20 mmole) and bis(triphenylphosphine)palladium(II)dichloride (0.87 g, 0.125 mmole) were added and the mass was refluxed for 8–10 h (monitored by TLC, Hexane: Ethyl acetate, 7:3). After completion of reaction, the mixture was cooled to room temperature and filtered through celite. The filtrate was extracted with ethyl acetate (50 mL \times 2), and the organic layer was washed with water (25 mL \times 2) and dried over anhydrous sodium sulphate. Evaporation of the solvent yielded crude products which were subjected to column chromatography (silica gel) using hexane and ethyl acetate mixture (9:1) to isolate the pure products (5, a-c) or (5', a-e).

Synthesis of compounds 6a and 6b *via* microwave irradiation method. To a solution of compound 5b (3.38 g, 10 mmole) in pyridine (10 mL), ethyl chloroformate (1.62 g, 15 mmole)or methane sulfonyl chloride (1.7 g, 15 mmole) were irradiated in microwave oven at 100 W for 5–10 min at 45– 50°C in sealed vessel (monitored by TLC, Hexane: Ethyl acetate, 1:1). After completion of reaction the mixture was cooled to room temperature, then a solution of 2*N* HCl was added to neutralize the reaction mixture. The solid was then extracted with ethyl acetate (50 mL), which was washed with aqueous sodium bicarbonate (5%, 25 mL), water (50 mL \times 2), and dried over anhydrous sodium sulphate. Solvent was evaporated under reduced pressure to give the crude product, which was recrystallized from ethyl acetate to afford compound 6a or 6b.

Synthesis of compounds 6a and 6b by conventional method. To a solution of compound 5b (3.38 g, 10 mmole) in pyridine (25 mL), ethyl chloroformate (1.62 g, 15 mmole) or methane sulfonyl chloride (1.7 g, 15 mmole) was added slowly at 0°C. After complete addition, the reaction mixture was allowed to attain room temperature and stirred for 6–8 h at same temperature (monitored by TLC, Hexane Ethyl acetate, 1:1). A solution of 2N HCl was then added to neutralize the reaction mixture. The solid was then extracted with ethyl acetate (50 mL), which was washed with aqueous sodium bicarbonate (5 %, 25 mL), water (50 mL \times 2), and dried over anhydrous sodium sulphate. Solvent was evaporated under

Sr. No.	Compd. No.	Molecular formula	M.P. (°C)	Microwave irradiation		Conventional heating	
				Time (min)	Yield (%)	Time (h)	Yield (%)
1	3	C ₁₃ H ₉ IN ₂	289-290	10	85	6	75
2	3′	C ₁₃ H ₈ IN ₃ O ₂		10	87	6	80
3	5a	$C_{20}H_{16}N_2O$	215-216	10	90	8	82
4	5b	$C_{20}H_{13}F_{3}N_{2}$	203-205	10	91	10	85
5	5c	C41H33N3	150-152	15	87	9	82
6	5′a	C ₁₉ H ₁₅ N ₃	250-254	10	92	8	78
7	5′b	$C_{19}H_{14}ClN_3$	220-221	15	90	10	75
8	5′c	C ₂₀ H ₁₇ N ₃ O	280-281	10	90	9	87
9	5′d	C ₂₀ H ₁₄ N ₃ F ₃	285-286	10	91	9	78
10	5′e	$C_{41}H_{34}N_4$	230-231	15	85	10	78
11	6a	C23H17N2O2F3	80-81	10	90	6	75
12	6b	C21H15N2O2SF3	240-245	15	90	10	85
13	6c	C ₂₇ H ₁₉ N ₂ F ₃	185-186	10	92	8	90
14	6d	$C_{27}H_{18}N_2F_4$	85-86	15	90	10	87
15	6e	$C_{27}H_{17}N_2F_5$	105-108	10	89	8	83
16	6f	$C_{27}H_{18}CIN_2F_3$	78-80	10	93	9	87

 Table 1

 Physical and yield comparison data of synthesized compounds

reduced pressure to give the crude product, which was recrystallized from ethyl acetate to afford compound **6a** or **6b**.

Synthesis of compounds (6, c-f) via microwave irradiation method. To a solution of compound 5b (3.38 g, 10 mmole) in acetonitrile (20 mL), aqueous sodium hydroxide solution (10%, 20 mmole) was added and the mixture was stirred for 15 min. Various benzyl bromides (15 mmole) were added and irradiated in microwave oven at 100 W for 5–10 min at 50–55°C in sealed vessel (monitored by TLC, Hexane: Ethyl acetate, 1:1). After the completion of the reaction, acetonitrile from the reaction mixture was evaporated under reduced pressure and water (50 mL) was added to residue to separate solid. The solid was then extracted with ethyl acetate (20 mL), the extract was washed with water (25 mL \times 2), and dried over anhydrous sodium sulphate. Solvent was evaporated under reduced pressure to afford the crude products, which were recrystallized from ethanol to yield pure compounds (6, c-f).

Synthesis of compounds (6, c-f) by conventional method. To a solution of compound 5b (3.38 g, 10 mmole) in acetonitrile (50 mL), aqueous sodium hydroxide solution (5%, 25 mL) was added and the mixture was stirred for 15 min. Various benzyl bromides (15 mmole) were then added slowly with stirring to the reaction mixture at 0-10°C. After complete addition, the reaction mixture was allowed to attain room temperature and stirred for 8-10 h (monitored by TLC, Hexane: Ethyl acetate, 7:3). After the completion of the reaction, acetonitrile from the reaction mixture was evaporated under reduced pressure and water (50 mL) was added to residue to separate solid. The solid was then extracted with ethyl acetate (50 mL), the extract was washed with water (50 mL \times 2), and dried over anhydrous sodium sulphate. Solvent was evaporated under reduced pressure to afford the crude products, which were recrystallized from ethanol to yield pure compounds (6, c- f). (Table 1)

BIOLOGICAL ACTIVITY

All the compounds prepared herein were screened for their antibacterial activities against *Staphylococcus aur*- *eus* (Gram positive) and *Salmonella typhimurium* (Gram negative) bacteria strains in comparison with Cephalexin as reference standard and the results are summarized in Tables 2 and 3. Most of the compounds tested were found to have good antibacterial activity against *Staphylococcus aureus* NCIM 5021 and *Salmonella typhimurium* NCIM 2501 when compared to standard.

CONCLUSION

We report a simple, rapid, efficient, economic, and environment-friendly method for the synthesis of some novel 2-(substituted biphenyl-2-yl)-1*H*-benzimidazoles and their *N*-substituted derivatives using microwavemediated Suzuki-Miyaura coupling reaction. The advantage of the microwave irradiation shorter reaction times with an excellent yield compared to conventional method and also tested their antibacterial activity. The compounds 5a, 5b, 5'b, 5'c, 5'c, 5'd, 6c, 6d, and 6e showed completely inhibited the growth of both test bacterial species, namely, *S. aureus* and *S. typhi*, however, 6c, 6d, and 6e showed better antibacterial activity against *S. typhi*.

2-(4-Iodophenyl-1*H***-benzimidazole (3).** IR (KBr): 3300, 2970, 1458, 1410, 1326, 1074, 834, 816 cm⁻¹; ¹H-NMR (DMSO-d₆) δ 7.22–7.26 (m, 2H, Ar—H), 7.62–7.63 (m, 2H, Ar—H), 7.78 (d, J = 8.4 Hz, 2H, Ar—H), 8.17 (d, J = 8.4 Hz, 2H, Ar—H), 13.08 (bs, 1H, —NH); *Anal.* Calcd. for C₁₃H₉IN₂: C, 48.77; H, 2.83; N, 8.75; Found: C, 48.64; H, 3.10; N, 8.57.

2-(2-Methoxybiphenyl-4-yl)-1*H*-benzimidazole (5a). IR (KBr): 3421, 2962, 1740, 1621, 1596, 1427, 1261, 1161, 1099, 799, 741 cm⁻¹; ¹H-NMR (CD₃OD): δ 3.82 (s, 3H, OCH₃), 7.01–7.10 (m, 2H, Ar–H), 7.24–7.27 (m,

	Concentrations (µg/mL)					
Comp. No.	1	10	100	200	500	Approx. MIC (µg/mL
5a	++	++	+			200
5b	++	++	+			200
5c	++	++	++	+		500
5'a	++	++	++	+		500
5″b	++	++	Р			200
5′c	++	++				100
5′ d	++	+				100
5′e	++	++	++	+		500
6a	++	++	+			200
6b	++	++	++	+		500
6c	++	++	+			200
6d	++	+				100
бе	++	Р				100
6f	++	++	Р			200
Cephalexin	++					10

 Table 2

 Antibacterial activity of synthesized compounds against staphylococcus aureus.

--, Total inhibition, no growth of organism; P, poor growth compared to controls; +, medium growth compared to controls; ++, confluent growth, no inhibition.

2H, Ar—H), 7.32–7.59 (m, 3H, Ar—H), 7.60–7.68 (m, 3H, Ar—H), 8.08–8.11 (m, 2H, Ar—H); ms: m/z 301.28 (M⁺+1); *Anal.* Calcd. for $C_{20}H_{16}N_2O$: C, 79.98; H, 5.37; N, 9.33; Found: C, 80.12; H, 5.15; N, 9.48.

2-(4-Ttrifluoromethylbiphenyl-4-yl)-1*H*-benzimidazole (**5b).** IR (KBr): 2924, 1618, 1449, 1428, 1333, 1262, 1159, 1079, 799 cm⁻¹; ¹H-NMR (CD₃OD): δ 7.21–7.24 (m, 2H, Ar—H), 7.49–7.64 (m, 4H, Ar—H), 7.78–7.92 (m, 4H, Ar—H), 8.14–8.16; (m, 2H, Ar—H); ms: m/z 339.30 (M⁺+1); *Anal.* Calcd. for C₂₀H₁₃ F₃N₂: C,

71.00; H, 3.87; F, 16.85; N, 8.28; Found: C, 71.14; H, 4.02; N, 8.06.

2-(1-Methyl-2-tritylisoindolin-4-yl)phenyl-1H-benzimidazole (5c). IR (KBr): 2924, 2854, 1747, 1594, 1463, 1377, 1314, 1276, 1156, 1032, 901, 848, 825, 768, 749, 708, 638.cm⁻¹; ¹H-NMR (CD₃OD): δ 1.44 (d, J = 6.6 Hz, 3H, -CH), 4.08-4.13, 4.53-4.54 (2H, -CH₂), 4.38-4.43 (m, 1H, -CH), 6.85 (d, J = 7.8 Hz, 2H, Ar-H), 6.94 (s, 1H, Ar-H), 7.02 (d, J = 6.9Hz, 2H, Ar-H), 7.06-7.16 (m, 4H, Ar-H), 7.25 (d, J = 3Hz,

	Concentrations (µg/mL)					
Comp. No.	1	10	100	200	500	Approx. MIC (µg/mL
5a	++	++	+	Р		500
5b	++	++	+			200
5c	++	++	++	++	р	500
5'a	++	++	++	++		500
5′b	++	++	+	Р		500
5′c	++	++	+			200
5′ d	++	++	+			200
5′e	++	++	++	+		500
6a	++	++	++	Р		500
6f	++	++	++	+		500
6b	++	++	++	+		500
6c	++	++	Р			200
6d	++	++	+			200
бе	++	++	Р			500
Cephalexin	++	++	Р			200

 Table 3

 Antibacterial activity of synthesized compounds against Salmonella typhimurium.

--, Total inhibition, no growth of organism; P, poor growth compared to controls; +, medium growth compared to controls; ++, confluent growth, no inhibition.

2H, Ar—H), 7.44–7.55 (m, 8H, Ar—H), 7.58–7.70 (m, 2H, Ar—H), 7.81 (s, 2H, Ar—H), 7.97 (s, 1H, Ar—H), 8.07 (d, 8.4Hz, 2H, Ar—H); ms: m/z Fragments 326.33 2-(1R)-2,3-dihydro-1-methyl-1*H*-5-isoindol, 243.25- triphenylmethyl; *Anal*. Calcd. for $C_{41}H_{33}N_3$: C, 86.74; H, 5.86; N, 7.40; Found: C, 86.64; H, 5.98; N, 7.52.

2-(Biphenyl-4-yl)-6-amino-1*H***-benzimidazole (5'a).** IR (KBr): 3421, 3320, 3205, 1635, 1476, 1476, 1419, 1363, 1123, 813, 770, 728 cm⁻¹; ¹H-NMR (CD₃OD): δ 6.76 (d, J = 8.1 Hz, 1 H, Ar—H), 6.93 (s, 1H, Ar—H), 7.35–7.47 (m, 4H, Ar—H), 7.66 (d, J = 7.8Hz, 2H, Ar—H), 7.75 (d, J = 7.8 Hz, 2H, Ar—H), 8.08 (d, J = 8.1Hz, 2H, Ar—H); Anal. Calcd. for C₁₉H₁₅N₃: C, 79.98; H, 5.30; N, 14.73; Found: C, 79.86; H, 5.38; N, 14.62.

2-(4-Chlorobiphenyl-4-yl)-6-amino-1*H*-benzimidazole (**5'b).** IR (KBr): 3396, 1902, 1635, 1475, 1436, 1403, 1261, 1180, 1091 cm⁻¹; ¹H-NMR (CD₃OD): δ 6.61– 6.68 (m, 1H, Ar—H), 7.30–7.35 (m, 3H, Ar—H), 7.45– 7.65 (m, 5H, Ar—H), 7.98 (d, J = 9 Hz, 2H, Ar—H); ¹³C-NMR (CD₃OD): δ 114.80, 117.65, 127.89, 127.89, 128.37, 128.37, 129.36, 129.36, 129.40, 129.40, 129.45, 129.89, 129.95, 130.03, 134.90, 139.72, 141.10, 145.18, 151.46, 157.46 (aromatic carbons); ms: m/z 320.37 (M⁺+1); *Anal.* Calcd. for C₁₉H₁₄ClN₃: C, 71.36; H, 4.41; N, 13.14; Found: C, 71.28; H, 4.54; N, 13.31.

2-(2-Methoxybiphenyl-4-yl)-6-amino-1*H*-benzimidazole (5'c). IR (KBr): 3391, 2036, 1612, 1509, 1471, 1392, 1259, 1239, 1181, 1124, 1057, 1025, 835, 762 cm⁻¹; ¹H-NMR (CD₃OD): δ 3.83 (s, 3H, OCH₃), 7.06–7.16 (m, 2H, Ar—H), 7.4 (d, *J* = 7.8Hz, 2H, Ar—H), 7.58 (d, *J* = 8.7Hz, 1H, Ar—H), 7.85–7.98 (m, 4H, Ar—H), 8.18 (d, *J* = 8.4 Hz, 2H, Ar—H); ¹³C-NMR (CD₃OD): δ 56.10 (OCH₃), 109.56, 112.8, 116.69, 121.67, 122.21, 122.47, 128.83, 128.83, 129.57, 131.40, 131.57, 131.57, 132.17, 132.68, 133.60, 133.63, 145.51, 146.45, 157.98 (aromatic carbons); ms: m/z 316.22 (M⁺+1); *Anal*. Calcd. for C₂₀H₁₇N₃O: C, 76.17; H, 5.43; N, 13.32; Found: 76.32; H, 5.30; N, 13.44.

2-(4-Trifluoromethylbiphenyl-4-yl)-6-amino-1H-benzimidazole (5'd). IR (KBr): 3399, 2712, 1634, 1571, 1473, 1367, 1337, 1261, 1122, 807, 826, 699 cm⁻¹; ¹H-NMR (CD₃OD): δ 7.51 (d, J = 8.1Hz, 1H, Ar—H), 7.62–7.67 (m, 2H, Ar—H), 7.79 (s, 1H, Ar—H), 7.88–8.01 (m, 5H, Ar—H), 8.2 (d, J = 8.1Hz, 2H, Ar—H); ¹³C-NMR (CD₃OD): δ 109.70, 116.81, 122.60, 122.68, 123.25, 124.87, 126.55, 129.79, 129.79, 131.40, 130.05, 130.05, 131.27, 132.11, 132.79, 133.75, 133.80, 145.56, 146.39, 157.42 (aromatic carbons); ms: m/z 354.34 (M⁺+1); *Anal.* Calcd. for C₂₀H₁₄N₃F₃: C, 67.98; H, 3.99; 13; N, 11.89; Found: C, 68.04; H, 4.18; 13; N, 11.74.

2-(1-Methyl-2-tritylisoindolin-4-yl)phenyl-6-amino-1*H***-benzimidazole (5'e).** IR (KBr): 2925, 2854, 2727, 1747, 1594, 1463, 1377, 1156, 1023, 722, 540 cm⁻¹; ¹H-NMR (CD₃OD): δ 1.39 (d, *J* = 6.8 Hz, 3H, -CH), 3.99–4.05,

4.35–4.45 (2H, –CH₂), 4.50–4.56 (m, 1H, –CH), 4.99 (s, 1H, –NH), 6.51(d, J = 8.7Hz, 1H, Ar–H), 6.57(d, J = 7.8Hz, 1H, Ar–H), 6.71 (m, 1H, Ar–H), 6.91 (d, J = 7.8Hz, 2H, Ar–H), 7.07–7.20 (m, 2H, Ar–H), 7.29 (d, J = 8.7Hz, 2H, Ar–H), 7.43–7.47 (m, 6H, Ar–H), 7.50–7.56 (m, 6H, Ar–H), 7.62–7.79 (m, 2H, Ar–H), 8.04 (d, J = 8.1Hz, 2H, Ar–H); ms: m/z 583.25 (M⁺+1); Anal. Calcd. for C₄₁H₃₄N₄: C, 84.50; H, 5.88; N, 9.61; Found: C, 84.61; H, 5.76; N, 9.74.

2-(4-Ttrifluoromethylbiphenyl-4-yl)-1-(ethylcarboxylate)-1*H***-benzimidazole (6a). IR (KBr): 2936, 1739, 1476,1 452, 1398, 1377,1338, 1283, 1214, 1065, 1007, 854 cm⁻¹; ¹H-NMR (CD₃OD): \delta 1.15–1.26 (m, 3H, --CH₃), 4.35–4.42 (m, 2H, CH₂), 7.39–7.47 (m, 2H, Ar--H), 7.64–7.69 (m, 3H, Ar--H), 7.71–7.74 (m, 4H, Ar--H), 7.96–8.08 (m, 2H, Ar--H), 8.1 (d,** *J* **= 2.1Hz, 1H, Ar--H); ms: m/z 411.04 (M⁺+1);** *Anal.* **Calcd. for C₂₃H₁₇N₂O₂F₃: C, 67.31; H, 4.18; F, 13.89; N, 6.83; Found: C, 67.22; H, 4.11; F, 13.97; N, 6.72.**

2-(4-Trifluoromethylbiphenyl-4-yl)-1-(methylsulfonyl)-1H-benzimidazloe (6b). IR (KBr): 3420, 2627, 1633, 1518, 1458, 1436, 1334, 1264, 1239, 1149, 1037, 796, 751 cm⁻¹; ¹H-NMR (CD₃OD): δ 2.7 (s, 3H, --CH₃), 7.63–7.66 (m, 2H, Ar-H), 7.71–7.76 (m, 2H, Ar-H), 7.84–7.87 (m, 2H, Ar-H), 7.88–8.09 (m, 4H, Ar-H), 8.26 (d, J = 8.4 Hz, 2 H, Ar-H); ms: m/z Fragment 339.2 (fragment of without methane sulfonyl group); *Anal.* Calcd. for C₂₁H₁₅N₂O₂SF₃: C, 60.57; H, 3.63; N, 6.73; Found: C, 60.66; H, 3.72; N, 6.64.

2-(4-Trifluoromethylbiphenyl-4-yl)-1-benzyl-1H-benzimidazole (6c). IR (KBr): 2958, 1600, 1509, 1470, 1452, 1389, 1271, 1222, 1190, 1168, 1006, 836 cm⁻¹; ¹H-NMR (CD₃OD): δ 5.68 (s, 2H, CH₂), 7.04–7.09 (m, 2H, Ar—H), 7.18–7.22 (m, 2H, Ar—H), 7.72–7.80 (m, 7H, Ar—H), 7.93–8.03 (m, 6H, Ar—H); ms: m/z 429.25 (M⁺+1); *Anal.* Calcd. for C₂₇H₁₉N₂F₃: C, 75.69; H, 4.47; N, 6.54; Found: C, 75.71; H, 4.36; N, 6.65.

2-(4-Trifluoromethylbiphenyl-4-yl)-1-(4-fluorobenzyl)-1*H*-benzimidazole (6d). IR (KBr): 2922, 2853, 1747, 1610, 1494, 1460, 1406, 1377, 1337, 1264, 1162, 1122, 1097, 1075, 1035, 978, 900, 851, 805, 764 cm⁻¹; ¹H-NMR (CD₃OD): δ 5.69 (s, 2H, CH₂), 7.05 (d, *J* = 6.9 Hz, 2H, Ar—H), 7.16–7.21(m, 3H, Ar—H), 7.27–7.39 (m, 3H, Ar—H), 7.62–7.67 (m, 3H, Ar—H), 7.73–7.79 (m, 3H, Ar—H), 7.94 (d, *J* = 8.7 Hz, 2H, Ar—H); ms: m/z 447.28 (M⁺+1); *Anal.* Calcd. for C₂₇H₁₈N₂F₄: C, 72.64; H, 4.06; N, 6.27; Found: C, 72.76; H, 4.18; N, 6.20.

2-(4-Trifluoromethylbiphenyl-4-yl)-1-(3,5-difluorobenzyl)-1H-benzimidazole (6e). IR (KBr): 2924, 2854, 1731, 1611, 1520, 1458, 1438, 1332, 1161, 1126, 804, 751 cm⁻¹; ¹H-NMR (CD₃OD): δ 5.58 (s, 2H, -CH₂), 6.83 (d, J = 8.1Hz, 1H, Ar-H), 6.96–7.01 (m, 1H, Ar-H), 7.14–7.23 (m, 1H, Ar-H), 7.29–7.37 (m, 2H, Ar-H), 7.41–7.44 (m, 1H, Ar-H), 7.64–7.69 (m, 2H, Ar-H), 7.75– 7.86 (m, 5H, Ar–H), 7.96 (s, 2H, Ar–H); ms: m/z 465.35 (M⁺+1); *Anal*. Calcd. for $C_{27}H_{17}N_2F_5$: C, 69.83; H, 3.69; N, 6.03; Found: C, 69.72; H, 3.58; N, 6.13.

2-(4-Trifluoromethylbiphenyl-4-yl)-1-(4-chlorobenzyl)-1*H*-benzimidzloe (6f). IR (KBr): 2926, 1898, 1611, 1406, 1334, 1263, 1164, 1097, 1014, 801 cm⁻¹; ¹H-NMR (CD₃OD): δ 5.63, (s, 2H, -CH₂), 7.04 (d, *J* = 7.8 Hz, 1H, Ar-H), 7.16 (d, *J* = 7.8 Hz, 1H, Ar-H), 7.30–7.39 (m, 7H, Ar-H), 7.68–7.85 (m, 5H, Ar-H), 7.96–8.0 (m, 2H, Ar-H); ms: m/z 463.12 (M⁺+1); *Anal.* Calcd. for C₂₇H₁₈ClN₂F₃: C, 70.06; H, 3.92; N, 6.05 Found: C, 70.14; H, 3.81; N, 5.82.

Acknowledgment. The authors thank Glenmark Pharmaceuticals Limited for grant permission to carry out the present research work.

REFERENCES AND NOTES

[1] Podunavac-Kuzmanović, S. O.; Leovac, V. M.; Perišić-Janjić, N. U.; Rogan, J.; Balaž, J. J Serb Chem Soc 1999, 64, 381.

[2] Podunavac-Kuzmanović, S. O.; Cvetković, D. J Serb Chem Soc 2007, 75, 459.

[3] Ayhan-Kilcigil, G.; Altanlar, N. Turk J Chem 2006, 30, 223.

[4] Perišić-Janjić, N. U.; Podunavac-Kuzmanović, S. O.; Balaž,J. S.; Vlaović, D. J Planar Chromatogr 2000, 13, 123.

[5] Podunavac-Kuzmanović, S. O.; Markov, S. L.; Barna, D. J. J Theor Comp Chem 2007, 6, 687.

[6] Podunavac-Kuzmanović, S. O.; Cvetković, D. M. Cent Eur J Occupat Environ Med 2006, 12, 55.

[7] Podunavac-Kuzmanović, S. O.; Markov, S. L. Cent Eur J Occupat Environ Med 2006, 12, 61.

[8] Podunavac-Kuzmanović, S. O.; Barna, D. J.; Cvetković, D. M. Acta Periodica Technologica 2007, 38, 139.

[9] Goker, H.; Kus, C.; Boykin, D. W.; Yildiz, S.; Altanlar, N. Bioorg Med Chem 2007, 17, 2233.

[10] Ozden, S.; Atabey, D.; Yildiz, S.; Goker, H. Bioorg Med Chem 2005, 13, 1587.

[11] (a) Carini, D. J.; Duncia, J. V.; Chiu, A. T.; Gregory, G. B.; Johnson, A. L.; Price W. A.; Wells, G. J.; Wong, P. C.; Calabrese, J. C.; Timmermans, P. B. J Med Chem 1990, 33, 1312; (b) Carini, D. J.; Duncia, J. V.; Aldrich, P. E.; Chiu, A. T.; Johnson, A. L.; Pierce, M. E.; Santella, J. B., III; Price, W. A.; Wells, G. J.; Wexler, R. R.; Wong, P. C.; Yoo, S. E.; Timmermans, P. B. J Med Chem 1991, 34, 2525.

[12] (a) Plempel, M.; Regel, E.; Buchel, K. H. Arz Forsch.
 1983, 33, 517; (b) Patzschke, K.; Riter, W.; Siefert, H. M.; Wegner, L.
 A. Arz Forsch. 1983, 33, 745.

[13] Hannah, J.; Ruyle, W. V.; Jones, H.; Matzuk, A, R.; Kelly, K. W.; Witzel, B. E.; Holtz, W. J.; Houser, R, A.; Shen, T, Y.; Sarett, L, H. J Med Chem 1978, 21, 1093.

[14] Sunshine, A. Am J Med 1986, 80, Suppl 1, 153.

[15] For reviews, see: (a) Miyaura, N.; Suzuki, A. Chem Rev 1995, 95, 2457; (b) Chemler, S. R.; Trauner, D.; Danishefsky, S. J. Angew Chem, Int Ed 2001, 40, 4544; (c) Suzuki, A.; Brown, H. C. Organic Syntheses Via Boranes; Aldrich Chemical Co., Inc.: Milwaukee, 2002; Vol. 3; (d) Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron 2002, 58, 9633; (e) Bellina, F.; Carpita, A.; Rossi, R. Synthesis 2004, 2419.

[16] Jesús, Ezquerra; Carlos, Lamas; Alfredo, Pastor; JoséL; García-Navío; Juan, J. Vaquero. Tetrahedron 1997, 53, 12755–12764.

[17] Maxime D. Crozet, Laura Zink, Vincent Remusat, Christophe Curti, Patrice Vanelle, Synthesis 2009, 18, 3150–3156.

[18] Gong, Y.; He, W. Org Lett 2002, 4, 3803–3805.

[19] Loupy, A.; Petit, A.; Hamelin, J.; Texier-Boullet, F.; Jacquault, P.; Mathe, D. Synthesis 1998, 9, 1213.

[20] Reviews: (a) Caddick, S. Tetrahedron 1995, 51, 10403; (b)
Strauss, C. R.; Trainor, R. W. Aust J Chem 1995, 48, 1665; (c)
Larhed, M.; Hallberg, A. J Org Chem 1996, 61, 9582; (d) Kaiser, N.
F. K.; Bremberg, U.; Larhed, M.; Moberg, C.; Hallberg, A. Angew
Chem 2000, 39, 3595.

[21] Varma, S. Green Chem 1999, 1, 43.