
An Extremely Efficient Three-Component Reaction of Aldehydes/ Ketones, Amines, and Phosphites (Kabachnik–Fields Reaction) for the Synthesis of α-Aminophosphonates Catalyzed by Magnesium Perchlorate

Srikant Bhagat and Asit K. Chakraborti*

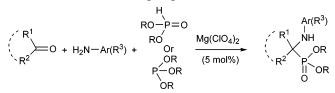
Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar 160 062, Punjab, India

akchakraborti@niper.ac.in

Received October 16, 2006

Commercially available magnesium perchlorate is reported as an extremely efficient catalyst for the synthesis of α -aminophosphonates. A three-component reaction (3-CR) of an amine, an aldehyde or a ketone, and a di-/trialkyl phosphite (Kabachnik-Fields reaction) took place in one pot under solventfree conditions to afford the corresponding α -aminophosphonates in high yields and short times. The use of solvent retards the rate of the reaction and requires a much longer reaction time than that for neat conditions. The reactions involving an aldehyde, an aromatic amine without any electron-withdrawing substituent, and a phosphite are carried out at rt. The reactions involving cyclic ketones, aromatic amines with an electron-withdrawing substituent, and aryl alkyl ketone (e.g., acetophenone) require longer reaction times at rt or heating. Magnesium perchlorate was found to be superior to other metal perchlorates and metal triflates during the reaction of 4-methoxybenzaldehyde, 2,4-dinitroaniline, and dimethyl phosphite. The catalytic activity of various magnesium compounds was influenced by the counteranion, and magnesium perchlorate was found to be the most effective. The reaction was found to be general with di-/trialkyl phosphites and diaryl phosphite. The $Mg(ClO_4)_2$ -catalyzed α -aminophosphonate synthesis in the present study perhaps represents a true three-component reaction as no intermediate formation of either an imine or α -hydroxy phosphonate was observed that indicated the simultaneous involvement of the carbonyl compound, the amine, and the phosphite in the transition state.

Introduction


The α -aminophosphonate moiety is a versatile and novel pharmacophore due to the broad spectrum of biological activity exhibited by compounds bearing this structural unit.¹ Thus, the development of new synthetic methodologies for α -aminophosphonates² has attracted the attention of medicinal/organic chemists. Recently, various methodologies have been developed for the synthesis of α -aminophosphonates.³ However, still there remains a need to develop a more efficient method, particularly keeping in view the disadvantages associated with some of the reported procedures such as the requirement of solvent, ad-

ditional reagents, heating, long time, costly and moisture sensitive catalysts, special apparatus, etc., and the reported methodologies do not work well with electron-deficient amines such as nitro anilines.

While designing a new catalyst, we thought that the use of a more effective electrophilic activation agent should accelerate the overall reaction rate, and a metal salt derived from a strong protic acid should be an ideal contender. The large negative H_0 value of -14.1 of TfOH⁴ makes TfOH the strongest protic acid, and thus, metal triflates drew attention as catalysts.^{3f,g,k,q} However, TfOH is liberated from metal triflates and may be the actual catalytic agent.⁵ The in situ generation of TfOH might be the reason for the potential side reactions (e.g., dehydration, rearrangement, etc.) with acid-sensitive substrates or deactivation

^{*} To whom correspondence should be addressed. Fax: 91-(0)-172 2214692; Tel: 91-(0)-172 2214683.

SCHEME 1. $Mg(ClO_4)_2$ -Catalyzed 3-CR of an Aldehyde/ Ketone, an Amine, and Di-/Trialkyl Phosphite Leading to the Formation of α -Aminophosphonate

of the amine substrates due to salt formation. Thus, metal triflatecatalyzed reactions are often carried out in the presence of stoichiometric amounts of additional reagents such as molecular sieves, MgSO₄, etc. This brings the attention to triflimides⁶ as HNTf₂ is a weaker Brønsted acid than TfOH⁷ and ligand exchange is not common with triflimides.⁸ However, metal triflimides are costly, very few are available commercially, and they require additional efforts and costly reagents to prepare.⁹ Hence, we focused our attention on catalysts derived from HClO₄ as it is weaker than TfOH. Recently, we reported metal perchlorates as efficient electrophilic activation catalysts for acylation, imine formation, thia-Michael addition, and acylal formation reactions.¹⁰

Results and Discussion

Herein, we report that $Mg(ClO_4)_2$ is an extremely efficient catalyst for the formation of α -aminophosphonate by a onepot, three-component reaction of an aldehyde/ketone, an amine, and a di-/trialkyl phosphite under solvent-free conditions (Scheme 1).

To determine the best experimental conditions, the reaction of 4-methoxybenzaldehyde (1) as a representative less electrophilic aldehyde, 2,4-dinitroaniline (2) as an electron-deficient and sterically hindered amine, and dimethyl phosphite (DMP) was considered as the model (Table 1). The best results were obtained in the presence of Mg(ClO₄)₂ at rt affording the desired α -aminophosphonate dimethyl [(2,4-dinitrophenylamino)-(4methoxyphenyl)methyl]phosphonate (3) in 85% yield after 6 h at rt and after 30 min at 80 °C (entries 1 and 2, Table 1). The

TABLE 1. Mg(ClO₄)₂-Catalyzed Synthesis of α -Aminophosphonate during the Reaction of 1, 2, and DMP under Various Conditions^{*a*}

entry	catalyst	solvent	$T(^{\circ}\mathrm{C})$	time (h)	yield ^{b,c} (%)
1	Mg(ClO ₄) ₂	neat	80	0.5	85
2	$Mg(ClO_4)_2$	neat	rt	6	85
3	$Mg(ClO_4)_2$	DCM	rt	24	81
4	$Mg(ClO_4)_2$	MeCN	rt	24	81
5	$Mg(ClO_4)_2$	THF	rt	24	80
6	Mg(ClO ₄) ₂ •6H ₂ O	neat	rt	10	40^d
7	Mg(ClO ₄) ₂ •6H ₂ O	neat	80	6	60^d
8	$Mg(ClO_4)_2$	H_2O	rt	24	nil^d

^{*a*} **1** (2.5 mmol) was treated with **2** (2.5 mmol) and DMP (2.5 mmol) in the presence of the catalyst (5 mol %) under solvent-free conditions (except for entries 3-5 and 8). ^{*b*} Yield of the isolated and purified **3**. ^{*c*} The product was characterized by the IR, ¹H and ¹³C NMR, and MS. ^{*d*} The unreacted starting materials remained unchanged (TLC).

order of mixing the substrates did not influence the product yield. The use of organic solvents required longer reaction times (entries 3–5, Table 1), but no significant amount of **3** was formed in carrying out the reaction in water (entry 8, Table 1). However, the use of magnesium perchlorate hydrate [Mg-(ClO₄)₂•6H₂O] was less effective (entries 6 and 7, Table 1). A similar decrease in the catalytic property of Mg(ClO₄)₂•6H₂O compared to that of Mg(ClO₄)₂ has been observed in the acylation reactions.^{10a,11}

We planned to evaluate the catalytic property of $Mg(ClO_4)_2$ with other metal perchlorates during the three-component reaction of **1**, **2**, and DMP (Table 2). The best results were obtained with $Mg(ClO_4)_2$ either at rt for 6 h or at 80 °C for 30 min. In all

(6) Ishihara, K.; Karumi, Y.; Kubota, M.; Yamamoto, H. *Synlett* **1990**, 839

(7) Foropoulos, J.; DesMarteau, D. D. Inorg. Chem. 1984, 23, 3720.
(8) Chakraborti, A. K.; Shivani J. Org. Chem. 2006, 71, 5785 and

references therein.

(9) Ishihara, K.; Kubota, M.; Yamamoto, H. Synlett 1996, 265.

(10) (a) Chakraborti, A. K.; Sharma, L.; Gulhane, R.; Shivani. *Tetrahedron* 2003, 59, 7661. (b) Chakraborti, A. K.; Gulhane, R.; Shivani. *Synlett* 2003, 1805. (c) Chakraborti, A. K.; Bhagat, S.; Rudrawar, S. *Tetrahedron Lett.* 2004, 45, 7641. (d) Garg, S. K.; Kumar, R. Chakraborti, A. K. *Synlett* 2005, 1370. (e) Kumar, R.; Thilagavathi, R.; Gulhane, R.; Chakraborti, A. K. *J. Mol. Catal. A: Chem.* 2006, 250, 227. (f) Shivani; Chakraborti, A. K. *J. Mol. Catal. A: Chem.* 2006, doi:10.1016/j.molcata.2006.08.047. (g) Shivani; Gulhane, R.; Chakraborti, A. K. *J. Mol. Catal. A: Chem.* 2006, doi:10.1016/j.molcata.2006.08.047.

(11) Bartoli, G.; Bosco, M.; Dalpozzo, R.; Marcantoni, E.; Massaccesi, M.; Rinaldi, S.; Sambri, L. Synlett 2003, 39.

⁽¹⁾ Enzyme inhibitory: (a) LAP: Giannousis, P. P.; Bartlett, P. A. J. Med. Chem. 1987, 30, 1603. Grembecka, J.; Mucha, A.; Cierpicki, T.; Kafarski, P. J. Med. Chem. 2003, 46, 2641. (b) Renin: Allen, M. A.; Fuhrer, W.; Tuck, B.; Wade, R.; Wood, J. M. J. Med. Chem. 1989, 32, 1652.(c) Class C β-lactamase: Allen, J. G.; Atherton, F. R.; Hall, M. J.; Hassall, C. H.; Holmes, S. W.; Lambert, R. W.; Nisbet, L. J.; Ringrose, P. S. Nature **1978**, 272, 56. Pratt, R. F. *Science* **1989**, 246, 917. (d) Human collagenase: Bird, J.; De Mello, R. C.; Harper, G. P.; Hunter, D. J.; Karran, E. H.; Markwell, R. E.; Miles-Williams, A. J.; Rahman, S. S.; Ward, R. S. J. Med. Chem. 1994, 37, 158. (e) Phosphatase: Beers, S. A.; Schwender, C. F.; Loughney, D. A.; Malloy, E.; Demarest, K.; Jordan, J. Bioorg. Med. Chem. 1996, 4, 1693. (f) S-Adenosyl-L-homocysteine hydrolase: Steere, J. A.; Sampson, P. B.; Honek, J. F. Bioorg. Med. Chem. Lett. 2002, 12, 457. (g) $\alpha(2-6)$ Sialyltransferase transition-state analogue: Skropeta, D.; Schwörer, R.; Schmidt, R. R. Bioorg. Med. Chem. Lett. 2003, 13, 3351. Antifungal: (h) Maier, L.; Diel, P. J. Phosphorous, Sulfur, Silicon 1991, 57, 57. Antioxidants: (i) Bonarska, D.; Kleszczyska, H.; Sarapuk, J. Cell. Mol. Biol. Lett. 2002, 7, 929. Herbicidal: (j) Nska, H.; Bonarska, D.; Bielecki, K.; Sarapuk, J. Cell. Mol. Biol. Lett. 2002, 7, 929.

^{(2) (}a) Kabachnik, M. I.; Medve, T. Y. Dokl. Akad. Nauk SSSR 1952,
83, 689; Chem. Abstr. 1953, 47, 2724b. (b) Fields, E. K. J. Am. Chem.
Soc. 1952, 74, 1528. (c) Pudovik, A. N. Dokl. Akad. Nauk SSSR 1952, 83,
865; Chem. Abstr. 1953, 47, 4300. (d) Petrov, K. A.; Chauzov, V. A.;
Erokhina, T. S. Usp. Khim. 1974, 43, 2045; Chem. Abstr. 1975, 82, 43486.
(e) Redmore, D. Topics in Phosphorous Chemistry; Grifith, E. J., Grayson,
M., Eds.; John Wiley & Sons: New York, 1976; Vol. 8, p 515. (f)
Cherkasov, R. A.; Galkin, V. I. Russ. Chem. Rev. 1998, 67, 857. (g) Fields,
S. C. Tetrahedron 1999, 55, 12237. (h) Moonen, K.; Laureyn, I.; Stevens,
C. V. Chem. Rev. 2004, 104, 6177.

^{(3) (}a) Microreactor: Van Meenen, E.; Moonen, K.; Acke, D.; Stevens, V. ARKIVOC 2006 (i), 31. (b) p-TsOH: Kaboudin, B.; Moradi, K. Tetrahedron Lett. 2005, 46, 2989. (c) Me₂S+BrBr-: Kaboudin, B.; Moradi, K. Tetrahedron Lett. 2005, 46, 1209. (d) Microwave heating: Kabachnik, M. M.; Zobnina, E. V.; Beletskaya, I. P. Synlett 2005, 1393. (e) SiO2 under microwave heating: Zhan, Z.-P.; Yang, R.-F.; Li, J.-P. Chem. Lett. 2005, 34, 1042. (f) In(OTf)3-MgSO4: Ghosh, R.; Maiti, S.; Chakraborty, A.; Maiti, D. K. J. Mol. Catal. A 2004, 210, 53. (g) M(OTf)n: Firouzabadi, H.; Iranpoor, N.; Sobhani, S. Synthesis 2004, 2692. (h) Thiourea dvt.: Joly, G. D.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 4102. (i) Al(tetratert-butylphthalocyanine)Cl-MgSO4: Matveeva, E. D.; Podrugina, T. A.; Tishkovskaya, E. V.; Tomilova, L. G.; Zefirov, N. S. Synlett 2003, 2321. (j) Ionic liquid: Yadav, J. S.; Reddy, B. V. S.; Sreedhar, P. Green Chem. 2002, 4, 436-438. (k) Ln(OTf)₃ in ionic liquid: Lee, S.; Park, J. H.; Kang, J.; Lee, J. K. Chem. Commun. 2001, 1698. (1) Al₂O₃ under microwave heating: Kaboudin, B.; Nazari, R. Tetrahedron Lett. 2001, 42, 8211. (m) Montmorillonite KSF under microwave heating: Yadav, J. S.; Reddy, B. V. S.; Madan, C. Synlett **2001**, 1131. (n) TaCl₅–SiO₂: Chandrasekhar, S.; Prakash, S. J.; Jagadeshwar, V.; Narsihmulu, C. *Tetrahedron Lett.* **2001**, 42, 5561. (o) Sc(O₃SOC₁₂H₂₅)₃: Manabe, K.; Kobayashi, S. Chem. *Commun.* **2000**, 669. (p) InCl₃: Ranu, B. C.; Hajra, A.; Jana, U. *Org. Lett.* **1999**, *1*, 1141. (q) Ln(OTf₁₃-4 Å MS/MgSO₄: Qian, C.; Huang, T. *J. Org.* Chem. 1998, 63, 4125.

 ⁽⁴⁾ Olah, G. A.; Prakash, G. K. S. *Superacids*; Wiley: New York, 1985.
 (5) Dumeunier, R.; Markó, I. E. *Tetrahedron Lett.* 2004, 45, 825.

 TABLE 2.
 Various Metal Perchlorate Catalyzed Synthesis of 3

 during the Reaction of 1, 2, and DMP under Various Conditions^a

entry	catalyst	$T(^{\circ}\mathrm{C})$	time (h)	yield ^{b,c} (%)
1	Mg(ClO ₄) ₂	80	0.5	85
2	Mg(ClO ₄) ₂	rt	6	85
3	LiClO ₄	rt	10	$trace^d$
4	LiClO ₄	80	6	40^{d}
5	LPDE	rt	24	$20^{d,e}$
6	NH ₄ ClO ₄	80	1	25^{d}
7	NH ₄ ClO ₄	rt	10	5^d
8	Zn(ClO ₄) ₂ •6H ₂ O	80	1	60^d
9	Zn(ClO ₄) ₂ •6H ₂ O	rt	10	30^d
10	Fe(ClO ₄) ₂ •xH ₂ O	80	1	40^d
11	$Fe(ClO_4)_2 \cdot xH_2O$	rt	10	12^{d}
12	Fe(ClO ₄) ₃ •xH ₂ O	80	1	40^{d}
13	Fe(ClO ₄) ₃ •xH ₂ O	rt	10	15^{d}
14	$Co(ClO_4)_2 \cdot 6H_2O$	80	1	40^d
15	Co(ClO ₄) ₂ •6H ₂ O	rt	10	20^d
16	Cu(ClO ₄) ₂ •6H ₂ O	80	1	60^d
17	Cu(ClO ₄) ₂ •6H ₂ O	rt	10	5^d
18	ZrO(ClO ₄) ₂ •6H ₂ O	80	1	50^d
19	ZrO(ClO ₄) ₂ •6H ₂ O	rt	10	20^{d}
20	BiO(ClO ₄) ₂ •xH ₂ O	80	1	70^{d}
21	BiO(ClO ₄) ₂ •6H ₂ O	rt	10	30^d
22	In(ClO ₄) ₃ •xH ₂ O	80	1	60^d
23	In(ClO ₄) ₃ •6H ₂ O	rt	10	20^d
24	Yb(ClO ₄) ₃	80	1	$30^{d,f}$
25	Yb(ClO ₄) ₃	rt	10	nil ^{d,f}

^{*a*} **1** (2.5 mmol) was treated with **2** (2.5 mmol) and DMP (2.5 mmol) in the presence of the catalyst (5 mol % except for entry 5) under solventfree conditions (except for entries 5, 23, and 24). ^{*b*} Yield of the isolated and purified **3**. ^{*c*} The product was characterized by the IR, ¹H and ¹³C NMR, and MS. ^{*d*} The unreacted starting materials remained unchanged (TLC).^{*e*} 3 equiv of LiClO₄ (as a 5 M solution in Et₂O) was used. ^{*f*} A 40% (wt/vol) aqueous solution was used.

cases where the desired aminophosphonate **3** was formed in poor yield, the unreacted starting materials remained unchanged (TLC).

The present method is far more superior to the use of $LiClO_4$,¹² which required 2–10 equiv of $LiClO_4$, additional reagent (e.g., TMSCI), and solvent. The superiority of Mg-(ClO₄)₂ over LiClO₄ was due to the better electrophilic activation ability of Mg⁺² ion compared to that of Li⁺ as the former cation has a higher charge to size ratio (the Z^2/r values of Mg⁺² and Li⁺ are 5.56 and 1.35 e² m⁻¹⁰, respectively).¹³ The inferior catalytic property of Fe(ClO₄)₂·6H₂O, Zn(ClO₄)₂·6H₂O, Co- $(ClO_4)_2 \cdot 6H_2O$, and $Cu(ClO_4)_2 \cdot 6H_2O$ was due to the lower Z^2/r values of 5.19, 5.33, 5.40, and 5.48 $e^2 m^{-10}$, respectively, of the Fe⁺², Zn^{+2} , Co^{+2} , and Cu^{+2} ions.¹² However, although the Z^2/r values of 8.82, 11.39, 13.85, and 22.22 e² m⁻¹⁰, respectively, of the Bi⁺³, In⁺³, Fe⁺³, and Zr⁺⁴ ions are higher than that of the Mg⁺² ion the lower hydrolysis constants (pK^{a}_{h}) values¹³ of 1.58, 3.70, 2.19, and 0.22 of these ions compared to a value of 11.42 of Mg^{+2} make these metal hydrates less effective as the associated water molecules decreased the electrophilicity of the central metal ions. Thus, the lack of appreciable catalytic activity of Mg(ClO₄)₂•6H₂O was due to the decrease of the electrophilic property of the Mg⁺² ion by the water molecules in the hydrate.

The superiority of the present methodology over some of the recently reported procedures was established by comparison of

TABLE 3. Comparison of the Catalytic Efficiency of $Mg(ClO_4)_2$ with Various Catalysts for the Synthesis of 3 during the Reaction of 1, 2, and DMP^a

entry	catalyst	solvent	$T(^{\circ}\mathrm{C})$	time (h)	yield ^{b,c} (%)
1	Mg(ClO ₄) ₂	neat	80	0.5	85
2	$Mg(ClO_4)_2$	neat	rt	6	85
3	LiOTf	neat	80	6	20^d
4	$Mg(OTf)_2$	neat	80	6	50^{d}
5	Al(OTf) ₃	neat	80	6	20^d
6	$Cu(OTf)_2$	neat	80	6	40^{d}
7	Sc(OTf) ₃	neat	80	6	50^e
8	Yb(OTf)3-MgSO4	DCM	rt	48	tracef
9	In(OTf)3-MgSO4	THF	80	48	10^{g}
10	InCl ₃	THF	rt	24	trace ^h
11	ZrCl ₄	MeCN	rt	24	tracei
12	$Cu(BF_4)_2$	neat	80	24	30
13	[bmIm]BF ₄	[bmIm]BF4	rt	24	$25^{j,k}$

^{*a*} **1** (2.5 mmol) was treated with **2** (2.5 mmol) and DMP (2.5 mmol) in the presence of the catalyst (5 mol % except for entry 13) under solvent-free conditions (except for entries 8–11 and 13). ^{*b*} Yield of the isolated and purified **3**. ^{*c*} The product was characterized by the IR, ¹H and ¹³C NMR, and MS. ^{*d*} Compare with ref 3g. ^{*e*} Compare with ref 3k. ^{*f*} Compare with ref 3g. ^{*s*} Compare with ref 3, ^{*k*} Compare with ref 20. ^{*j*} Compare with ref 3j. ^{*k*} The catalyst (ionic liquid) itself was used as solvent.

TABLE 4. Comparison of the Catalytic Efficiency of VariousMagnesium Salts for the Synthesis of 3 during the Reaction of 1, 2,and DMP^a

entry	catalyst	solvent	$T(^{\circ}\mathrm{C})$	time (h)	yield ^{b,c} (%)
1	Mg(ClO ₄) ₂	neat	80	0.5	85
2	$Mg(ClO_4)_2$	neat	rt	6	85
3	MgSO ₄	neat	80	1	20^d
4	MgSO ₄	neat	rt	24	5^d
5	$MgSO_4$	DCM	rt	24	nil^d
6	MgSO ₄	DCE	reflux	4	30^d
7	MgSO ₄	THF	reflux	4	nil^d
8	MgCl ₂	neat	80	1	5
9	MgCl ₂	neat	rt	24	nil
10	$MgBr_2$	neat	80	1	10
11	MgBr ₂	neat	rt	24	nil
12	MgI ₂	neat	80	1	10
13	MgI_2	neat	rt	24	nil
14	Mg(OTf) ₂	neat	80	6	50^e

^{*a*} **1** (2.5 mmol) was treated with **2** (2.5 mmol) and DMP (2.5 mmol) in the presence of the catalyst (5 mol %) under solvent-free conditions (except for entries 5–7). ^{*b*} Yield of the isolated and purified **3**. ^{*c*} The product was characterized by the IR, ¹H and ¹³C NMR, and MS. ^{*d*} Compare with ref 3f,q. ^{*e*} Compare with ref 3g.

the result obtained with the $Mg(ClO_4)_2$ -catalyzed reaction with that of other reported catalysts/systems (Table 3).

To find out the influence of the counteranion on the catalytic property, various magnesium salts were used as the promoter during the reaction of **1**, **2**, and DMP (Table 4). The far more superior catalytic activity of Mg(ClO₄)₂ over the other magnesium salts correlates well with the acidic strength of the corresponding protic acids (except for TfOH).¹⁵

To establish the generality, various aldehydes/ketones, amines, and DMP or diethyl phosphite (DEP) were subjected to a onepot reaction (3-CR) catalyzed by $Mg(ClO_4)_2$ (Table 5).

Excellent results were obtained during the reaction of aryl/ heteroaryl/alkyl/aryl alkyl aldehydes/ketones with aryl/heteroaryl/alryl alkyl amines and dimethyl/ethyl phosphite. The reaction was compatible with various functional groups such as Cl, OMe, NO₂, OH, NMe₂, CN, and CO₂Me that do not interfere by competitive complex formation with the catalyst. Excellent chemoselectivity was observed for substrates contain-

^{(12) (}a) Azizi, N.; Rajabi, F.; Saidi, M. R. *Tetrahedron Lett.* 2004, 45, 9233. (b) Azizi, N.; Saidi, M. R. *Tetrahedron* 2003, 59, 5329. (c) Saidi, M. R.; Azizi, N. *Synlett* 2002, 1347. (d) Heydari, A; Karimian, A.; Ipaktschi, J. *Tetrahedron Lett.* 1998, 39, 6729.

⁽¹³⁾ Huheey, J. E. Inorganic Chemistry: Principles of Structure and Reactivity, 3rd ed.; Harper & Row: Singapore, 1983.

TABLE 5. Synthesis of α-Aminophosphonate during the Reaction of Various Aldehydes/Ketones, Amines, and DMP/DEP in the Presence of
Anhydrous $Mg(ClO_4)_2^a$

Entry	Aldehyde	Amine	Phosphite	Time (min)	Yield (%) ^b
	ZСНО	YNH2			
1	Z = H	Y = H	DMP	2	98
2	Z = H	Y = H	DEP	2	98
3	Z = H	Y = 3,4,5-tri-OMe	DMP	10	93
4	Z = 4-OMe	Y = H	DMP	2	96
5	Z = 4-OMe	Y = H	DEP	5	95
6	Z = 4-OMe	Y = 4-OH	DMP	5	90
7	Z = 4-OMe	Y = 4-OMe	DMP	5	95
8	Z = 4-OMe	$Y = 4-NO_2$	DMP	10	98
9	Z = 4-OMe	$Y = 3-NO_2$	DMP	5	95
10	Z = 4-OMe	$Y = 2-NO_2$	DMP	15	95°
11	Z = 4-OMe	$Y = 2,4-di-NO_2$	DMP	30	85 ^{c,d}
12	Z = 4-OMe	Y = 4-CN	DMP	10	80
13	Z = 4-OMe	$Y = 4 - CO_2 Me$	DMP	5	75
14	Z = 4-Cl	Y = H	DMP	5	95
15	Z = 4-Cl	$Y = 4-NO_2$	DMP	10	90 ^e
16	Z = 4-Cl	$\mathbf{Y} = 3\text{-}\mathbf{NO}_2$	DMP	10	90 ^e
17	$Z = 4-NO_2$	$Y = 4-NO_2$	DMP	10	97 ^e
18	$Z = 4-NO_2$	$Y = 4-NO_2$	DEP	5	92 ^e
19	Z = 4-OH	Y = H	DMP	5	95
20	$Z = 4-NMe_2$	Y = H	DMP	5	85
21	Z = 2,4-di-OMe	$Y = NO_2$	DMP	10	88 ^{c,d}
22	Z = 2,4-di-OMe	$Y = 2,4-di-NO_2$	DMP	30	80 ^{c.d}
23	Z = 2,4,6-tri-OMe	Y = H	DMP	15	91
24	Z = 2,4,6-tri-OMe	Y = 2,4-di-NO,	DMP	60	80 ^{c,d}

JOC Article

Table 5 (Continued)

Entry	Aldehyde	Amine	Phosphite	Time (min)	Yield $(\%)^{\flat}$
25	Z = 3,4,5-tri-OMe	Y = H	DMP	10	96
26	Z = 3,4,5-tri-OMe	Y = 3,4,5-tri-OMe	DMP	10	95
27	Z = 4-OMe	SNH2	DMP	30	80°
28	Z = 4-OMe	NH ₂	DMP	10	90
	СНО				
29		Y = H	DMP	5	90
30		Y = H	DEP	10	88
	СНО				
31		Y = H	DMP	5	92
32		Y = H	DEP	5	90
33	СНО	Y = H	DEP	50	90
34	СНО	Y = H	DMP	5	95
35	СНО	Y = H	DMP	5	90
36	СНО	Y = H	DMP	10	75
37	СНО	Y = H	DMP	15	85
	 0				
38		Y = H	DMP	6 h	90 ^ŕ
39	0	Y = H	DEP	8 h	92 ^r
40		$\mathbf{Y} = \mathbf{H}$	DMP	6 h	80 ^{c,g}

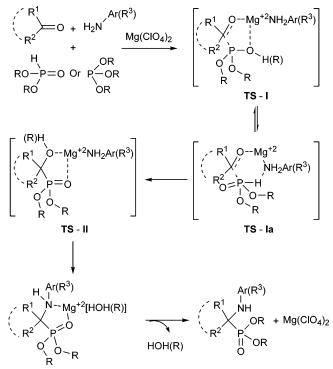

JOC Article

Table 5 (Continued)

Entry	Aldehyde	Amine	Phosphite	Time (min)	Yield
41		Y = H	DEP	(min) 8 h	(%) ^b 75 ^c
	Z,сно	NH ₂			
42	Z = H		DMP	2	95
43	Z = 4-OMe		DMP	2	90
44	Z = 4-OMe	NH ₂	DMP	10	95
		XNH			
45	Z = 4-OMe	$X = CH_2$	DMP	5	95
46	Z = 4-OMe	X = 0	DMP	10	90
47	Z = 4-OMe	NH	DMP	2	98
48	Z = 4-OMe	0NNH2	DMP	15	80
49	Z = 4-OMe	MeONH ₂ MeO	DMP	5	95
50	Z = 4-OMe	NH ₂	DMP	15	90
	o	NH ₂			
51			DMP	6 h	92 ^f
52			DEP	6 h	90 ^f
53			DEP	6 h	$80^{ m c.h}$
54	\bigcup°		DEP	6 h	85 ^t

^{*a*} The aldehyde/ketone (2.5 mmol) was treated with the amine (2.5 mmol) and DMP/DEP (2.5 mmol) in the presence of Mg(ClO₄)₂ (5 mol %) at rt (except for entries 10, 11, 21, 22, 24, 27, and 53) under solvent-free conditions. ^{*b*} Yield of the purified α -aminophosphonate, characterized by IR, ¹H and ¹³C NMR, and MS. ^{*c*} The reaction was carried out at 80 °C. ^{*d*} The reaction carried out at rt took 6 h to give 85% yield. ^{*e*} The reaction was carried out with 1.5 equiv of the phosphite. ^{*f*} A 90% yield was obtained when the reaction was carried out at 80 °C for 45 min. ^{*s*} The product was formed in 80 and 85% yields at rt after 20 h under neat conditions and under reflux in DCE after 4 h, respectively. ^{*h*} The product was formed in 90% yield in DCE under reflux after 2 h.

SCHEME 2. Role of $Mg(ClO_4)_2$ for α -Aminophosphonate Formation during the 3-CR Involving an Aldehyde, an Amine, and Di-/Trialkyl Phosphite

ing a halogen atom (entries 14–16, Table 5) and having a double bond conjugated to a carbonyl group (entry 35, Table 5) that did not experience any competitive aromatic nucleophilic substitution of the halogen atom and conjugate addition to the α,β -unsaturated carbonyl group, respectively. No competitive nucleophilic methyl ether cleavage was observed for substrates having an aryl *O*-Me group (entries 3–13, 21–28, and 43–50, Table 5), although phosphites possess good nucleophilic property.¹⁶ The reaction with dimethyl acetal of aminoacetaldehyde (entry 49, Table 5) further exemplified the case of chemoselectivity and mildness of the reaction as no competitive nucleophilic substitution of the methoxy group or cleavage of the acetal moiety took place.

To evaluate the efficiency of this catalyst system as a general methodology with respect to the phosphite, 4-methoxybenzaldehyde and aniline were treated with various di-/trialkyl phosphites under the catalytic influence of $Mg(ClO_4)_2$ (Table 6).

The role of Mg(ClO₄)₂ is depicted in Scheme 2. It has been anticipated that the formation of α -aminophosphonate from the reaction of an aldehyde, an amine, and a phosphite involves a two-step process:¹⁷ (i) the nucleophilic addition of the amine to the carbonyl group forming an imine followed by (ii) the nucleophilic addition of the phosphite to the imine.^{18–20} However, no imine formation was observed (IR, NMR, MS) when 4-methoxybenzaldehyde was treated with 2,4-dinitroaniline in the presence

TABLE 6.	Synthesis of α-Aminophosphonate during the Reaction
of 1, Aniline	, and Various Phosphites in the Presence of $Mg(ClO_4)_2^a$

entry	phosphite	time (min)	yield ^{b,c} (%)
1	HP(O)(OMe) ₂	2	96
2	HP(O)(OEt) ₂	5	95
3	P(OEt) ₃	10	90
4	$HP(O)(OBu^n)_2$	10	91
5	$P(OBu^n)_3$	20	83
6	$P(OPr^i)_3$	25	80
7	HP(O)(OPh) ₂	5	98

^{*a*} **1** (2.5 mmol) was treated with aniline (2.5 mmol) and the phosphite (2.5 mmol) in the presence of Mg(ClO₄)₂ (5 mol %) at rt under solvent-free conditions. ^{*b*} Yield of the isolated and purified α-aminophosphonate. ^{*c*} The product was characterized by IR, ¹H and ¹³C NMR, and MS.

of Mg(ClO₄)₂ (5 mol %) at 80 °C for 6 h. The alternative pathway involving an intermediate formation of α -aminophosphonate by nucleophilic addition of the phosphite to the carbonyl carbon followed by nucleophilic displacement of the hydroxyl group by the amine²¹ also appears unlikely as the treatment of 4-methoxybenzaldehyde with dimethyl phosphite in the presence of Mg(ClO₄)₂ (5 mol %) at 80 °C for 6 h did not produce any significant amount of the corresponding α -hydroxyphosphonate (IR, NMR, MS). Thus, in the absence of intermediate formation of the imine and the hydroxyphosphonate, this represents a truly 3-CR in which all three reactants/components are simultaneously involved in the product formation. We, therefore, propose that coordination of the Mg⁺² ion with the carbonyl oxygen atom, the hydroxyl/alkoxyl group of the di-/trialkyl phosphite, and the nitrogen atom of the amine followed by the electrostatic attraction between the electrophilic carbonyl carbon atom with the lone pair of electrons of the phosphorus forms the TS-I, which undergoes rearrangement toform the TS-II. The intramolecular nucleophilic displacement of the hydroxyl/alkoxyl group, complexed with the $Mg(ClO_4)_2$ in the **TS-II**, by the nitrogen atom of the amine complexed with the Mg(ClO₄)₂ affords the α -aminophosphonate and liberates the Mg(ClO₄)₂.

We have described herein commercially available anhydrous $Mg(ClO_4)_2$ as a new and extremely efficient catalyst for synthesis of α -aminophosphonate by a three-component, one-pot reaction. With the increasing concern for need of green synthetic procedures, the advantages such as the (i) solvent-free reaction,²² (ii) high yields, (iii) excellent chemoselectivity, and (iv) ease of product isolation/purification fulfill the triple bottom line philosophy of green chemistry²³ and make the present methodology environmentally benign.

Experimental Section

Typical Procedures for α -Aminophosphonate Synthesis. Reactions with Dialkyl/Aryl Phosphites. Dimethyl [(2,4-Dinitrophenylamino)(4-methoxyphenyl)methyl]phosphonate (Table

^{(14) (}a) Yatsimirksii, K. B.; Vasil'ev V. P. Instability Constants of Complex Compounds; Pergamon, Elmsford, NY, 1960. (b) Bjerrum, Schwarzenbach, G., Sillen, L. G., Eds. Stability Constants of Metal-Ion Complexes: PartII. Inorganic Ligands; The Chemical Society, London, 1958.

⁽¹⁵⁾ The pK_a values of aqueous HClO₄, H₂SO₄, HI, HBr, and HCl are -10, -9, -9, -8, and -6.1, respectively. Anslyn, E. V.; Dougherty, D. A. *Modern Physical Organic Chemistry*; University Science Books: Mill Valley, CA, 1960.

⁽¹⁶⁾ Variot, G.; Collect, A. Acros Org. Acta 1995, 1, 40.

⁽¹⁷⁾ Gancarz, R. Tetrahedron 1995, 51, 10627.

⁽¹⁸⁾ Mastalerz, P. In Handbook of Organophosphorous Chemistry; Engel,

<sup>R., Ed.; Marcel Dekker: New York, 1992; Chapter 7.
(19) Szabó, A.; Jászay, Z. M.; Hergeds, L.; Tke, L.; Petneházy, I.</sup>

Tetrahedron Lett. 2003, 44, 4603.
 (20) Yadav, J. S.; Reddy, B. V. S.; Raj, K. S.; Reddy, K. B.; Prasad, A.
 R. Synthesis 2001, 2277.

⁽²¹⁾ Kaboudin, B. Tetrahedron Lett. 2003, 44, 1051.

⁽²²⁾ Garrett, R. L. In *Designing Safer Chemicals*; Garrett, R. L., De Vito, S. C., Eds.; American Chemical Society Symposium Series 640; American Chemical Society: Washington, DC, 1996; Chapter 1.

⁽²³⁾ Tundo, P.; Anastas, P.; Black, D. S.; Breen, J.; Collins, T.; Memoli, S.; Miyamoto, J.; Polyakoff, M.; Tumas, W. *Pure Appl. Chem.* **2000**, *72*, 1207.

5, Entry 11). The mixture of 4-methoxybenzaldehyde (1) (0.68 g, 5 mmol) and Mg(ClO₄)₂ (56 mg, 5 mol %) was stirred magnetically for 10-15 min, after which time 2,4-dinitroaniline (2) (0.91 g, 5 mmol) and DMP (0.55 g, 5 mmol) were added and the reaction mixture was stirred at rt for 6 h. The reaction mixture was extracted with EtOAc (3 \times 10 mL). The combined EtOAc extracts were dried (Na₂SO₄) and concentrated under reduced pressure to afford a yellow solid (1.8 g) which on passing through a column of silica gel and elution with EtOAc-hexane (80:20) afforded dimethyl [(2,4-dinitrophenylamino)(4-methoxyphenyl)methyl]phosphonate (3) (1.75 g, 85%): mp 101 °C; IR (KBr) v 1516, 1618, 2955, 3315 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): δ 3.62 (d, 3 H, J = 10.68Hz), 3.73 (d, 3 H, J = 10.68 Hz), 3.80 (s, 3 H), 4.90-4.99 (dd, 1 H, ${}^{1}J_{P-H} = 7.02$ Hz, J = 22.51 Hz). 6.78 (d, 1 H, J = 9.4 Hz), 6.92 (d, 2 H, J = 8.6 Hz), 7.36-7.30 (dd, 2 H, J = 2.2, 8.7 Hz),8.14-8.18 (dd, 1 H, J = 2.5, 9.4 Hz), 9.13 (d, 1 H, J = 2.3 Hz), 9.36 (m, 1 H); ¹³C NMR (CDCl₃, 75 MHz): δ 54.3 (d, CHP ,¹J_{P-C} = 154.62 Hz), 54.7, 55.9, 115.3, 124.5, 125.1, 129.2, 130.7, 132.2, 137.6, 147.7, 147.9, 160.6; ³¹P (CDCl₃; 121 MHz) δ 27.4 (m); MS (APCI) m/z = 411 (M)⁺, 302 [(M - P(O)(OMe)₂; 100]⁺. Anal. Calcd for C₁₆H₁₈N₃O₈P: C, 46.72; H, 4.41; N, 10.22. Found: C, 46.69; H, 4.39; N, 10.20. Using this procedure, repeating the reaction of 1 (2.72 g, 20 mmol), 2 (3.64 g, 20 mmol), and DMP (2.2 g, 20 mmol) in the presence of $Mg(ClO_4)_2$ (0.22 g, 5 mol %) afforded 3 (7.2 g, 87%) after the usual workup and purification. The remaining reactions were carried out following this general procedure. On each occasion, the spectral data (IR, NMR, and MS) of prepared known compounds were found to be identical with those reported in the literature. The following are a few representative examples using heteroaryl amine, aryl alkyl ketone, and sterically hindered aliphatic amine, respectively.

Dimethyl [(Benzothiazol-2-ylamino)(4-methoxyphenyl)methyl]phosphonate (Table 5, Entry 27). The treatment of 1 (0.34 g, 2.5 mmol) with 2-aminobenzothiazole (0.37 g, 2.5 mmol) and DMP (0.27 g, 2.5 mmol) in the presence of Mg(ClO₄)₂ (28 mg, 5 mol %) under magnetic stirring at 80 °C for 30 min followed by usual workup and chromatographic purification [silica gel: EtOAchexane (60:40) as eluent] afforded the dimethyl [(benzothiazol-2ylamino)(4-methoxyphenyl)methyl]phosphonate (0.75 g, 80%) as a brownish yellow solid: mp 170 °C; ¹H NMR (CDCl₃, 300 MHz) δ 3.54 (d, 3 H, J = 10.6 Hz), 3.75 (s, 3 H), 3.80 (d, 3 H, J = 10.7Hz), 5.54-90 (d, 1 H, ${}^{1}J_{P-H} = 21.63$ Hz), 6.86-7.54 (m, 8 H); ${}^{13}C$ NMR (CDCl₃, 75 MHz) δ 54.2, 54.5, 55.7, 56.2, 114.9, 119.8, 121.2, 122.3, 126.3, 127.3, 129.9, 131.6, 152.4, 160.2, 166.4; MS (APCI) m/z 378 (M)⁺, 269 [(M - P(O)(OMe)₂]⁺. Anal. Calcd for C₁₇H₁₉N₂O₄PS: C, 53.96; H, 5.06; N, 7.40; S, 8.47. Found: C, 53.94; H,5.04.; N, 7.38; S, 8.45.

Dimethyl (1-Phenyl-1-phenylaminoethyl)phosphonate (Table 5, Entry 40). The treatment of acetophenone (0.30 g, 2.5 mmol) with aniline (0.23 g, 2.5 mmol) and DMP (0.27 g, 2.5 mmol) in the presence of Mg(ClO₄)₂ (28 mg, 5 mol %) under magnetic stirring at 80 °C for 6 h followed by usual workup and chromatographic purification [silica gel: EtOAc—hexane (50:50) as eluent] afforded the dimethyl (1-phenyl-1-phenylaminoethyl)phosphonate (0.61 g, 80%) as brownish yellow solid: mp 128 °C; ¹H NMR (CDCl₃, 300 MHz) δ 1.97 (d, 3 H, *J* = 16.5 Hz), 3.53–3.66 (m, 6 H), 6.38–7.81 (m, 10 H); ¹³C NMR (CDCl₃, 75 MHz) δ 20.8, 54.7, 117.3, 119.0, 128.0, 128.6, 129.2; MS (APCI) *m/z* 305 (M)⁺, 196 [(M – P(O)(OMe)₂]⁺. Anal. Calcd for C₁₆H₂₀NO₃P : C, 62.9; H, 6.6; N, 4.5. Found: C, 62.89; H, 6.5; N, 4.49.

Dimethyl [(Adamantan-1-ylamino)-(4-methoxyphenyl)methyl]phosphonate (Table 5, Entry 50). The treatment of 1 (0.34 g, 2.5 mmol) with 1-adamantylamine (0.37 g, 2.5 mmol) and DMP (0.27 g, 2.5 mmol) in the presence of $Mg(ClO_4)_2$ (28 mg, 5 mol %) under magnetic stirring at rt for 15 min followed by usual workup and chromatographic purification [silica gel: EtOAchexane (95:5) as eluent] afforded the dimethyl [(adamantan-1ylamino)(4-methoxyphenyl)methyl]phosphonate (0.85 g, 90%) as white solid: mp 101 °C; ¹H NMR (CDCl₃, 300 MHz) δ 1.43-1.60 (m, 12 H), 1.87 (s, 1 H), 1.97 (s, 2 H), 3.46 (d, 3 H, J =10.30 Hz), 3.77-3.81 (2s, 9 H), 4.21-4.29 (${}^{1}J_{P-H} = 24.4$ Hz), 6.84 (d, 2 H, J = 8.2 Hz), 7.33 (d, 2 H, J = 7.1 Hz); ¹³C NMR $(CDCl_3, 75 \text{ MHz}) \delta 30.1, 37, 44.2, 52.1, 52.8, 53, 53.6, 54.3, 55.0,$ 55.7, 114.2, 129.6, 129.7, 132.3, 159.4; MS (APCI) m/z 379 (M)⁺, 270 $[(M - P(O)(OMe)_2]^+$. Anal. Calcd for $C_{20}H_{30}NO_4P$: C, 63.31; H, 7.97; N, 3.69. Found: C, 63.18; H, 7.95; N, 3.68.

Reactions with Trialkyl Phosphites. Di-n-butyl [(4-Methoxyphenyl)phenylaminomethyl]phosphonate (Table 6, Entry 5). The treatment of 1 (0.34 g, 2.5 mmol) with aniline (0.23 g, 2.5 mmol) and tri-n-butyl phosphite (0.62 g, 5 mmol) in the presence of Mg-(ClO₄)₂ (28 mg, 5 mol %) under magnetic stirring at rt for 20 min followed by usual workup and chromatographic purification [silica gel: EtOAc-hexane (25:75) as eluent] afforded the di-n-butyl [(4methoxyphenyl)phenylaminomethyl]phosphonate (0.84 g, 83%) as a greenish black solid: mp 60 °C; IR (KBr) v 1605, 2959, 3308 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.81–0.91 (m, 6 H), 1.2– 1.6 (m, 8 H), 3.59-4.05 (m, 7 H), 4.74 (d, 1 H, ${}^{1}J_{P-H} = 22.1$), 6.56–7.38 (m, 9 H); $^{13}\mathrm{C}$ NMR (CDCl₃, 75 MHz) δ 13.5, 18.5, 18.6, 32.3, 32.5, 54.2, 55.2, 56.3, 66.8, 113.8, 118.2, 127.7, 128.8, 146.4, 159.3; ³¹P (CDCl₃; 121 MHz) δ 29.19 (d, J = 11.78 Hz); MS (MALDI TOF TOF) m/z 405 (M)⁺, 212 [(M - P(O)(OⁿBu)₂]⁺. Anal. Calcd for C₂₂H₃₂NO₄P: C, 65.17; H, 7.95; N, 3.45. Found: C, 65.14; H, 7.93; N, 3.43.

Diisopropyl [(4-Methoxyphenyl)phenylaminomethyl]phosphonate (Table 6, Entry 6). Treatment of 1 (0.34 g, 2.5 mmol) with aniline (0.23 g, 2.5 mmol) and triisopropyl phosphite (0.52 g, 2.5 mmol) in the presence of Mg(ClO₄)₂ (28 mg, 5 mol %) under magnetic stirring at rt for 25 min followed by usual workup and chromatographic purification [silica gel: EtOAc-hexane (35:65) as eluent] afforded the diisopropyl [(4-methoxyphenyl)phenylaminomethyl]phosphonate (0.75 g, 80%) as a faded white solid: mp 103 °C; IR (KBr) v 1602, 2929, 2979, 3307 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.95 (d, 3 H, J = 6.17 Hz), 1.21–1.32 (m, 9 H), 3.76 (s, 3 H), 4.41–4.73 (m, 3 H), 6.56–7.39 (m, 9 H); $^{13}\mathrm{C}$ NMR (CDCl₃, 75 MHz) δ 23.3, 23.7, 54.8, 55.2, 56.8, 71.8, 113.8, 118.1, 128.1, 129.1, 146.5, 146.7, 159.1; ³¹P (CDCl₃; 121 MHz) δ 27.30 (d, J = 13.58 Hz); MS (APCI) m/z 377 (M)⁺, 212 [(M⁺ - P(O)) $(O^{i}Pr)_{2}^{+}$. Anal. Calcd for $C_{20}H_{28}NO_{4}P$: C, 63.65; H, 7.48; N, 3.71. Found: C, 63.62; H, 7.46; N, 3.69.

Acknowledgment. Financial support from the Organisation for the Prohibition of Chemical Weapons (OPCW), The Hague, The Netherlands, is gratefully acknowledged.

Supporting Information Available: General experimental details, scanned spectra, and spectral data of all compounds. This material is available free of charge via the Internet at http:// pubs.acs.org.

JO062140I