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ABSTRACT: m-CAr−H bond functionalization of tertiary phos-
phines was developed using [Ru(p-cymene)Cl2]2 as a catalyst.
Desired product structures were confirmed by single-crystal X-ray
diffraction. Mechanistic experiments indicated that m-CAr−H bond
functionalization was a radical reaction and that a hexagonal
ruthenacycle complex was a crucial intermediate in the process.
Therefore, this study provides a novel method for the late-stage
meta-position modification of biphenyl monophosphine ligands.

Tertiary phosphines (PAr3) are important molecular
skeletons widely found in agricultural chemicals, bio-

logically active molecules, and functional materials, and as
ligands in transition-metal catalysts.1 Their characteristics,
including physicochemical, steric, and electronic properties,
and biological and catalytic activities, are significantly changed
by different R group structures.2 In particular, biphenyl
monophosphines that are air-stable and have greater steric
hindrance are often employed as highly efficient ligands in the
transition-metal catalysis of diverse C−X bond construction (X
= C, O, N, and others).3 Consequently, the straightforward
and efficient synthesis of biphenyl monophosphines has
attracted considerable research interest. In recent years,
transition-metal-catalyzed C−H bond functionalization has
seen intensive development and extensive applications in
organic synthesis owing to its atom and step efficiency
compared with traditional functional group chemistry.4

Initially, as the strong chelating properties of undisguised
monophosphines readily poison the metal catalyst, P(V)O
was often employed as a directing group to realize transition-
metal-catalyzed selective CAr−H bond functionalization,5 with
subsequent reduction providing various biphenyl mono-
phosphine derivatives. Recently, undisguised P(III) atom-
directed transition-metal-catalyzed selective CAr−H bond
functionalization has been reported, providing a step-
economical method for the late-stage modification of mono-
phosphine ligands.6 However, these modification and
functionalization methods for biphenyl monophosphines are
limited to the ortho position relative to the directing group
(Scheme 1). Therefore, remote CAr−H bond functionalization
of biphenyl monophosphines remains challenging.
In recent years, remote CAr−H bond functionalization has

made important progress through several ingenious strategies,
including using steric effects,7 electronic effects,8 U-shaped
templates,9 a norbornene relay,10 traceless directing groups,11 a
copper-promoted four-ring intermediate,12 and the ortho/para-

directing effect of the Ru−CAr bond.
13 In these m-CAr−H bond

functionalization strategies, the ruthenium-catalyzed m-CAr−H
bond functionalization reaction type is diverse, the ruthenium
catalyst is relatively inexpensive, and the reaction system is
relatively simple. Furthermore, special substrate structures,
large U-shaped directing groups, directing group removal, and
the addition of an extra cocatalyst are not needed. However,
ruthenium-catalyzed m-CAr−H bond functionalizations have
been limited to nitrogen-containing groups as directing groups.
Using other atoms, such as phosphine and oxygen, to assist
ruthenium-catalyzed m-CAr−H bond functionalization remains
challenging. Herein, we report P atom-directed m-CAr−H bond
functionalization catalyzed by ruthenium, which provides a
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Scheme 1. PO or P-Assisted CAr−H Bond
Functionalization
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new approach to the meta-position-modified synthesis of
biphenyl monophosphine ligands.
To realize the phosphine-assisted modification and deco-

ration of m-CAr−H bonds, [1,1′-biphenyl]-2-yldiphenylphos-
phane and methyl-2-bromopropanoate were selected as classic
reactants, and [Ru(p-cymene)Cl2]2 and K2CO3 were used as
the catalyst and base, respectively, to explore and optimize the
C−H bond functionalization conditions. In a thick-walled
pressure Schlenk tube under a N2 atmosphere, the reaction was
carried out at 100 °C for 9 h, as shown in Table 1. Pleasingly, a

small amount of the desired product was obtained in the
benzene solvent (entry 1). Base screening indicated that KOAc
was the most suitable base for the transformation, providing
desired product 3a in 73% isolated yield (entry 2). Other
bases, such as Na2CO3, Cs2CO3, CsOAc, NaOAc, and K3PO4,
were also effective in the process (entries 3−7, respectively),
although the yields were lower than that obtained using KOAc.
The target product was also obtained in other aromatic
solvents, such as toluene, xylene, 1,4-dioxane, and THF
(entries 8−11, respectively). The reaction did not proceed in
CH3CN and DMF as solvents (entries 12 and 13,
respectively). Further investigation indicated that Ru-
(PPh3)3Cl2 was also an effective catalyst for m-CAr−H bond
alkylation, giving the target product in a moderate yield (entry
14). Other ruthenium complexes, such as RuCl3 and
Ru3(CO)12, were ineffective in the process (entries 15 and
16, respectively). The desired product was not obtained when
no catalyst was added to the system (entry 17). Furthermore,
additional experiments indicated that the temperature and
reaction time were critical factors in the transformation. Both
prolonging the reaction time and increasing the reaction
temperature resulted in product decomposition and reduced
yields.
With optimized conditions in hand, we next investigated the

scope and generality of this phosphine-assisted ruthenium-
catalyzed m-CAr−H bond alkylation of arenes with alkyl

bromides, as shown in Scheme 2. Initially, several [1,1′-
biphenyl]-2-yldiarylphosphane molecules with various sub-

stituents in different positions on the phenyl ring were selected
as substrates. [1,1′-Biphenyl]-2-yldiphenylphosphanes with
different alkyl (3b and 3c) and aryl (3d) groups were suitable
substrates for the transformation. Although the bulky tert-butyl
group usually has a marked steric effect in many organic
reactions, the desired product was afforded in a moderate yield
under the optimized conditions (3c). Halogen substituents
survived in the m-CAr−H bond alkylation, offering the
potential opportunity to construct complex functional
molecules (3e, 3f, 3h, and 3i). Further experiments indicated
that the electronic effect of the reactive phenyl ring was
obvious in the transformation. An electron-donating sub-
stituent (-OCH3, 3g) was favorable for transformation, while
an electron-withdrawing (-CF3) group completely impeded the
reaction. The electronic effect of the directing group on the
phenyl ring was not obvious in the process. Neither electron-
withdrawing groups nor electron-donating groups had a
significant effect on the reaction (3h−3l). Fluorine-containing
groups with unique chemical, biological, and physical proper-
ties were also compatible with the m-CAr−H bond function-
alization (3i−3k). Notably, [2-(naphthalen-2-yl)phenyl]-
diphenylphosphane was also tolerated in the process, providing
the product in a moderate isolated yield (3m). Furthermore,
various alkyl bromides were employed as alkylating reagents in
the transformation. The results showed that both sec-alkyl and

Table 1. Screening of Reaction Conditions

entry Ru catalyst base solvent yield (%)

1 [Ru(p-cymene)Cl2]2 K2CO3 benzene 13
2 [Ru(p-cymene)Cl2]2 KOAc benzene 73
3 [Ru(p-cymene)Cl2] Cs2CO3 benzene 18
4 [Ru(p-cymene)Cl2] Na2CO3 benzene 25
5 [Ru(p-cymene)Cl2] CsOAc benzene 56
6 [Ru(p-cymene)Cl2] NaOAc benzene 70
7 [Ru(p-cymene)Cl2] K3PO4 benzene 30
8 [Ru(p-cymene)Cl2] KOAc toluene 62
9 [Ru(p-cymene)Cl2] KOAc xylene 45
10 [Ru(p-cymene)Cl2] KOAc 1,4-dioxane 22
11 [Ru(p-cymene)Cl2] KOAc THF 28
12 [Ru(p-cymene)Cl2] KOAc CH3CN 0
13 Ru(p-cymene)(OAc)2 KOAc DMF 0
14 Ru(PPh3)3Cl2 KOAc benzene 42
15 RuCl3 KOAc benzene 0
16 Ru3(CO)12 KOAc benzene 0
17 KOAc benzene 0

Scheme 2. Substrate Scopec

aFor 3.5 h. bFor 12 h. cReaction conditions: 1 (0.2 mmol), 2 (2
equiv), [Ru(p-cymene)Cl2]2 (3 mol %), KOAc (2 equiv), benzene
(0.5 mL), N2, 100 °C, 9 h. Isolated yield.
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tert-alkyl bromides were good coupling reagents in the
phosphine-assisted m-CAr−H bond alkylation (3b−3s).
However, no alkylated products were found in the system
when primary alkyl bromides, such as ethyl 2-bromoacetate
and ethyl 4-bromobutanoate, were employed as alkylation
reagents. To our delight, the alkylation conditions were also
extended to phosphine-assisted m-CAr−H bond difluoroalky-
lation (3t), providing a novel method for preparing meta-
fluoroalkylated biphenyl monophosphine compounds. Un-
fortunately, when alkyl phosphine was used as the directing
group, the desired product was not found in the system.
To further confirm the product structures obtained by

phosphine-assisted m-CAr−H bond alkylation, the liquid
desired products were oxidized to solid phosphine oxides in
a H2O/CH3CN solvent [1:10 (v/v)] at room temperature for
5 min using Selectfluor as an oxidant (Scheme 3).14 The

phosphine oxide single crystals were grown in a CH2Cl2/
petroleum ether mixed solvent by slow evaporation at room
temperature, and their crystal structures were determined by
single-crystal X-ray diffraction.
In a gram-scale experiment, the phosphine-assisted ruthe-

nium-catalyzed m-CAr−H bond alkylation of arenes with alkyl
bromides also proceeded smoothly, giving the target product in
a moderate yield (Scheme 4). This development provides a
novel and practical strategy for the late-stage meta-position
modification of biphenyl monophosphine ligands.
To clarify the mechanism of this ruthenium-catalyzed

tertiary phosphine m-CAr−H bond functionalization, some
experiments were designed and conducted, as shown in

Scheme 5. First, when (2′,6′-dimethyl-[1,1′-biphenyl]-2-yl)-
diphenylphosphane, in which the two ortho sites of the tertiary

phosphine directing group were blocked by two methyl groups,
was employed as the substrate, the desired product was not
found in the system under the optimized conditions (Scheme
5a). The results showed that o-CAr−H bond ruthenation was
essential for m-CAr−H bond functionalization. Second,
hexagonal ruthenacycle complex I was synthesized by the
reaction of [1,1′-biphenyl]-2-yldiphenylphosphane with
[Ru(p-cymene)Cl2]2 in CH2Cl2 at rt for 24 h (for details,
see the Supporting Information).6c The desired product was
obtained in excellent yield when complex I was used as the
substrate, indicating that the hexagonal ruthenacycle was a
crucial intermediate in the m-CAr−H bond functionalization
process (Scheme 5b). Third, obvious H/D exchange was
observed in the residual substrate and desired product when 10
equiv of D2O was injected into the m-CAr−H bond
functionalization process. This phenomenon showed not
only that o-C−H ruthenation was a reversible process but
also that water was tolerated in the reaction system (Scheme
5c). Fourth, the desired product was not observed when free
radical quenchers, such as TEMPO and BQ, were added to the
reaction tube (Scheme 5d), showing that m-CAr−H bond

Scheme 3. Oxidation of Desired Products and Single-Crystal
X-ray Structures

Scheme 4. Gram-Scale Experiment

Scheme 5. Designed Experiment
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functionalization might be a single-electron-transfer (SET)
radical process. Finally, intermolecular competition experi-
ments of two reactant analogues were conducted to evaluate
the impact of electrons and structure on the transformation
(Scheme 5e). The results showed that tertiary phosphines with
higher electron density showed higher reactivity, and that α-
bromocarboxylates showed better reactivity than alkyl
bromides.
On the basis of our experimental results and literature

reports relating to ruthenium-catalyzed CAr−H bond function-
alization,13 a plausible mechanism for the m-CAr−H bond
alkylation process was proposed, as shown in Scheme 6. First,

reversible o-CAr−H bond ruthenation of substrate 1a by [Ru(p-
cymene)Cl2]2 assisted by the phosphine directing group gives
key hexagonal ruthenacycle(II) intermediate I. SET from
ruthenacycle(II) intermediate I to the alkyl bromide generates
an alkyl radical and ruthenium(III) complex II after bromide
transfer. Then, the radical reacts with intermediate II at the
directing group meta position, aided by the CAr−Ru ortho/
para-directing effect, to provide active intermediate III.
Deprotonation of intermediate III generates stable intermedi-
ate IV. Finally, ligand exchange of intermediate IV with 1a
gives the desired product and regenerates intermediate I for
the next catalytic cycle.
In summary, we have developed a m-CAr−H bond alkylation

and fluoroalkylation of tertiary phosphines with alkyl bromides
using [Ru(p-cymene)Cl2]2 as the catalyst. Mechanistic experi-
ments indicated that the m-CAr−H bond functionalization of
tertiary phosphines was a radical process, and that a hexagonal
ruthenacycle complex was a crucial reaction intermediate. This
study provides a novel approach to accessing meta-position-
modified biphenyl monophosphine ligands. Further inves-
tigations to develop new m-CAr−H bond functionalization
reactions of tertiary phosphines and apply this chemistry in
synthesis are underway.
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