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ABSTRACT: Herein, a phosphine-free pincer ruthenium(III) catalyzed β-alkylation of secondary alcohols with primary alcohols to
α-alkylated ketones and two different secondary alcohols to β-branched ketones are reported. Notably, this transformation is
environmentally benign and atom efficient with H2O and H2 gas as the only byproducts. The protocol is extended to gram-scale
reaction and for functionalization of complex vitamin E and cholesterol derivatives.

Transition-metal-catalyzed carbon−carbon bond forma-
tions are the key motif in organic synthesis.1 Among

various methods, β-alkylation of the secondary alcohols for
synthesizing α- or β-branched ketones represents the most
efficient synthetic approach.2−6 Traditionally, these have been
synthesized in a multistep process, such as stoichiometric
oxidation of alcohol, followed by the formation of lithium
enolate species by using a strong base under cryogenic
condition, and then alkylation with mutagenic alkyl halides,7 as
a result copious amount of waste has been generated during
the reaction.8 Moreover, alkylation with secondary alkyl halides
is relatively challenging because of the occurrence of
competitive side reactions, for instance, elimination. Therefore,
it is desirable to develop an alternative method where these
hazardous and toxic reagents can be replaced by inexpensive,
biorenewable alcohols.9

The acceptorless dehydrogenative coupling (ADC) of
alcohols10,11 is one of the prominent synthetic strategies in
contemporary chemistry. The process does not require any
external hydrogen acceptor or oxidant source, H2 and H2O are
the only side products, which makes the process green, atom-
economical, and environmentally benign. Using this concept,
selective α-substituted ketone formation is described via metal-
catalyzed cross-coupling of primary and secondary alcohols.2

Among various homogeneous transition-metal catalysts,
ruthenium(II) complexes2e−h have performed very well in
this transformation, as described by the group of Archard,2f

Song,2g and others (Scheme 1). As the reaction produces H2 as
one of the byproducts, the formed ketones could further be
hydrogenated to alcohols,2n,12 leading to a challenge in the

selectivity.2f,n,12i In contrast, the reports on α-alkylation of
ketones using secondary alcohols to generate β-branched
ketones are very scarce, as self-coupling3 of secondary alcohols
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Scheme 1. Ruthenium-Catalyzed β-Alkylation of Secondary
Alcohol with Primary Alcohols (a) and Secondary Alcohols
(b) to Ketones
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is one of the common undesired side products which reduce
the atom economy in an overall process. Recently, Donohoe,5a

Sundararaju,5b Renaud,5c and Maji5d have independently
reported the synthesis of β-branched carbonyl compounds,
where bulky ketones (e.g., Ph*COCH3, Ph* = pentamethyl
phenyl, mesityl) were used as coupling partner, and the
reaction requires an equivalent or excess amount of base (2
equiv) and a superstoichiometric amount of alcohol (≥1.5
equiv). The introduction of the substituent in the aromatic
ring, specifically at the ortho and ortho′ positions, proved to be
the critical factor for the success of this strategy as it prevents
the self-condensation of the starting ketones. Gratifyingly,
Gunanathan and co-workers explored catalytic cross-coupling
of two different secondary alcohols by well-defined phosphine
based Ru−MACHO system, leading to β-branched aromatic
ketones in moderate to excellent yield (30−90%).4,6a The
protocol was not limited to the use of bulky substituted
benzylic alcohol and does not require the excess amount of
base and alcohol substrate. Despite this pioneering work, some
limitations are still present from a sustainable chemistry point
of view. The reaction requires anaerobic reaction conditions,
the phosphine-supported ligand, and ruthenium(II)-based
metal complexes. Given the well-known air and moisture
sensitivities and the expensive nature of phosphine ligands, the
development of a phosphine-free ruthenium complex to
catalyze cross-coupling of alcohols via ADC reaction would
be inevitably significant. Herein, we have synthesized new
bench stable tridentate {NNN} pincer ligands outlined in
Scheme S1, using cyanuric chloride as a starting precursor. The
ligands feature a central triazine ring with potentially tridentate
pockets, the pyrazolyl group is located at one side, and the NH
functionality containing pyridyl group is situated on the other
side. Complexation was performed by refluxing a solution of
the NNN ligands (HL1 and HL2) and RuCl3·xH2O in
methanol, which afforded the corresponding bench-stable
pincer ruthenium(III) complexes as brown solids (Ru-1 and
Ru-2) in good yields (Scheme 2). Among them, single crystals

of complex Ru-2 suitable for X-ray diffraction were obtained by
slow evaporation of the saturated solution of the complex in
CH3CN/CH3OH (v/v 9/1) at room temperature.
To inspect the catalytic applicability of the as-prepared

ruthenium complexes Ru-1 and Ru-2, we initiated the
optimization studies with 1-(4-methoxyphenyl)ethanol (5c)
and benzyl alcohol (6a) as model substrates for the catalytic β-
alkylation of secondary alcohol with primary alcohol (see
Table S1). Ru-2 showed better activity compared to Ru-1, and
ketone 7ca was obtained in 93% yield using Ru-2 (Scheme 3).
Notably, we did not observe any fully reduced alcohol, 1-(4-
methoxyphenyl)-3-phenyl-1-propanol 7ca′, reflecting excellent

product selectivity. With the optimized conditions in hand, we
next explored the substrate scope of both secondary and
primary alcohols (Scheme 4). Substrates having both electron-

donating (e.g., Me, OMe, OCH2Ph) and electron-withdrawing
(e.g., Cl, Br) groups at the para position of the secondary
alcohols were reacted with 6a to obtain the desired ketones
7aa-7fa, and 7ha in excellent yields (86−94%). The reducible
functional groups such as −CN and −CCPh can survive the
current reaction to give the desired products 7ga and 7ia
selectively. Meta-substituted substrate 7ja also showed good
activity. Furthermore, α- and β-naphthylethanol were reacted
with 6a to obtain the corresponding ketones in excellent 90−
91% yields. Gratifyingly, the heterocyclic substrate 5m is also
well-tolerated. Next, we investigated the scope of primary
alcohols. The electron-donating methoxy group substituted at
the different positions of the primary aromatic alcohol
furnished the corresponding ketones in good yields. Notably,
electron-withdrawing groups such as −Cl (6d), −CF3 (6e),
and reducible −OCH2CHCH2 (6f) groups present at the
para position in the benzyl alcohol afforded the desired
ketones in 83−86% yields. Intriguingly, when 1,4-phenyl-
enedimethanol (6g) was used as an alkylating agent the single
α-alkylated ketone 7ag was obtained with excellent selectivity.

Scheme 2. Synthesis of New Triazine-Based Ru-NNN Pincer
Complexes Ru-1, Ru-2, and ORTEP Structure of Ru-2a

aThermal ellipsoids are drawn with 50% probability level.

Scheme 3. Ruthenium(III)-Catalyzed β-Alkylation of 1-(4-
Methoxyphenyl)ethanol Using Benzyl Alcohol

Scheme 4. β-Alkylation of Secondary Alcohols with Primary
Alcohols to α-Alkylated Ketonesa

aGeneral conditions: secondary alcohol (1 mmol), primary alcohol (1
mmol), catalyst Ru-2 (1 mol %), KOtBu (10 mol %), and toluene (2
mL) were heated at 120 °C under air for 12 h. bIsolated yield. cYield
in gram-scale reaction after 24 h.

Organic Letters pubs.acs.org/OrgLett Letter

https://dx.doi.org/10.1021/acs.orglett.0c04098
Org. Lett. 2021, 23, 869−875

870

http://pubs.acs.org/doi/suppl/10.1021/acs.orglett.0c04098/suppl_file/ol0c04098_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.orglett.0c04098/suppl_file/ol0c04098_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c04098?fig=sch2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c04098?fig=sch2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c04098?fig=sch3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c04098?fig=sch3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c04098?fig=sch4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c04098?fig=sch4&ref=pdf
pubs.acs.org/OrgLett?ref=pdf
https://dx.doi.org/10.1021/acs.orglett.0c04098?ref=pdf


Aliphatic primary alcohols 6h and 6i and aliphatic secondary
alcohol 5n were also amenable to this method.
We next explored the catalytic cross-coupling of two

different secondary alcohols to synthesize β-disubstituted
ketones. The major challenge is to overcome the unwanted
self-coupled aldol product, while selectivity is also another
issue.4 Investigation started with the reaction of 5c and
cyclohexanol in the presence of Ru-1 (2 mol %) and KOtBu
(20 mol %) in toluene at 150 °C (see Table S2). To our
delight, we observed the desired product 9ca in 83% yield after
12 h. Notably, no self-coupled product or fully hydrogenated
product 9ca′ was found. Employing Ru-2 under similar
conditions led to a better yield of 9ca, 89% (Table S2, entry
2). Thus, the scope of the reaction was pursued with Ru-2. As
displayed in Scheme 5, a wide variety of secondary alcohols

was examined to synthesize β-disubstituted ketones. An array
of diverse functionalities such as 4-methyl, 4-tert-butyl, 4-
methoxy, 4-dimethylamine, and 4-phenyl on the 1-phenyl-
ethanol (5b−f) were efficiently reacted with 8a to obtain β-
disubstituted ketones 9ba−fa in good to excellent yields (78−
90%). Likewise, meta-substituted 5g also produced the
corresponding ketone in high yield. Remarkably, sterically
hindered ortho-substituted substrate was well tolerated as
witnessed from the 82% yield of 2-cyclohexyl-1-(o-tolyl)-
ethanone (9ha). However, chloro-substituted aromatic secon-
dary alcohol showed diminished activity. It was interesting to
note that substitution on a cyclohexyl ring such as 4-tert-
butylcyclohexanol 8b (or 4-methyl-butylcyclohexanol 8c) gave
a mixture of diastereomers with a diastereomeric ratio of 81:19
as determined from the 1H NMR of the reaction mixture. The
major isomer is 1,4-cis conformation of the cyclohexyl ring,

which was consistent with the reported literature.4 The result
suggests a cross-coupling reaction occurred in a selective
manner with substituted cyclohexanol. Gratifyingly, the scope
of the methodology was expanded to a variety of other higher
analogues of cyclic alcohols such as cycloheptanol and
cyclooctanol. Finally, the highly challenging acyclic aliphatic
secondary alcohol was found to be amenable to this method,
giving 9cf−df, 9lf, and 9cg in good yields. Synthetic
application of the catalytic protocol was demonstrated by
reacting cholesterol with 5c and derivative of (±) tocopherol
(6j) with 5a. These reactions can also run on gram scale,
highlighting the practical utility.
To validate the homogeneous catalytic system for this C-

alkylation, the mercury drop test was conducted, showing no
inhibition of the reaction or reduction of the product yield
(Scheme S5). The liberation of H2 in ADC reaction was
probed by the Pd/C catalyzed hydrogenation of styrene
(Scheme S6). The impact of the NH functionality was
examined by using complex Ru-2Me as the precatalyst, leading
to lower yields of 7ca and 9ca and thereby indicating the
importance of the NH functionality through a metal−ligand
cooperative (MLC) pathway (see the Supporting Informa-
tion). To gain more insight into the active ruthenium species
[Ru(III) or Ru(II)] in the catalytic cycle, a titration
experiment was performed by adding a base into precatalyst
Ru-2 and monitoring the EPR spectra. Upon loading the base,
the paramagnetic signal of ruthenium(III) slowly disappeared
and formed EPR-silent diamagnetic Ru(II) species by using 4
equiv of KOtBu (Figure S3). It infers that 4 mol % of KOtBu
(compared to Ru-2) is necessary for activation of precatalyst.
As the resulting active species (I) is diamagnetic, the NMR
analysis was executed in CD3OD (see the Supporting
Information). For further clarity, the experiment has been
performed in the presence of PPh3. A singlet at 28.5 ppm was
observed in 31P{1H} NMR, indicating the phosphine ligand is
coordinated to the ruthenium(II) center. Besides, species I was
also confirmed by mass spectrometry analysis (see the
Supporting Information). Based on this experimental evidence,
we can reasonably conclude that an in situ generated
ruthenium(II) species was the active species in this catalytic
cycle. The resulting intermediate I can react with alcohol 5c to
provide reactive ruthenium hydride species II, which was
supported by mass spectrometry analysis showed in Figure S7.
Despite several attempts, we failed to isolate metal hydride
species under the reaction condition. Next, in the presence of
KOtBu, the base mediated cross-aldol condensation of 5c′ with
6a′ (or with 5a′ and 8a′) afforded α,β-unsaturated ketone 7ca-
I (or 9aa-I), suggesting the formation of a ketone or aldehyde
in situ as the intermediates. The reaction of 7ca-I with 6a
under optimized condition afforded desired ketone 7ca in
good yield. Likewise, β-branched ketone 9aa was obtained by
using intermediate 9aa-I and cyclohexanol (Scheme S8, S11).
Similar results were observed with molecular H2 in its place of
alcohol (See ESI). These data suggest that in both cases, α,β-
unsaturated ketone (7ca-I or 9aa-I) is the reaction
intermediate and the reaction likely proceeds via a ruthenium
hydride species, either derived from dehydrogenation of
alcohol or molecular H2. Furthermore, deuterium labeling
experiment was performed in both cross-coupling reactions to
validate the involvement of hydrogen-borrowing methodology.
Under the standard conditions, the reaction of 5c-D with 6a or
with 8a yielded expected H/D scrambled product 7ca-D or
9ca-D in 85% and 78% yields, respectively (Scheme S15). The

Scheme 5. Ruthenium-Catalyzed Selective Cross-Coupling
of Secondary Alcoholsa

aGeneral conditions: 1-arylethanol (1 mmol), secondary alcohol (1
mmol), catalyst Ru-2 (2 mol %), KOtBu (20 mol %), and toluene (2
mL) were heated at 150 °C under air for 12 h. bIsolated yield. cYield
in gram-scale reaction after 24 h. dAliphatic secondary alcohol (6
mmol) was used.
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above results demonstrated that the dehydrogenative step
takes place in the ADC reaction sequence and the involvement
of the cooperative bifunctional mechanism. The kinetics
analysis for the cross-couple product 7ca or 9aa was carried
out under optimized conditions. As shown in the kinetic profile
in Figures S1 and S2, the consumption of alcohol 5a or 5c
declines rapidly in the first 2 h and then gradually decreases
over the remaining time. Interestingly, the corresponding
aldehyde 6a′, ketone (5a′ or 5c′), and α,β-unsaturated ketone
(7ca-I or 9aa-I) were found as intermediates. In order to
understand the rate of dehydrogenation of aliphatic secondary
alcohol vs aromatic secondary alcohol by catalyst Ru-2, the
investigation has been illustrated with 8a and 5c under the
standard conditions for 2 h. A higher yield of 8a′ (18%) was
obtained with respect to 5c′ (11%) by GC analysis, which
revealed that dehydrogenation of the aliphatic secondary
alcohol was faster than the benzylic ones under the reaction
conditions (see the Supporting Information).
On the basis of these experimental findings, taking earlier

reports into account,2f,4,12a,13−15 and with the help of DFT
calculations, a plausible catalytic cycle has been proposed as
shown in Scheme 6. Since the calculation of cross-coupling of
secondary alcohols is not well explored,15 we commence our
study with 1-phenylethanol 5a and cyclohexanol 8a as the
model substrates. All calculations were performed at the M06-
L level of theory (see the Supporting Information for details).
The calculated free energy result and some key optimized
structures are depicted in Table S4. At first, the precatalyst Ru-
2 is reduced in situ to form the Ru(II) species under the
reaction conditions. The resultant active species I is then
reacted with alcohol (5a or 8a) converted into ruthenium
hydride intermediate II in a downhill process (ΔG = −19.7
kcal/mol for 5a and ΔG = −22.7 kcal/mol for 8a) via an outer
sphere MLC pathway and proton shuttle type of TS (O-TS-1A
or O-TS-1B). The energy barrier for 8a (ΔG⧧ = 9.7 kcal/mol)
is slightly lowered with respect to dehydrogenation of 5a (ΔG⧧

= 13.3 kcal/mol), which supports the above experimental

observation (see Scheme S15). It was also found that the
aromatized intermediate VIII (ΔG = −14.7 kcal/mol) could
be easily formed by the addition of an −OH bond of alcohol
with the proton shuttle type of mechanism via the MLC
pathway (see Scheme S18). Subsequently, β-hydride elimi-
nation takes place and yields ketone-coordinated intermediate
X (ΔG = −10.9 kcal/mol). To release the corresponding
ketone 5a′ from X requires higher energy (X→ XI; ΔG = 14.6
kcal/mol) compared to the energy barrier for β-hydride
elimination step (ΔG⧧ = 11.5 kcal/mol) (see Scheme S18).
Isomerization can lead to ruthenium hydride intermediate II in
a downhill process of 25.7 kcal/mol (XI → XII). Further,
NICS (0) calculation was performed to evaluate the change in
the aromaticity during I → II or vice versa (see the Supporting
Information). A base-mediated cross-aldol reaction between in
situ generated ketones 5a′ and 8a′ gives α,β-unsaturated
ketone compound 9aa-I, which inserts into the Ru−H bond of
II in an uphill process (ΔG = 2.4 kcal/mol) while crossing a
barrier (R-TS-1) of only 3.3 kcal/mol to give III. Complex III
undergoes σ-bond metathesis with molecular H2 with slightly
higher energy barrier (R-TS-2, ΔG⧧ = 5.5 kcal/mol), leading
to the desired product 9aa in exothermic fashion (ΔG = −27.2
kcal/mol) and regeneration of the active metal hydride
intermediate II.
The alternative alcoholysis of III involves coordination of 5a

to the ruthenium center to give IV via molecular complex
(III···5a). This process is an endothermic (ΔG = 10.6 kcal/
mol), followed by σ-bond metathesis of Ru−C with the O−H
of 5a in IV, giving product 9aa and intermediate V. Complex V
undergoes β-hydride elimination, liberation of ketone, and
isomerization to regenerate intermediate II. The process (V →
II) is thermodynamically downhill (ΔG = −17.6 kcal/mol).
These observations open up the possibility of both the
alcoholysis and hydrogenation pathways giving rise to the
formation of product 9aa. Lastly, the Ru−H and N−H
cooperation involving the metal hydride intermediate II and
the −OH group of the alcohol (5a or 8a) to yield H2

16

Scheme 6. Proposed Mechanism for Cross-Coupling of Alcohols
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regenerates active catalyst I via the transition state O-TS-2A
with energy barrier ΔG⧧ = 32.8 kcal/mol (for 5a) or O-TS-2B
with energy barrier ΔG⧧ = 28.6 kcal/mol (for 8a).
In summary, a phosphine-free pincer ruthenium-catalyzed

cross-coupling of primary and secondary alcohols to α-
substituted ketones and two different secondary alcohols to
β-disubstituted ketones were demonstrated. The preliminary
mechanistic studies indicated that the dehydrogenation of
alcohol follows a proton shuttle type of TS and the
involvement of “borrowing hydrogen” catalysis. The use of
air-stable catalyst, a catalytic amount of base, aerobic reaction
conditions, and high selectivity in C−C bond formation are the
important practical features.
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