

Available online at www.sciencedirect.com

Inorganica Chimica Acta 349 (2003) 104-110

Inorganica Chimica Acta

www.elsevier.com/locate/ica

Synthesis and characterization of 3-dimethylaminopropyl selenolate complexes of palladium(II) and platinum(II)

Sandip Dey^a, Vimal K. Jain^{a,*}, Axel Knoedler^b, Wolfgang Kaim^{b,*}

^a Novel Materials and Structural Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India ^b Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany

Received 20 September 2002; accepted 20 January 2003

Abstract

Bis(3-dimethylaminopropyl)diselenide was prepared by the reaction of Na₂Se₂ with Me₂NCH₂CH₂CH₂CH₂Cl. 3-Dimethylaminopropylselenolate complexes of palladium and platinum of the formulae [M(SeCH₂CH₂CH₂NMe₂)Cl]₂, [M(SeCH₂CH₂CH₂CH₂NMe₂)₂] (M = Pd or Pt), [Pd(OAc)(SeCH₂CH₂CH₂NMe₂)], [PtCl(SeCH₂CH₂CH₂CH₂CH₂Me₂)(PR₃)]₂ (PR₃ = PMePh₂ or PPr₃), [Pt(SeCH₂CH₂CH₂CH₂NMe₂)₂](P-P)] (P-P = dppm, dppe or 2PPh₃) have been synthesized by using either the diselenide or its reduction product from the reaction with NaBH₄. All complexes have been characterized by elemental analysis, IR and NMR (¹H, ¹³C, ³¹P, ⁷⁷Se, ¹⁹⁵Pt) spectroscopy. The stereochemistry of these complexes has been deduced from the NMR spectroscopic data. The structure of [Pd(SeCH₂CH₂CH₂CH₂Me₂)Cl]₂ was established by single crystal X-ray diffraction analysis. Each palladium atom in the dimer is surrounded by two µ-Se atoms, a nitrogen atom and a chloride ligand.

© 2003 Elsevier Science B.V. All rights reserved.

Keywords: Crystal structures; Palladium complexes; Platinum complexes; Selenolate ligand

1. Introduction

The chemistry of platinum group metal chalcogenolates has attracted considerable attention for more than two decades [1]. There are several obvious reasons for the sustained interest in this area as these complexes show a wide structural diversity [1] and find several applications in catalysis [2]. More recently, these complexes have been shown to serve as molecular precursors for the synthesis of metal chalcogenides [3-5] for electronic devices [6]. Most of these complexes are non-volatile, insoluble or poorly soluble oligomeric species, thus limiting their utility as precursors for the synthesis of metal chalcogenides. To suppress polymerization we have employed internally functionalized ligands such as $2-(RC_5H_3N)E^-$ or $Me_2NCH_2CH_2E^-$ (E = Se or Te) [5,7–10]. The latter ligands can be compared with their sulfur analogues (Me₂- $NCH_2CH_2S^{-}$) [11–14]. The coordination behaviour of

2-dimethylaminoethanylchalcogenolate ions (Me₂N- $CH_2CH_2E^-$; E = S, Se, Te) is in general very similar, however subtle differences in chemical and physical properties between S and Se/Te complexes have been noticed [5,7-10]. The chemistry of metal complexes derived from mercaptoamines has been investigated in considerable detail [11-25]. Their structure is greatly influenced by the nature of the metal ion, the number of carbon atoms separating the N and S centers and the substituents on the N-atom. For example, α -mercaptoamines (such as 2-mercaptonicotinic acid [15]) and β mercaptoamines (such as $R_2NCH_2CH_2SH$ where R = Hor Me [11–14,16,17]) yield metal chelates whereas γ mercaptoamines (such as Me₂CH₂CH₂CH₂SH and related derivatives) behave both as simple thiolate ligands (monodentate as well as bridging through sulfur [18-21]) and as chelating ligands, bridging or nonbridging [14,22–25]. These structural variations assisted by the carbon chain length of mercaptoamines have prompted us to examine the chemistry of the heavier homologs of y-mercaptoamine, i.e., R₂NCH₂CH₂- CH_2E^- (E = Se and Te). Herein we report the synthesis of (Me₂NCH₂CH₂CH₂Se)₂ and of palladium(II) and

^{*} Corresponding authors. Tel.: +91-22-2559-5095; fax: +91-22-551 9613.

E-mail address: jainvk@apsara.barc.ernet.in (V. Jain).

platinum(II) complexes containing $Me_2NCH_2CH_2$ - CH_2Se^- . Spectroscopic data and the X-ray structure of [Pd(SeCH_2CH_2CH_2NMe_2)Cl]_2 are also reported.

2. Experimental

All reactions were carried out in dry and distilled analytical grade solvents under N2 using conventional Schlenk technique to prevent oxidation of the selenolate ion. Tertiary phosphines (Strem Chemicals, USA) and Me₂NCH₂CH₂CH₂Cl·HCl were obtained from commercial sources. The Pd and Pt complexes Na₂PdCl₄, K_2PtCl_4 , $MCl_2(P-P)$ (P-P = 2PPh₃, dppm, dppe) and $[M_2Cl_2(\mu-Cl)_2(PR_3)_2]$ (PR₃ = PPr₃, PMePh₂, PPh₃) were prepared according to literature methods [26]. Melting points were determined in capillary tubes and are uncorrected. Microanalysis was performed by the Analytical Chemistry Division of BARC. ¹H, ${}^{13}C{}^{1}H$, ${}^{31}P{}^{1}H$, ${}^{77}Se{}^{1}H$ and ${}^{195}Pt{}^{1}H$ NMR spectra were recorded on a Bruker DPX-300 NMR spectrometer operating at 300, 75.46, 121.49, 57.24 and 64.52 MHz, respectively. Chemical shifts are relative to internal CHCl₃ peak (δ 7.26 ¹H and 77.0 for ¹³C) and external 85% H₃PO₄ for ³¹P, Me₂Se for ⁷⁷Se and Na₂PtCl₆ for ¹⁹⁵Pt. UV-Vis absorption spectra were recorded on a Bruins Instruments Omega 10 spectrophotometer. Cyclic voltammetry was carried out at 100 mV s^{-1} scan rate in CH₂Cl₂ 0.1 M Bu₄NPF₆ using a three electrode configuration (glassy carbon working electrode, Pt counter electrode, Ag/AgCl reference) and a PAR 273 potentiostat and function generator. The ferrocene/ ferrocenium couple served as internal reference.

2.1. Synthesis

2.1.1. $(Me_2NCH_2CH_2CH_2Se)_2$

Bis(3-dimethylaminopropyl)diselenide was prepared in an analogous manner to $(Me_2NCH_2CH_2Se)_2$ [5], using Me_2NCH_2CH_2CH_2Cl and Na_2Se_2. The orangered liquid was fractionally distilled under vacuum. The fraction distilling at 134–140 °C/2 mmHg was collected and was found spectroscopically pure (NMR, Table 1).

2.1.2. $[PdCl(SeCH_2CH_2CH_2NMe_2)]_2$ (1a)

A methanolic solution (10 cm³) of Na₂PdCl₄ (1.242 g, 4.22 mmol) was added to a stirred methanolic solution of (Me₂NCH₂CH₂CH₂Se)₂ (704 mg, 2.13 mmol). A yellow precipitate formed immediately. The reactants were stirred for 3 h. The yellow precipitate was filtered, washed with MeOH ($2 \times 10 \text{ cm}^{-3}$), acetone and Et₂O and finally dried in vacuo (yield 850 mg, 65%). The product was recrystallized from CH₂Cl₂–acetone as orange–red crystals in 38% yield (320 mg). M.p. 205 °C dec. *Anal*. Found: C, 19.3; H, 3.6; N, 5.0. Calc. for C₁₀H₂₄Cl₂N₂Pd₂Se₂: C, 19.6; H, 3.9; N, 4.6%.

2.1.3. $[PtCl(SeCH_2CH_2CH_2NMe_2)]_2$ (1b)

An aqueous solution (10 cm³) of K₂PtCl₄ (361 mg, 0.87 mmol) was added to a stirred methanolic solution (15 cm³) of (Me₂NCH₂CH₂CH₂Se)₂ (144 mg, 0.44 mmol). Stirring continued for 4 h at room temperature (r.t.) whereupon a pale yellow precipitate formed. The precipitate was filtered, washed thoroughly with water, MeOH, acetone and hexane and dried in vacuo. This was recrystallized from DMF–ether as orange–red crystals in 35% yield (120 mg). M.p. (dec.) 188 °C. *Anal.* Found: C, 12.7; H, 3.6; N, 5.0. Calc. for $C_{10}H_{24}Cl_2N_2Pt_2Se_2$: C, 15.2; H, 3.1; N, 3.5%.

2.1.4. $\left[Pd(SeCH_2CH_2CH_2NMe_2)_2\right]$ (2a)

To a freshly prepared methanolic solution (8 cm³) of NaSeCH₂CH₂CH₂CH₂NMe₂ [prepared from (Me₂NCH₂-CH₂CH₂Se)₂ (385 mg, 1.17 mmol) and NaBH₄ (90 mg, 2.37 mmol)], a solution (25 cm³) of Na₂PdCl₄ (341 mg, 1.16 mmol) in the same solvent was added with vigorous stirring. The dark brown solution was stirred for 3 h at r.t. The solvent was stripped off in vacuo. The residue was extracted with hexane (3 × 20 cm³) and passed through a Florisil column. The volume of the solution was reduced to 8 cm³. To this a few drops of pentane were added and cooling to $-5 \,^{\circ}$ C for several hours gave brownish red needle-shaped crystals which lost crystal-linity on drying (yield: 202 mg, 40%). M.p. 102 °C. *Anal*. Found: C, 26.4; H, 5.3; N, 5.3. Calc. for C₁₀H₂₄-N₂PdSe₂: C, 27.5; H, 5.5; N, 6.4%.

2.1.5. $[Pt(SeCH_2CH_2CH_2NMe_2)_2]_n$ (2b)

To a freshly prepared methanolic solution (10 cm³) of NaSeCH₂CH₂CH₂NMe₂ [prepared from (Me₂NCH₂-CH₂CH₂Se)₂ (241 mg, 0.73 mmol) and NaBH₄ (57 mg, 1.50 mmol)] an aq. solution (10 cm³) of K₂PtCl₄ (300 mg, 0.72 mmol) was added and the mixture was stirred for 4 h. The solvents were stripped off in vacuum and the residue was thoroughly washed with water, MeOH, acetone, ether and finally dried in vacuo (yield: 152 mg, 40%). The dark red product was insoluble in all common organic solvents. M.p. (dec.) 205 °C. *Anal*. Found: C, 20.5; H, 4.4; N, 4.7. Calc. for C₁₀H₂₄N₂PtSe₂: C, 22.9; H, 4.6; N, 5.3%.

2.1.6. $[Pd(OAc)(SeCH_2CH_2CH_2NMe_2)]$ (3)

To a benzene solution (15 cm^3) of **2a** (73 mg, 0.17 mmol), solid Pd(OAc)₂ (39 mg, 0.17 mmol) was added with stirring. To the turbid solution acetone (15 cm³) was added and the mixture was stirred at r.t. for 2 h. The solvents were evaporated in vacuo and the residue was washed with hexane and extracted with acetone. The solution was passed through a Florisil column, concentrated to 2 cm³ and cooled at $-5 \,^{\circ}$ C for 24 h to yield a yellow solid (44 mg, 40%). M.p. (dec.) 158 °C. *Anal*. Found: C, 24.7; H, 4.9; N, 4.1. Calc. for C₇H₁₅NO₂-PdSe: C, 25.4; H, 4.6; N, 4.2%.

 $\begin{array}{l} Table \ l \\ {}^{1}H, \ {}^{13}C\{^{1}H\}, \ {}^{31}P\{^{1}H\}, \ {}^{77}Se\{^{1}H\} \ and \ {}^{195}Pt\{^{1}H\} \ NMR \ data \ for \ 3-(dimethylamino) propaneselenolate \ complexes \ of \ palladium(II) \ and \ platinum(II) \ and \ platinum($

Complex	$^{1}\mathrm{H}~\delta$ in ppm	$^{13}C{^{1}H} \delta$ in ppm	$^{31}P\{^{1}H\}$	77 Se{ 1 H} ^a	$^{195}Pt\{^{1}H\}$ b
(Me ₂ NCH ₂ CH ₂ CH ₂ Se) ₂	1.90 (m, Se-C-CH ₂); 2.20 (s, NMe ₂); 2.35 (t, 7.1 Hz, SeCH ₂); 2.95 (t, 7.1 Hz, NCH ₂)	28.2 (SeCH ₂); 29.2 (s, SeCH ₂ CH ₂); 45.4 (s, NMe ₂); 59.3 (s, NCH ₂)		316	
$[PdCl(SeCH_2CH_2CH_2NMe_2)]_2 (1a)$	1.93–2.48 (m, NCH ₂ CH ₂); 2.66, 2.74 (each s, NMe ₂); 3.46–3.52 (m, SeCH ₂)	22.6 (s, ${}^{1}J({}^{77}\text{Se}{}^{-13}\text{C}) = 64 \text{ Hz}, \text{ SeCH}_2);$ 27.9 (s, SeCH ₂ -CH ₂ , ${}^{2}J(\text{Se}{}^{-13}\text{C}) = 35 \text{ Hz});$ 50.0, 52.4 (each s, NMe ₂); 65.1 (s, NCH ₂)		18	
$[PtCl(SeCH_2CH_2CH_2NMe_2)]_2$ (1b)					
$[Pd(SeCH_2CH_2CH_2NMe_2)_2] (2a)$	1.93–2.05 (m, SeC-CH ₂); 2.21, 2.23 (each s, NMe ₂); 2.32–2.56 (m, NCH ₂ , SeCH ₂)	20.7, 24.7 (each s, SeCH ₂); 30.8, 32.6 (each s, SeC- <i>C</i> H ₂); 45.5 (s, NMe ₂); 59.3, 59.5 (s, NCH ₂)		-31	
				-161	
[Pd(OAc)(SeCH ₂ CH ₂ CH ₂ Nme ₂)] (3)	1.95, 2.08 (each s); 2.45, 2.67 (each s, NMe ₂); 2.90–2.94 (m, SeCH ₂); 2.61–2.75 (br, m, NCH ₂); 2.25 (NCCH ₂)	19.4, 23.7 (each s, SeCH ₂); 27.7 (s, SeC- CH ₂); 50.0, 51.5 (NMe ₂ , OAc); 64.4 (NCH ₂): 176.7 (C=O)		-32	
trans-[PtCl(SeCH2CH2CH2N-	1.05 (t, 7 Hz, PCH ₂ CH ₂ Me); 1.56–1.85 (m, PCH ₂ CH ₂ ,		$-0.1 \ {}^{1}J(\text{Pt}-$		-3960 (d)
$Me_2)(PPr_3)]_2^{c}$ (4a)	NCH ₂); 2.24 (s, NMe ₂); 2.45 (br, NCH ₂); 2.62 (br, m, SeCH ₃)		P) = 3122 Hz		$^{1}J(Pt-P) = 3097$ Hz
cis-[PtCl(SeCH ₂ CH ₂ CH ₂ NMe ₂)(P- MePh ₂)] ₂ (4b)	1.81 (t, NCCH ₂); 1.98, 2.25 (each s, NMe ₂); 2.03–2.24 (m, PMe, NCH ₂ CH ₂); 2.44, 3.32 (each m, SeCH ₂); 7.27–7.44 (m), 7.63–7.70 (m) [Ph]		$-1.1 {}^{1}J(\text{Pt}-\text{P}) = 3273 \text{ Hz}$		$-4093 (d)^{d}$ ${}^{1}J(Pt-P) = 3294$ Hz
[Pt(SeCH ₂ CH ₂ CH ₂ NMe ₂) ₂ (dppm)] (5a)	2.08 (s, NMe ₂ , 2.42–2.52 (m, SeCH ₂); 2.02–2.10 (m, NCH ₂); 1.56–1.67 (m, NCCH ₂ –); 4.34 (t, ${}^{2}J(P-H) = 10.4$, ${}^{3}J(Pt-H) = 44$ Hz, PCH ₂); 7.39–7.49 (m); 7.82–7.90 (m) [Ph]		$-52.5 {}^{1}J(Pt-P) = 2401 ;$ ${}^{2}J(Se-P) = 27$ Hz		-4235 (t) ${}^{1}J(Pt-P) = 2410$ Hz
$[Pt(SeCH_2CH_2CH_2NMe_2)_2(dppe)] \ (\textbf{5b})$	1.54 (m, NC–CH ₂); 1.99–2.40 (m, NCH ₂ , SeCH ₂ , PCH ₂); 2.02 (s, NMe ₂); 7.36–7.40 (m); 7.80–7.87 (m) [Ph]		$46.6 {}^{1}J(Pt-P) = 2851; {}^{2}J(Se-P) = 32 Hz$	$55 {}^{2}J(\text{Se}-\text{P}) = 62 \text{ Hz}$	-4946 (t) ${}^{1}J(Pt-P) = 2865$ Hz
$[Pt(SeCH_2CH_2CH_2NMe_2)_2(PPh_3)_2]$ (6)	1.65 (s, NMe ₂); 1.60–1.72 (m, NCCH ₂); 2.04–2.32 (m, SeCH ₂ , NCH ₂); 7.34 (br, PPh ₃)		$18.4 \ ^{1}J(Pt-P) =$ 2932 Hz	$18 {}^{2}J(\text{Se}-\text{P}) = 17 \text{ Hz}$	-4907 (t) ${}^{1}J(Pt-P) = 2938$ Hz

^{a 77}Se: nuclear spin I = 1/2, natural abundance 7.6%. ^{b 195}Pt: nuclear spin I = 1/2, natural abundance 33.8%. The half line widths of ¹⁹⁵Pt signals are 50–100 Hz, hence the variation in the ¹J(Pt–P) coupling constants measured from ³¹P and ¹⁹⁵Pt spectra.

^c When the solution is left for a day isomerization takes place to give a mixture of *cis* and *trans* isomers. $\delta^{31}P = -0.1 [^{1}J(Pt-P) = 3120 \text{ Hz}]; -1.0 [^{1}J(Pt-P) = 3155 \text{ Hz}].$ ¹⁹⁵Pt NMR δ : -3963(d) $[^{1}J(Pt-P) = 3116, ^{2}J(Pt-Pt) = 1060 \text{ Hz}]; -4065(d) [^{1}J(Pt-P) = 3155; ^{2}J(Pt-Pt) = 972 \text{ Hz}].$

 $^{d} {}^{2}J(\text{Pt}-\text{Pt}) = 953 \text{ Hz}.$

2.1.7. $[PtCl(SeCH_2CH_2CH_2NMe_2)(PMePh_2)]$ (4b)

To a freshly prepared methanolic solution (10 cm^3) of NaSeCH₂CH₂CH₂NMe₂ [prepared from (Me₂NCH₂-CH₂CH₂Se)₂ (72 mg, 0.22 mmol) and NaBH₄ (17 mg, 0.45 mmol)] was added an acetone (20 cm³) suspension of $[Pt_2Cl_2(\mu-Cl)_2(PMePh_2)_2]$ (196 mg, 0.21 mmol) with stirring under a nitrogen atmosphere. The pale yellow reaction mixture was stirred for 4 h. The solvents were stripped off in vacuum and the residue was washed with hexane and was extracted with CH_2Cl_2 (6 × 3 cm³). The solution was passed through a Florisil column and the volume of the solution reduced to 5 cm³. After adding a few drops of hexane, the solution was kept in the freezer (-5 °C) to yield pale yellow fibrous crystals in 48% yield (120 mg). M.p. 126 °C. Anal. Found: C, 35.8; H, 4.2; N, 2.8. Calc. for C₁₈H₂₅ClNPPtSe: C, 36.3; H, 4.2; N, 2.4%.

2.1.8. $[PtCl(SeCH_2CH_2CH_2NMe_2)(PPr_3)]$ (4a)

Prepared in a manner similar to 4b and recrystallized from hexane in 45% yield, m.p. 118 °C. Anal. Found: C, 30.7; H, 5.9; N, 2.4. Calc. for C₁₄H₃₃ClNPPtSe: C, 30.2; H, 6.0; N, 2.5%.

2.1.9. $[Pt(SeCH_2CH_2CH_2NMe_2)_2(dppm)]$ (5a)

Prepared from PtCl₂dppm and 2NaSeCH₂CH₂-CH₂NMe₂ and recrystallized from toluene-hexane in 45% yield, m.p. 184 °C. Anal. Found: C, 42.4; H, 3.9; N, 2.4. Calc. for C₃₅H₄₆N₂P₂PtSe₂: C, 46.2; H, 5.1; N, 3.1%.

2.1.10. $[Pt(SeCH_2CH_2CH_2NMe_2)_2(dppe)]$ (5b)

Prepared from PtCl₂dppe and 2NaSeCH₂CH₂CH₂-NMe₂ and recrystallized from acetone-hexane in 60% yield. Anal. Found: C, 46.1; H, 5.0; N, 2.8. Calc. for C₃₆H₄₈N₂P₂PtSe₂: C, 46.8; H, 5.2; N, 3.0%.

2.1.11. $[Pt(SeCH_2CH_2CH_2NMe_2)_2(PPh_3)_2]$ (6)

Prepared from PtCl₂(PPh₃)₂ and 2NaSeCH₂-CH₂CH₂NMe₂ and recrystallized from toluene-pentane in 55% yield. Anal. Found: C, 52.3; H, 5.3; N, 2.5. Calc. for C₄₆H₅₄N₂P₂PtSe₂: C, 52.6; H, 5.2; N, 2.7%.

2.2. Crystallography

X-ray data of an orange-yellow crystal of [PdCl(SeCH₂CH₂CH₂NMe₂)]₂ (1a) were collected on a Siemens P3 diffractometer using graphite monochromated Mo K α radiation and employing the ω -2 θ scan technique. The unit cell parameters (Table 2) were determined from 25 reflections measured by a random search routine. The intensity data were corrected for Lp and absorption effects (ψ scans). The structure was solved by direct methods (program SHELXTL-5.1 [27]). The non-hydrogen atoms were refined anisotropically

Tabl	le	2
rau		_

Crystal size (mm)

Absorption correction

Final R_1 , ωR_2 indices

 $R_1, \omega R_2$ (all data)

Reflections collected/unique

Data/restraints/parameters

Largest difference peak and hole (e $Å^3$)

Table 2 Crystallographic and si [PdCl(SeCH ₂ CH ₂ CH ₂ NMe ₂)] ₂	ructure refinement data for (1a)
Chemical formula	$C_{10}H_{24}Cl_2N_2Pd_2Se_2$
Formula weight	613.93
Temperature (K)	173(2)
λ (Å)	0.71073
Crystal system	monoclinic
Space group	$P2_1/n$
Unit cell dimensions	
a (Å)	10.395(2)
b (Å)	8.6978(17)
<i>c</i> (Å)	19.160(4)
β (°)	98.18(3)
Volume (Å ³)	1714.7(6)
Ζ	4
$D_{\text{calc}} (\text{g cm}^{-1})$	2.378

 $0.3 \times 0.25 \times 0.2$

 Ψ scan

4359/4139

4139/0/164

0.0356, 0.0797

0.0491, 0.0860

1.310 and -1.297

and the hydrogen atoms were introduced using the appropriate riding model.

3. Results and discussion

Synthetic routes to 3-dimethylaminopropylselenolate complexes of palladium(II) and platinum(II) are given in Scheme 1. In a few cases the analytical data were unsatisfactory. Poor solubility of 1b and 2b in noncoordinating solvents and dissociation in coordinating solvents rendered their purification difficult while slow air oxidation of the phosphine/selenolate in 5a gave variable analyses.

The reaction of Na₂PdCl₄ with (Me₂NCH₂-CH₂CH₂Se)₂ in methanol yields an orange-yellow precipitate which, after recrystallization from CH₂Cl₂acetone, gave microcrystals of the empirical composition $[PdCl(SeCH_2CH_2CH_2NMe_2)]_n$ (1a). The IR spectrum of **1a** exhibited a band at 291 cm⁻¹, attributable to vPd-Cl. The structure of the complex has been unambiguously established by X-ray diffraction, 1a is dimeric. The structure is similar to that of γ -mercaptoamine complexes of palladium(II) and platinum(II), e.g. [PdCl(SCH₂CH₂CH₂NMe₂)]₂ [24], [PdCl{SCH₂CH₂(2- $N(Me)C_5H_7)$]₂ [23] or [PtBr(SC₄H₈NMe-4)]₂ [25].

Treatment of Na₂PdCl₄ with 2 equiv. of NaSeCH₂-CH₂CH₂NMe₂ yields a hexane-soluble brown product of the composition $[Pd(SeCH_2CH_2CH_2NMe_2)_2]$ (2a). However, a similar reaction with K_2PtCl_4 gave an insoluble red product **2b**. These complexes may appear to be bis-chelates. However, the corresponding [Pd-(SeCH(Me)CH₂NMe₂)₂]₆ was shown to be hexameric by

Scheme 1.

X-ray crystallography [28]. A similar hexameric structure has been reported for the nickel thiolato complex [Ni(SCH₂CH₂CH₂NMe₂)₂]₆ [19]. In both cases oligomerization takes place via the chalcogen bridges while the NMe₂ groups remain free. It is possible that **2a** may have a similar hexameric structure in the solid. The FAB mass spectrum of **2a** displayed a multiplet at m/z 2619 with an isotopic pattern attributable to the hexamer. The ¹³C{¹H} NMR spectrum of the complex, however, exhibited two singlets each for three methylene carbons. This suggests that lower oligomeric species (such as dimeric) may be present in CDCl₃ solution. When **2a** is treated with Pd(OAc)₂, a redistribution product [Pd(OAc)(SeCH₂CH₂CH₂NMe₂)] is formed (ν C=O 1613 cm⁻¹).

The reaction of $[PtCl_2(P-P)]$ (P-P = dppm or dppe)with 2 equiv. of NaSeCH₂CH₂CH₂NMe₂ gave mononuclear $[Pt(SeCH_2CH_2CH_2NMe_2)_2(P-P)]$ as yellow crystalline solids. The ³¹P{¹H} and ¹⁹⁵Pt{¹H} (nuclear spin I = 1/2 with a natural abundance of 33.8%) data are similar to those reported for several organochalcogenolates of platinum(II) [7,29]. These complexes have been assigned a *cis* configuration.

The reaction of $[PtCl_2(PPh_3)_2]$ with 2 equiv. of NaSeCH₂CH₂CH₂CH₂NMe₂ afforded $[Pt(SeCH_2CH_2CH_2CH_2-NMe_2)_2(PPh_3)_2]$. A freshly prepared CDCl₃ solution of the complex exhibited singlet and triplet signals in the ³¹P{¹H} and ¹⁹⁵Pt{¹H} NMR spectra, respectively. The ³¹P and ¹⁹⁵Pt chemical shifts and the magnitude of ¹J(Pt-P) are similar to $[Pt(SePh_2(PPh_3)_2)]$ [29,30] sug-

gesting the formation of trans-[M(SeCH₂CH₂CH₂N-Me₂)₂(PPh₃)₂].

Treatment of $[Pt_2Cl_2(\mu-Cl)_2(PR_3)_2]$ $(PR_3 = PPr_3^n)$, PMePh₂) with 2 equiv. of NaSeCH₂CH₂CH₂NMe₂ resulted in the formation of [PtCl(SeCH₂CH₂CH₂N- Me_2)(PR₃)]. These complexes show a single resonance in the ³¹P NMR spectra with ¹⁹⁵Pt satellites and a doublet in the ¹⁹⁵Pt NMR spectra due to coupling with one phosphorus nucleus. Although the NMR data of these complexes are very similar to recently reported mononuclear complexes, $[MCl(ECH_2CH_2NMe_2)(PR_3)]$ (M = Pd or Pt; E = S, Se, Te) [5,7,8,31], the magnitude of ${}^{1}J(\text{Pt}-\text{P})$ for the former series is significantly reduced and shows a phosphine dependence. The magnitude of $^{1}J(\text{Pt}-\text{P})$ (~ 3400 Hz) for [PtCl(ECH₂CH₂NMe₂)(PR₃)] shows little dependence either on the phosphine ligand or on the nature of the chalcogen atom (S, Se, Te). The magnitude of ${}^{1}J(Pt-P)$ for the present series of complexes can be compared with that of [Pt₂Cl₂(µ- $SeR'_{2}(PR_{3})_{2}$ (R' = Et, Bz, Ph) [32], therefore, these complexes may be assigned a dimeric structure with selenolate bridges. This is further substantiated by the presence of ${}^{2}J(Pt-Pt)$ coupling in the ${}^{195}Pt$ NMR spectra. Complex 4a is formed as a sym-trans isomer which slowly isomerizes to a mixture of sym-cis/trans isomers as revealed by NMR spectroscopy. Compound **4b** is isolated as *sym*-*cis* isomer.

In contrast to the reactions of NaSeCH₂CH₂-CH₂NMe₂ with chloro-bridged platinum complexes, the similar reaction with $[Pd_2Cl_2(\mu-Cl)_2(PMePh_2)_2]$ after

Table 3

UV–Vis	absorption ^a	and o	electrochemical	data	of	complexes	in
CH ₂ Cl ₂ a	nd 0.1 M Bu ₄	NPF ₆ /	CH ₂ Cl ₂ ^b , resp	ectively	7		

Complex	$\lambda_{\max}(\varepsilon)$	$E_{\mathrm{pa}}{}^{\mathrm{b}}$
[PdCl(SeCH ₂ CH ₂ CH ₂ NMe ₂)] ₂ (1a)	298 (10 000), 335 (sh),	1.17
	370 (sh)	
$[Pd(SeCH_2CH_2CH_2NMe_2)_2]$ (2a)	298 (13 800), 338	
	(9900), 440 (5000)	
[PtCl(µ-SeCH2CH2CH2N-	251 (6700), 271 (7000),	0.59
$Me_2(PPr_3^n)]_2$ (4a)	290 (6400)	
[PtCl(µ-SeCH ₂ CH ₂ CH ₂ NMe ₂)-	249 (12 500), 270	0.58
$(PMePh_2)]_2$ (4b)	(11 500), 286 (9300),	
	315 (4470)	
$[Pt(SeCH_2CH_2CH_2NMe_2)_2(dppm)]$ (5a)	266 (29 000), 369 (1700)	0.47

^a Wavelengths λ_{max} at the absorption maxima in nm, molar extinction coefficients in M^{-1} cm⁻¹.

^b From cyclic voltammetry at 100 mV s⁻¹ scan rate, E_{pa} anodic peak potentials in V vs. FeCp₂/FeCp₂⁺.

recrystallization afforded **1a**. The reaction mixture showed several peaks in the ³¹P NMR spectrum.

3.1. Absorption spectra and electrochemistry

Absorption spectra and cyclovoltammetric peak potentials of a few complexes have been recorded in dichloromethane and are summarized in Table 3. The long-wavelength transitions of the complexes have their origin in the electron-rich selenolate groups, the unoccupied target orbital is typically associated with the metal [8]. Very weak features of the triorganophosphinecontaining compounds have been attributed to selenolate-to-phosphine charge transfer transitions [7,8]. Aggregation, and thereby increased orbital interaction, shifts these transitions to lower energies as is evident from a comparison between dimeric **1a** and presumably hexameric **2a**. Typically, the palladium compounds display absorptions at lower energies than the platinum analogues [7,8]. The peak potentials for irreversible oxidation reflect the donor capacity of triorganophosphine co-ligands.

3.2. Crystal structure analysis of [PdCl(SeCH₂CH₂CH₂NMe₂)]₂ (1a)

The molecular structure of 1a is shown in Fig. 1, selected bond lengths and angles are summarized in Table 4. The structure contains two distorted square planar palladium atoms which are held together by two symmetrically bridging Se atoms of the chelating selenolate ligands. The two chloride ligands are mutually *trans*. Each palladium atom is surrounded by Cl, N and two Se atoms. The various bond lengths and angles in the 'PdCINSe₂' fragments are comparable. The Pd…Pd distance at 3.413(1) Å is significantly longer than expected for any direct Pd…Pd bonding interac-

Table 4 Selected bond lengths (Å) and angles (°) for $[PdCl(SeCH_2-CH_2NMe_2)]_2$ (1a)

Bond lengths			
Pd(1)-Se(1)	2.3858(7)	Pd(2)-Cl(2)	2.3445(14)
Pd(1)-Se(2)	2.4037(7)	Pd(1) - N(1)	2.148(4)
Pd(2)-Se(1)	2.3954(9)	Pd(2) - N(2)	2.141(4)
Pd(2)-Se(2)	2.3965(7)	Se(1) - C(1)	1.973(5)
Pd(1)-Cl(1)	2.3677(15)	Se(2) - C(6)	1.981(6)
Bond angles			
Se(1)-Pd(1)-Se(2)	79.67(2)	Se(1)-Pd(2)-Se(2)	79.62(3)
Se(1)-Pd(1)-Cl(1)	171.22(4)	Se(2)-Pd(2)-Cl(2)	170.84(4)
Se(1) - Pd(1) - N(1)	94.78(12)	Se(2) - Pd(2) - N(2)	95.56(12)
Se(2) - Pd(1) - N(1)	172.49(12)	Se(1) - Pd(2) - N(2)	174.31(11)
Se(2)-Pd(1)-Cl(1)	91.98(4)	Se(1)-Pd(2)-Cl(2)	91.35(4)
N(1) - Pd(1) - Cl(1)	93.29(13)	N(2)-Pd(2)-Cl(2)	93.37(12)
Pd(1)-Se(1)-Pd(2)	91.11(3)	Pd(1)-Se(2)-Pd(2)	90.64(3)

Fig. 1. View of [PdCl(SeCH₂CH₂CH₂NMe₂)]₂ (1a) with crystallographic numbering scheme.

tion. The $Pd \cdot \cdot Pd$ separation is considerably greater than that of thiolato-bridged analogues (3.144(2)-3.374)(1) Å [23-25]) due to the larger size of bridging selenium. An even smaller Pd. Pd separation of 2.9726 (7) Å was found in the related (and isostructural) phosphinothiolato [PdCl(SCH₂CH₂complex $(CH_2PPh_2)_2$ [33]. Like in the latter compound, the sixmembered chelate rings ('PdSeCCCN' in 1a) are puckered in a boat-type conformation while the fourmembered 'Pd₂Se₂' ring is non-planar with a hinge angle of 136.2°, showing an *anti* configuration. The Pd-Se distances *trans* to N and *trans* to Cl are essentially similar and are well within the range expected for chelated selenolate ligands in palladium [5,8] and analogous platinum complexes [7]. Also, the Pd-Cl and Pd-N distances are well within the ranges reported for similar derivatives [5,7,8]. The former is longer by about 0.14 Å while the latter is shorter by 0.07 Å relative to the values reported for the sulfur analogue [PdCl(SCH₂CH₂CH₂NMe₂)]₂ [24]. The Se-Pd-Se angle is small and, in consequence, the other right angles have opened up to $95.56(12)^{\circ}$.

In summary, the chemistry of the 3-dimethylaminopropylselenolate ligand differs considerably from that of its lower homologue Me₂NCH₂CH₂Se⁻. The γ -aminoselenolate ligand can bind palladium and platinum as a simple selenolate or as metal-metal bridging selenolate, in N,Se-chelating or chelating-bridging modes.

4. Supplementary material

The material is available from the authors on request.

Acknowledgements

We thank Drs. J.P. Mittal and P. Raj for encouragement of this work and Dr. Axel Klein for helpful discussions. We are also grateful to Dr. M. Sudershanan, Head, Analytical Chemistry Division, BARC for providing microanalyses of complexes. Support for this work under the Indo-German Bilateral Program from the BMBF (Project No. IND 99/060) is gratefully acknowledged.

References

- [1] (a) I.G. Dance, Polyhedron 5 (1986) 1037;
 (b) P.J. Blower, J.R. Dilworth, Coord. Chem. Rev. 76 (1987) 121;
- (c) J. Arnold, Prog. Inorg. Chem. 43 (1995) 353.
- [2] (a) L.Y. Chiang, J.W. Swirczewski, R. Kastrup, C.S. Hsu, R.B. Upasani, J. Am. Chem. Soc. 113 (1991) 6574;
 (b) K. Osakada, Y. Ozawa, K. Yamamoto, J. Chem. Soc., Dalton Trans. (1991) 759;

(c) W.D. Jones, M.R. Chim, J. Am. Chem. Soc. 116 (1994) 198;

(d) J.R. Dilworth, N. Wheatley, Coord. Chem. Rev. 119 (2000) 89;

(e) J. Real, M. Pages, A. Polo, J.F. Pinella, A. Alvarez-Larena, Chem. Commun. (1999) 277;

(f) V.K. Jain, G.S. Rao, Inorg. Chiem. Acta 127 (1987) 161.

- [3] S. Narayan, V.K. Jain, K. Panneerselvam, T.H. Lu, S.F. Tung, Polyhedron 18 (1999) 1253.
- [4] A. Singhal, V.K. Jain, R. Misra, B. Varghese, J. Mater. Chem. (2000) 1121.
- [5] S. Dey, V.K. Jain, S. Chaudhury, A. Knoedler, F. Lissner, W. Kaim, J. Chem. Soc., Dalton Trans. (2001) 723.
- [6] (a) Y. Tonomura, J. Handa, Mitsubishi Paper Mills Ltd., Jpn Pat (1991) 03126035 (Chem. Abst. 115 (1991) 218921);
 (b) T. Oota, K. Yoshioka, T. Akyama, S. Mori, Jap. Pat. (1995) 7205548 (Chem. Abst. 123 (1995) 325855).
- [7] S. Dey, V.K. Jain, A. Knoedler, W. Kaim, S. Zalis, Eur. J. Inorg. Chem. (2001) 2965.
- [8] S. Dey, V.K. Jain, A. Knodler, A. Klein, W. Kaim, S. Zalis, Inorg. Chem. 41 (2002) 2864.
- [9] S. Narayan, V.K. Jain, B. Varghese, J. Chem. Soc., Dalton Trans. (1998) 2359.
- [10] S. Dey, V.K. Jain, J. Singh, V. Trehan, K.K. Bhasin, B. Varghese, unpublished results.
- [11] C.W. Schläpfer, K. Nakamoto, Inorg. Chiem. Acta 6 (1972) 177.
- [12] D. Gibson, S.J. Lippard, Inorg. Chem. 25 (1986) 219.
- [13] I. Casals, P. Gonzalez-Duarte, W. Clegg, C. Foces-Foces, F.H. Cano, M. Martinez-Ripoll, M. Gomez, X. Solans, J. Chem. Soc., Dalton Trans. (1991) 2511.
- [14] M. Capdevila, W. Clegg, P. Gonzalez-Duarte, I. Mira, J. Chem. Soc., Dalton Trans. (1992) 173.
- [15] S. Marchal, V. Moreno, G. Aullon, S. Alvarez, M. Quiros, M. Font-Bardia, X. Solans, Polyhedron 18 (1999) 3675.
- [16] D.C. Jicha, D.H. Busch, Inorg. Chem. 1 (1962) 872.
- [17] J. Suades, X. Solans, M. Font-Altaba, Polyhedron 3 (1984) 1227.
- [18] M. Capdevila, P. Gonzalez-Duarte, C. Foces-Foces, F.H. Cano,
- M. Martinez-Ripoll, J. Chem. Soc., Dalton Trans. (1990) 143. [19] M. Capdevila, P. Gonzalez-Duarte, J. Sola, C. Foces-Foces, F.H.
- Cano, M. Martinez-Ripoll, Polyhedron 8 (1989) 1253. [20] H. Barrera, J.C. Bayon, J. Suades, C. Germain, J.P. Declerq,
- Polyhedron 3 (1984) 969. [21] M. Capdevila, W. Clegg, P. Gonzalez-Duarte, B. Harris, I. Mira,
- J. Sola, I.C. Taylor, J. Chem. Soc., Dalton Trans. (1992) 2817.
- [22] J. Sola, R. Yanez, J. Chem. Soc., Dalton Trans. (1986) 2021.
- [23] H. Barrera, J.M. Vinas, M. Font-Altaba, X. Solans, Polyhedron 4 (1985) 2027.
- [24] X. Solans, M. Font-Altaba, J.L. Brianso, J. Sola, J. Suades, H. Barrera, Acta Crystallogr., C 39 (1983) 1653.
- [25] J.A. Ayllon, P. Gonzalez-Duarte, C. Miravitlles, E. Molins, J. Chem. Soc., Dalton Trans. (1990) 1793.
- [26] F.R. Hartley, The Chemistry of Platinum and Palladium, Wiley, New York, 1973.
- [27] SHELXTL-5.1, Bruker Analytical X-ray Systems, Madison, WI, 1998.
- [28] S. Dey, V.K. Jain, A. Klein, W. Kaim, unpublished results.
- [29] A. Singhal, V.K. Jain, B. Varghese, E.R.T. Tiekink, Inorg. Chim. Acta 285 (1999) 190.
- [30] V.K. Jain, S. Kannan, E.R.T. Tiekink, J. Chem. Res. (M) (1994) 501.
- [31] S. Dey, V.K. Jain, A. Knoedler, W. Kaim, unpublished results.
- [32] (a) V.K. Jain, S. Kannan, J. Organomet. Chem. 405 (1991) 265;
 (b) V.K. Jain, S. Kannan, R.J. Butcher, J.P. Jasinski, Polyhedron 14 (1995) 3641;

(c) S. Dey, V.K. Jain, B. Verghese, J. Organomet. Chem. 623 (2001) 48.

[33] N. Brugat, A. Polo, A. Alvarez-Larena, J.F. Piniella, J. Real, Inorg. Chem. 38 (1999) 4829.