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Abstract: A palladium-catalyzed synthesis of stereodefined fused tetrahydropyrans from 2-substituted 
1,3-cyclohexadienes is presented. The reaction takes place via an intramolecular 1,4-oxidation of the 
conjugated diene via a (~-allyl)palladium intermediate. The stereochemical outcome of the reaction can 
be controlled to give either cis or trans 1,4-addition over the conjugated diene. The structure of the 
products was established by X-ray crystallography. 

Palladium-catalyzed 1,4-oxidation of conjugated dienes has become a useful method for regio- and 

stereoselective functionalization of conjugated dienes. 1 Recent extension to intramolecular variants has opened 

new avenues towards the stereoselective synthesis of various heterocyclic systems. 2-5 In these reactions the side 

chain with the nucleophile has been situateA in the 5- or l-position of the diene (eq. 1 and 2). In both cases full 

control of the 1,4-relative stereochemistry was achieved. 

Pd(li) y ~  
+ Y ~, ox 

(eq. 1) 

+ Y Pd(ll)ox " Y ~ ~ X  (eq. 2) 

So far no studies have been made with a side chain in the 2-position. Such a cyclization would give rise 

to an endo cyclization to produce II .  Since the Y group of these reactions is a versatile leaving group (e.g. 

carboxylate or halide) a stereospecific SN2'  substitution in I I  would give access to c is -  or t r a n s - f u s e d  

heterocyclic systems I I I  (Scheme 1). In this communication we report on intramolecular Pd-catalyzed 1,4- 

oxidation of I to II  with alcohol as nucleophile in the side chain. 
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The requisite starting material 1 for the cyclization was readily prepared from cyclohex-2-en-l-one in a 

few steps (Scheme 2). The vinylic alkylation of the unsaturated ketone with ethyl acrylate was performed 

according to a literature procedure. 6 Reduction of the resulting ketoester gave rise to the diol 4 which was 

subsequently acetylated to give the diacetate in high yield. Palladium-catalyzed elimination of HOAc from the 

allylic acetate furnished the conjugated diene acetate 6 which was transformed to 1 upon reductive cleavage of 

the acetate. 

[ ~  Ethyl acrylale (1.3 equiv.) O ~ ~ j ~  O 
DBU (0.2 equiv.) Et 

I t ,  

DMF, 180°C, 77% 
2 3 

Acetic anhydride (6 equiv.) 
LiAIH4 (3 equiv.) H DMAP (0.1 eq), EtaN (6 equiv.) 
Ether, 98% CH2CI2, 84% 

4 

A ~  Pd(dba)2 (0.07 equiv.), 
PPha (0.14 equiv.), 

Ac bBuaN (1.5 equiv.) ~, Ac 
Toluene, reflux, 60% 

5 6 

Scheme 2 

DIBAL CH2C12,(2"283% equiv.) [~ '~OH 
I 

The first attempts to cyclize 1 (Scheme 3) were performed in acetic acid / acetone (1 : 4) employing 5 

tool% of Pd(OAc)2 as the catalyst and 1,4-benzoquinone as the oxidant and resulted in extensive formation of 

aromatized starting material and Diels-Alder adducts between the diene and 1,4-benzoquinone. To overcome 

these problems, it was essential to add the diene slowly to the reaction mixture. Under these conditions (entry 1, 

Table I) the trans-acetate 7 was obtained in 69% yield and further improvment by changing the solvent to 

acetic acid (entry 2) led to a yield of 74% of 7. 7 The stereochemistry of the second nucleophilic attack by 

acetate on the intermediate n-allyl palladium complex could be partially altered by the addition of lithium 

acetate to the reaction. In the presence of 5 and 10 equiv. (to the diene) of LiOAc the ratio between cis and 

trans acetates 7 and 8 were 1:1 and 2:1 respectively (entries 3 and 4). More efficient stereocontrol was obtained 

by the addition of lithium chloride and when 2 equiv, of LiCI (to the diene) cis-acetate 88 was produced in 87% 

yield with excellent stereoselectivity (entry 5). Addition of both LiOAc and LiC1 did not improve the yield 

(entry 6). 
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Scheme 3 

1 

AcO #a* .~  

L = 1,4-Benzoquinone; X = AcO or CI L ~ o ' J  

8 

Table I. Cyclization of 1 with acetate as extemal nucleophile, a 

Entry LiOAc (equiv) b LiCI (equiv) b Solvent Stereochemistry Yield 

1 no no AcOH/acetone (1:4) > 98% trans 69% 

2 no no AcOH > 98% trans 74% 

3 yes (5) no AcOH 500 cis 35% 

4 yes (10) no AcOH 66°/. cis 49% 

5 no yes (2) AcOH > 98% cis 87% 

6 yes (2) yes (2) AcOH > 98% cis 66% 

a. For reaction conditions see reference 7. b. Based on the diene. 

The proposed t rans  relation between the acetate and the tetrahydropyran oxygen in 7 was unambiguously 

assigned by X-ray crystallography, the result of which is presented in Figure 1. 

Hql 
H31 H22 

~ H21 Hl12 H72 ,I 
H51 
q 

H61 C6 ~ H 7 I  H91 

H62 

01 Hll 

Figure 1. The bicyclic tetrahydrofuran 7 crystallises in space group P21/c with cell dimensions a = 10.374(5), b = 
6.514(3), c = 15.026(8) A and I~ = 101.03(1) °. A structural model with 192 parameters was refined against 6340 reflexions 
measured with MoKet radiation at 25K giving a final resiual R(F) = 0.049. 

Interestingly, no formation of allylic chloride from nucleophilic attack by chloride on the intermediate ~- 

allyl palladium complex was observed when an excess of LiC1 (2 equiv, to the diene) was used in the reaction. 9 

In order to produce the allylic chloride it was necessary to change the solvent to acetone. This indeed allowed 
for the chloride to add to the intermediate ~-allyl complex although the regioselectivity was now changed into 

mainly 1,2-addition over the 1,3-diene (Scheme 4). lo 
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Pd(OAc)2 (O.OSequiv.) 
Benzoquinone (2 e q u i v . ) ~  + C ~ ~  
LiCI (2 equiv.) = 

Acetone, 69% 
1 9 10 

5 : 1 
~ 4  
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