Synthetic Methods

Palladium-Catalyzed Coupling Reaction of Perfluoroarenes with Diarylzinc Compounds

Masato Ohashi,*^[a] Ryohei Doi,^[a] and Sensuke Ogoshi*^[a, b]

Abstract: This report describes the first Pd^{0} -catalyzed crosscoupling of hexafluorobenzene ($C_{6}F_{6}$) with diarylzinc compounds to give a variety of pentafluorophenyl arenes. This reaction could be applied to other perfluoroarenes, such as octafluorotoluene, pentafluoropyridine, and perfluoronaphthalene, to give the corresponding polyfluorinated coupling products. The optimal ligand in this catalytic reaction was PCy₃, and lithium iodide was indispensable as an additive for the coupling reaction. One of the roles of lithium iodide in this catalytic reaction was to promote the oxidative addition of one C–F bond of $C_{6}F_{6}$ to palladium. Stoichiometric reactions revealed that an expected oxidative-addition product, *trans*-[Pd($C_{6}F_{5}$)I(PCy₃)₂], generated from the reaction of [Pd(PCy₃)₂] with $C_{6}F_{6}$ in the presence of lithium iodide, was not involved in the catalytic cycle. Instead, a transient threecoordinate, monophosphine-ligated species, $[Pd(C_6F_5)]-(PCy_3)]$, emerged as a potential intermediate in the catalytic cycle. Therefore, we isolated a novel Pd^{II} complex, $[Pd(C_6F_5)]-(PCy_3)(py)]$, in which pyridine (py) acted as a labile ligand to generate the transient species. In fact, in the presence of lithium iodide, this Pd^{II} complex was found to react smoothly with diphenylzinc to give the desired pentafluorophenyl benzene, whereas the same reaction conducted in the absence of lithium iodide resulted in a decreased yield of pentafluorophenyl benzene, which indicated that the other role of lithium iodide was to enhance the reactivity of the organozinc species during the transmetalation step.

Introduction

Efficient methods have been developed for the synthesis of organofluorine compounds because functionalized fluorinated organic compounds are indispensable in our daily life. These methods are divided into two major approaches. The first is selective monofluorination at a specific position of an organic compound, which is an essential transformation for the efficient synthesis of pharmaceuticals and agrochemicals. Thus, reactions and reagents for selective fluorination have been developed at a rapid rate.^[1] The second approach is the selective transformation of a specific carbon-fluorine bond of a perfluoro- or multifluoro-compound, which allows the preparation of organic compounds that include a fluorinated functional group.^[2] In particular, the transformation of perfluoroarenes is an efficient and economical method for the preparation of highly functionalized organofluorine compounds and, therefore, a limited number of coupling reactions with aryl-metal

[a]	Dr. M. Ohashi, R. Doi, Prof. Dr. S. Ogoshi Department of Applied Chemistry, Faculty of Engineering
	Osaka University, Suita, Osaka 565-0871 (Japan)
	Fax: (+ 81)6-6879-7394
	E-mail: ohashi@chem.eng.osaka-u.ac.jp
	ogoshi@chem.eng.osaka-u.ac.jp
[b]	Prof. Dr. S. Ogoshi
	JST, Advanced Catalytic Transformation Program
	for Carbon Utilization (ACT-C)
	Suita, Osaka 565-0871 (Japan)
	Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.201303451.

compounds have been reported.^[3-9] Radius et al. reported the coupling reaction of octafluorotoluene (C_7F_8) and perfluorobiphenyl ($C_{12}F_{10}$) with aryl boronic acids in the presence of a catalytic amount of NHC-nickel(0) catalyst (NHC = N-heterocyclic carbene).^[3] This group also demonstrated the usefulness of a NHC-nickel(0) complex for C-F bond activation of hexafluorobenzene (C_6F_6); indeed, the Ni⁰/NHC complex showed catalytic activity for the hydro-defluorination of C₆F₆.^[10] However, efficient catalytic transformation of C₆F₆ in which C-C bond formation is involved is very rare. To the best of our knowledge, only two examples of transition-metal-catalyzed C--C bondforming reactions of C₆F₆ to give biaryl compounds have been reported to date.^[4,5] We also demonstrated the reaction of C₆F₆ with an aryl boronate catalyzed by Radius' complex.^[6] These reports suggest that nickel catalysts with strong electron-donating ligands are efficient for carbon-fluorine bond activation.^[8, 11, 12] Yoshikai and Nakamura et al. reported the coupling reaction of multifluorinated benzenes with arylzinc reagents catalyzed by nickel ligated with alkoxydiphosphine; the same group also achieved the selective activation of a C-F bond.^[5] From a practical point-of-view, however, there is still no easily accessible catalyst system applicable for the coupling reaction that could introduce a perfluorinated aryl group to a specific position of arene compounds. Recently, we reported the palladium-catalyzed coupling reaction of tetrafluoroethylene with diarylzinc reagents to give triflurorovinylarenes, in which lithium iodide was crucial in the oxidative-addition step because of the formation of a very strong Li-F bond.^[13] This reaction suggested the possibility of cleavage of the unreactive

carbon-fluorine bond of C_6F_6 by the cooperation of palladium(0) and lithium iodide. Herein, we report the coupling reaction of perfluoroarenes (e.g., C_6F_6) with diarylzinc compounds, catalyzed by palladium(0) in the presence of lithium iodide. In addition, this report also introduces a possible reaction pathway for transmetalation with aryl zinc reagents based on certain stoichiometric reactions and the robustness of *trans*-[Pd-(C_6F_5)I(PCy₃)₂], formed by the oxidative addition of C_6F_6 to [Pd(PCy₃)₂] in the presence of lithium iodide.

Results and Discussion

Optimization and substrate scope in the Pd⁰-catalyzed coupling of perfluoroarenes with diarylzinc compounds

We first applied the reaction conditions of the coupling reaction of TFE (tetrafluoroethylene) with $Ar_2Zn^{[13]}$ to the coupling reaction of C_6F_6 with Ar_2Zn (Table 1). In the presence of tris(dibenzylideneacetone)dipalladium(0) ([Pd₂(dba)₃], 5 mol% (com-

Table 1.	Optimization of the catalyt F F F F F F F F	ric reaction. Pd catalyst additives THF, 60 °C	F F F F F F	∠Ph `F		
Entry	Catalyst ([mol %])	Additive	<i>t</i> [h]	Yield [%] ^[a]		
1	[Pd ₂ (dba) ₃] (5)/PPh ₃ (20)	Lil (2.4 equiv)	10	trace		
2	$[Pd(PCy_3)_2]$ (5)	Lil (2.4 equiv)	4	70		
3	none	Lil (2.4 equiv)	21	-		
4	[Pd(PCy ₃) ₂] (5)	Lil (3.6 equiv)	6	75		
5	$[Pd(PCy_3)_2]$ (5)	none	10	5		
6 ^[b]	[Pd(OAc) ₂] (5)/PCy ₃ (10)	Lil (2.4 equiv)	4	65		
7	[Pd ₂ (dba) ₃] (5)/PCy ₃ (20)	Lil (3.6 equiv)	4	77		
8 ^[b]	[Pd(OAc) ₂] (5)/DCPE (5)	Lil (2.4 equiv)	9	13		
9 ^[b]	[Pd(OAc) ₂] (5)/DCPB (5)	Lil (2.4 equiv)	15	trace		
[a] Tetradecane was used as an internal standard. [b] $\rm ZnPh_2$ (0.7 equiv) was employed.						

parable to 10 mol% Pd^0 atom)), PPh_3 (20 mol%), and Lil (2.5 equiv) at 60 $^{\circ}$ C in THF, the reaction of C₆F₆ with Ph₂Zn, prepared in situ by treatment of ZnCl₂ with PhMgBr (2 equiv), gave a trace amount of pentafluorophenyl benzene (1) and C_6F_6 remained intact (Table 1, entry 1). To promote the oxidative addition of C_6F_6 to palladium, $[Pd(PCy_3)_2]$ was examined as a catalyst precursor for the coupling reaction. The desired product 1 was obtained in 70% yield (Table 1, entry 2).^[14,15] In the absence of a palladium catalyst, no coupling product was observed (Table 1, entry 3). An increase in the amount of Lil improved the yield of 1 to 75% (Table 1, entry 4). In the absence of Lil, 1 was obtained in 5% yield, even after a prolonged reaction time (Table 1, entry 5), which indicates that the addition of Lil is crucial for the occurrence of the coupling reaction. This result contrasted with the reaction of TFE and Ph₂Zn, generated from PhMgBr and ZnCl₂, in which 44% of the coupling product was obtained.^[13] In the presence of PCy₃, palladium(II) acetate (Pd(OAc)₂) was also an effective catalyst for the coupling reaction (Table 1, entry 6). A mixture of $[Pd_2(dba)_3]$ and PCy_3 (5 and 20 mol%, respectively) showed catalytic activity to give **1** in 77% yield, whereas a greater palladium catalyst loading (10 mol% $[Pd_2(dba)_3]$) was required for smooth progress in the coupling reaction (Table 1, entry 7). When either DCPE (1,2-dicyclohexylphosphinoethane) or DCPB (1,4-dicyclohexylphosphinobutane) were employed the coupling reaction was clearly retarded (Table 1, entries 8 and 9).

The palladium-catalyzed coupling reaction of perfluoroarenes with a variety of Ar_2Zn reagents in the presence of Lil was carried out and the results are summarized in Scheme 1.

Scheme 1. Palladium(0)-catalyzed coupling reaction of perfluoroarenes with diarylzinc compounds in the presence of Lil.

Both (4-MeC₆H₄)₂Zn and (3-MeC₆H₄)₂Zn reacted with C₆F₆ to give coupling products **2** and **3** in 70 and 53% yield, respectively. However, no coupling reaction product was obtained from the reaction of C₆F₆ with (2-MeC₆H₄)₂Zn. The aryl zinc compounds with electron-donating groups such as (4-Me₂NC₆H₄)₂Zn and (4-MeOC₆H₄)₂Zn afforded the coupling compounds **4** and **5** in 74 and 76% yield, respectively. The reac-

tions of aryl zinc reagents with electron-withdrawing groups, $(4-FC_6H_4)_2Zn$ and $(3,5-F_2C_6H_3)_2Zn$, also yielded the corresponding coupling products (**6** and **7**) in 66 and 49% yield, respectively. The reaction of C_6F_6 with $(2-C_{10}H_9)_2Zn$ under the same reaction conditions gave 2-pentafluorophenylnaphthalene (**8**) in 65% yield after 8 h. When a thienyl group was introduced, the reaction gave 2-pentaphenylthiophene (**9**) in 55% yield. Other functionalized aryl zinc species prepared according to Knochel's procedure,^[16] LiCl·(*p*-EtCOOC₆H₄)Znl and LiCl·(*p*-NCC₆H₄)Znl, were successfully applied to the coupling reaction with C_6F_6 to give **10** and **11**, respectively, in moderate isolated yields.

The reaction was applicable to other perfluoroarenes. The coupling reaction of octafluorotoluene (C_7F_8) with Ph₂Zn, (4- $MeOC_6H_4)_2Zn$, or $(2-MeC_6H_4)_2Zn$ took place at the 4-position of C_7F_8 to give the corresponding products 12–14 in good-to-excellent yields. The reaction of C_7F_8 with $(4-MeOC_6H_4)_2Zn$ proceeded very smoothly, which allowed the confirmation of a background reaction. In the absence of [Pd(PCy₃)₂], 13 was obtained in 30% yield at 60°C for 6 h, which indicates that the palladium-catalyzed coupling reaction proceeds much faster than the background reaction. Perfluoronaphthalene and perfluorobiphenyl reacted with (4-MeOC₆H₄)₂Zn to give 2-(4- $MeOC_6H_4)C_{10}F_7$ (15) and 4'-(4-MeOC_6H_4)C_{12}F_9 (16) in 53 and 32% yield, respectively. In contrast, the reaction of pentafluoropyridine (C_5F_5N) with Ph_2Zn gave a mixture of tetrafluoro-4phenylpyridine (17) and tetrafluoro-2-phenylpyridine (17) in 65 and 17% yield, respectively. Pentafluorobenzene also successfully participated in the coupling reaction with Ph₂Zn, however, the reaction product was obtained as a mixture of two regioisomers, 2,3,5,6-tetrafluorobiphenyl (18) and 2,3,4,5tetrafluorobiphenyl (18'), and the combined yield of the isomers was only 38%.

Oxidative addition of perfluoroarenes to Pd^0 in the presence of lithium iodide

To gain deeper insight into the reaction pathway, stoichiometric reactions of C₆F₆ with palladium(0) complexes were conducted. In a previous report by Grushin et al., the reaction of C_6F_6 with $[Pd(PCy_3)_2]$ in THF at 70 °C for 24 h occurred very slowly to give a perfluorophenylpalladium(II) fluoride, trans- $[Pd(C_6F_5)F(PCy_3)_2],$ in 3% yield. $^{[17]}$ On the other hand, in the presence of lithium iodide the oxidative addition proceeded much faster to give a perfluorophenylpalladium(II) iodide, trans- $[Pd(C_6F_5)I(PCy_3)_2]$ (19), which indicates that acceleration of the oxidative addition is an important role of lithium iodide (Scheme 2a). Although the catalytic reaction of C_6F_6 with Ph₂Zn occurred in the presence of [Pd₂(dba)₃] and PCy₃ (4 equiv) to give 1 in 77% yield (Table 1, entry 7), oxidative addition did not occur in the presence of DBA in the stoichiometric reaction at 60°C (Scheme 2b). This result might have been due to inhibition of the coordination of C_6F_6 to palladium by DBA under the stoichiometric reaction conditions and could indicate why [Pd(PCy₃)₂] is a more efficient catalyst than the [Pd₂(dba)₃]/PCy₃ system. In contrast, even in the presence of lithium iodide, the oxidative addition of C_6F_6 to $[Pd(PPh_3)_4]$ did

Scheme 2. Stoichiometric reaction of $\mathsf{C_6F_6}$ with $\mathsf{Pd^0/PCy_3}$ in the presence of Lil.

not take place, which is consistent with the observation that no reaction occurred in the presence of PPh₃ (Table 1, entry 1).

The ORTEP representation of **19** unambiguously demonstrates that the palladium center in **19** adopts a square-planar coordination geometry and is coordinated by two PCy₃ ligands in a *trans* manner (Figure 1). A similar coordination geometry was observed in structurally well-defined Pd^{II} complexes, such as *trans*-[Pd(C₆F₅)Cl(PPh₃)₂] and *trans*-[Pd(C₆F₅)I(PCy₂Fc)₂] (Fc = ferrocenyl).^[18]

Figure 1. ORTEP drawing of **19** with thermal ellipsoids at the 30% probability level. Hydrogen atoms are omitted for clarity.

Similar oxidative-addition products, *trans*-[Pd(*p*-CF₃C₆F₄)l-(PCy₃)₂] (**20**) and *trans*-[Pd(2-C₁₀F₇)l(PCy₃)₂] (**21**), can be isolated by treatment of either C₇F₈ or perfluoronaphthalene with [Pd(PCy₃)₂] in the presence of lithium iodide (Scheme 3). In the former reaction, the C–F bond at the 4-position of perfluoroto-luene was exclusively cleaved, whereas the C–F bond at the 2-position of perfluoronaphthalene was exclusively activated in the latter reaction. These regioselectivities of C–F bond activation were consistent with those observed in the corresponding catalytic reaction (Scheme 1), as well as with those observed in the reactivity of [{(NHC)₂Ni₂(cod)] (cod = 1,5-cyclooctadiene).^[3,10b] The ORTEP drawings of **20** and **21** are represented in Figure 2, and definitely show that the palladium center in both **20** and **21** has the same coordination geometry as in **19**.

Scheme 3. Stoichiometric reaction of either C_7F_8 or $C_{10}F_8$ with $[Pd(PCy_3)_2]$ in the presence of Lil.

Figure 2. ORTEP drawings of **20** (top) and **21** (bottom) with thermal ellipsoids at the 30% probability level. One of the two independent molecules in a unit cell of **20** is depicted. Hydrogen atoms and solvate molecules (hexane) are omitted for clarity.

Reactivity of 20 toward Ph_2Zn and preparation of $[Pd(C_6F_5)I-(PCy_3)(py)]$ (22)

To confirm whether or not **19** is an intermediate in the Pd^{0} -catalyzed cross-coupling reaction of C_6F_6 with diarylzinc compounds, a stoichiometric reaction of **19** with diphenylzinc was carried out. A yield of only 5% of **1** was obtained from a stoi-

Full Paper

Scheme 4. Reaction of 19 with diphenylzinc in the presence of Lil.

chiometric reaction conducted at 60°C for 7 h in the presence of an excess amount of lithium iodide (Scheme 4), whereas 1 was obtained in 69% yield under the catalytic reaction conditions mentioned above (60 °C, 6 h; Scheme 1). This result strongly indicates that 19 is unlikely to be a reaction intermediate due to the steric hindrance around the palladium center caused by the two bulky PCy₃ ligands. Thus, we assumed that oxidative addition of C_6F_6 to $[Pd(PCy_3)_2]$ in the presence of lithium iodide might involve dissociation of a PCy₃ ligand to give a transient $[Pd(C_6F_5)I(PCy_3)]$ species. The resultant three-coordinate transient intermediate would undergo re-coordination of a PCy₃ ligand in the absence of ZnPh₂ to yield the thermodynamically favored, and unreactive, species 19. On the other hand, in the presence of ZnPh₂, transmetalation between the transient iodopalladium(II) species and ZnPh₂ would take place smoothly to give the coupling product 1. These assumptions are consistent with the results from kinetic studies performed by Hartwig and co-workers: the oxidative addition of chlorobenzene to [Pd(PCy₃)₂], to give trans-[PdCl- $(PCy_3)_2(Ph)$] involved the dissociation of a PCy₃ ligand at the initial stage of the reaction.^[19] Unfortunately, any attempt to prepare the transient intermediate failed due to its coordinative unsaturation and, therefore, $[Pd(C_6F_5)I(PCy_3)(py)]$ (22), in which pyridine acts as a labile ligand to generate a tentative threecoordinate $[Pd(C_6F_5)I(PCy_3)]$ species, was prepared as an alternative catalytic precursor.

A synthetic route for preparation of **22** is summarized in Scheme 5. We chose $[Pd(C_6F_5)_2(py)_2]$ (**23**)^[20] as a starting material. In accordance with the literature,^[21] treatment of $[PdCl_2(py)_2]$ with C_6F_5Li (3 equiv), generated in situ by reaction of C_6F_5Cl with *n*BuLi at -78 °C, gave **23** in 72 % yield. The reaction of **23** with PdCl₂ in acetone,^[22] followed by treatment with PCy₃ in

Chem. Eur. J. 2014, 20, 2040 – 2048

www.chemeurj.org

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

pyridine, resulted in the formation of $[Pd(C_6F_5)Cl(PCy_3)(py)]$ (24) in 32% yield. Substitution of an iodide for the chloride ligand in 24 was accomplished by treatment of a solution of 24 in acetone with excess Nal to afford the desired palladium(II) iodide 22 in 55% yield.

In the ¹⁹F NMR spectrum of the bis(pentafluorophenyl)palladium complex **23**, three resonances assigned to the *ortho-*, *meta-*, and *para-*positions of the pentafluorophenyl rings appeared with an integral ratio of 2:2:1, and the combustion analysis of **23** agreed with the original literature. However, an X-ray diffraction study of **23** revealed that the Pd^{II} center had a square-planar geometry and was coordinated by two pentafluorophenyl ligands in the *cis* configuration, although a *trans* configuration was proposed in the original literature (Figure 3).^[20] This result clearly demonstrates that, at least in

Figure 3. ORTEP drawing of 23 with thermal ellipsoids at the 30% probability level. Hydrogen atoms are omitted for clarity.

the crystal lattice, **23** is the *cis* isomer. Both the pyridine and pentafluorophenyl rings in **23** were tilted away from the palladium coordination plane to reduce the steric repulsion (dihedral angles=81.91(9) and $66.37(8)^{\circ}$ for the pyridine rings; 78.61(9) and $68.93(8)^{\circ}$ for the pentafluorophenyl rings).

The novel pentafluorophenyl palladium(II) halides 22 and 24 were characterized by NMR spectroscopy and elemental analysis, as well as by X-ray diffraction analysis. The ¹H NMR spectra of these complexes clearly showed that both the pyridine and PCy₃ ligands were coordinated to the Pd^{II} center in a ratio of 1:1. In addition, the ligands in 22 and 24 were situated in a mutual *cis* position with a square-planar Pd^{II} geometry, as shown by X-ray diffraction (Figure 4). The Pd-N bond lengths of 2.032(10) Å in 22 and 2.0407(13) Å in 24 were slightly shorter than those observed in 23 (2.093(2) and 2.105(3) Å), which reflects the difference in the trans influence between halides and a pentafluorophenyl ligand. In contrast, the Pd–C₆F₅ bond lengths showed no significant differences (2.015(5) Å for 19, 2.069(12) Å for 22, 2.001(3) and 2.025(3) Å for 23, and 2.0519(16) Å for 24). In addition, the bond lengths between the palladium and phosphorus atoms in 22 and 24 (2.359(3) and 2.3604(4) Å, respectively) were close in value to those observed in 19 (2.3691(16) and 2.3839(16) Å).

Figure 4. ORTEP drawings of **24** (top) and **22** (bottom) with thermal ellipsoids at the 30% probability level. Hydrogen atoms and solvate molecules (THF) in **22** are omitted for clarity.

Reactivity of 22 toward diphenylzinc

We next evaluated the reactivity of **22** toward diphenylzinc in the presence or absence of lithium iodide; the results are summarized in Scheme 6. In the presence of lithium iodide

Scheme 6. Reactions of 22 with ZnPh₂ in the presence or absence of Lil.

(1.5 equiv), **22** reacted smoothly with $ZnPh_2$, which was carefully purified by sublimation prior to use, in THF at room temperature to give the desired coupling product **1** as the sole product in 63% yield. The addition of PCy₃ to this reaction mixture affected neither the yield nor the selectivity of the reaction product. On the other hand, in the absence of lithium iodide, the reaction of **22** with $ZnPh_2$ under the same reaction conditions afforded a pentafluorophenylzinc species, C_6F_5ZnX (X = I or C_6F_5), as the major product (54%) and **1** as the minor prod-

Chem. Eur. J. 2014, 20, 2040 – 2048

www.chemeurj.org

uct (27 %). These observations suggest the following: 1) a transient $[Pd(C_6F_5)I(PCy_3)]$ species, generated by dissociation of the labile pyridine ligand of **22**, could be crucial for the smooth occurrence of transmetalation between the palladium(II) species and ZnPh₂, and 2) the existence of lithium iodide is essential for selective transmetalation to generate **1**.

Based on these results, a plausible reaction mechanism was proposed (Scheme 7). In the presence of lithium iodide, oxidative addition of a C–F bond in C_6F_6 to Pd^0 would occur by dis-

Scheme 7. A plausible mechanism.

sociation of a PCy₃ ligand to form a $[Pd(C_6F_5)I(PCy_3)]$ intermediate (A). We assume that the Lil-promoted C-F bond activation of C_6F_6 on $[Pd(PCy_3)_2]$ would take place to give the *cis*-oxidative-addition product, then the rapid dissociation of a PCy₃ ligand might occur due to the steric hindrance of the two bulky phosphine ligands. On the basis of theoretical and experimental studies, Radius et al. assumed that a related C-F bond activation of C₆F₆ on a Ni(NHC)₂ fragment, to yield trans- $[Ni(NHC)_2(C_6F_5)F]$, would proceed by the corresponding *cis*-oxidative-addition product.^[10b] Transmetalation between A and the diarylzinc compound in the presence of lithium iodide would take place to give a bisarylpalladium(II) intermediate (B). This transmetalation step would progress in preference to the re-coordination of a PCy3 ligand to give unreactive trans-[Pd- $(C_6F_5)I(PCy_3)_2]$ (A'). The role of lithium iodide in this reaction step might be rationalized by the formation of a reactive zincate, such as Li[ArZnXI] (X = Ar or I), which would enable the efficient formation of **B**.^[13,23] Then, reductive elimination from **B**, followed by the re-coordination of a PCy₃ ligand would yield the coupling product, along with regeneration of the Pd⁰ species.

Another possible route for the coupling reaction might involve the formation of a dimer intermediate, $[Pd(C_6F_5)(\mu-I)(PCy_3)]_2$. Hor et al. argued for the possibility that both catalytic pathways, via mononuclear *cis/trans* geometric isomers and via a dinuclear iodide-bridged intermediate, may contribute to the Pd⁰-catalyzed coupling reaction of pentafluorophenyl iodide with phenylboronic acid.^[18b]

Conclusion

We have demonstrated the Pd⁰/PCy₃-catalyzed cross-coupling reaction of C_6F_6 with a variety of diarylzinc compounds to give the corresponding pentafluorobiaryl compounds in good-toexcellent yields. Stoichiometric reactions that employed model complexes, trans- $[Pd(C_6F_5)I(PCy_3)_2]$ and $[Pd(C_6F_5)I(PCy_3)(py)]$, with diphenylzinc in the presence of lithium iodide revealed both the catalytic reaction mechanism and the role of lithium iodide in this catalytic reaction. The key intermediate in this catalytic cycle is a transient, three-coordinated, monophosphine-ligated species, [Pd(C₆F₅)I(PCy₃)], which was generated by oxidative addition of the C–F bond of C_6F_6 to $[Pd(PCy_3)_2]$, followed by dissociation of a PCy₃ ligand. The role of lithium iodide in this catalytic reaction was not only to accelerate the oxidative addition step, but also to generate a reactive zincate, such as Li[ArZnXI] (X = Ar or I), which would enable an efficient transmetalation with the key intermediate. We have also demonstrated that this catalytic reaction could be applied to other monocyclic perfluorinated compounds, such as octafluorotoluene and pentafluoropyridine, as well as to polycyclic perfluorinated compounds, such as perfluoronaphthalene and perfluorobiphenyl, to give the corresponding coupling products.

Experimental Section

General

All manipulations were conducted under a nitrogen atmosphere by using standard Schlenk or drybox techniques. ¹H, ¹⁹F, ³¹P, and ¹³C NMR spectra were recorded on a Bruker Avance III 400 spectrometer. The chemical shifts in the ¹H and ¹³C NMR spectra were recorded relative to residual protic solvent. The chemical shifts in the ³¹P NMR spectra were recorded by using aqueous H₃PO₄ (85%) as an external standard. The chemical shifts in the ¹⁹F NMR spectra were recorded relative to α, α, α -trifluorotoluene ($\delta = -62.8$ ppm in CDCl₃). Recycling preparative HPLC was performed with a Japan Analytical Industry LC9225NEXT instrument equipped with JAIGEL-1H and JAIGEL-2H in-line columns. Elemental analyses were performed at the Instrumental Analysis Center, Faculty of Engineering, Osaka University. X-ray crystal data were collected with a Rigaku RAXIS-RAPID Imaging Plate diffractometer or Mercury 375R/M CCD (XtaL LAB mini) diffractometer.

Materials

The degassed and distilled solvents (toluene and hexane) used in this work were commercially available. THF, $[D_8]$ THF, and C_6D_6 were distilled from sodium benzophenone ketyl. All the Grignard reagents used in this work were purchased from Aldrich as THF solutions and their concentrations were determined by titration with a solution of *sec*-BuOH in absolute *m*-xylene in the presence of 1,10-phenanthroline as an indicator. *Trans*-bis-(pyridine)dichloropalladium(II),^[21] [Pd(PCy₃)₂],^[24] a solution of LiCl-(*p*-cyanophenyl)zinc iodide in THF,^[16] and LiCl-(*p*-EtCOOPh)zinc iodide^[16] were prepared by published procedures. Zinc chloride (3N) was purchased from WAKO Pure Chemicals, and dried under vacuum with heating until melting. Other commercially available reagents were distilled and degassed prior to use.

General procedure for the optimization of the catalytic reaction

In a drybox, ZnCl₂ (9.54 mg, 0.07 mmol), PhMgBr (1 \mbox{m} in THF, 140 \mbox{m} L, 0.14 mmol), Lil (32.1 mg, 0.24 mmol), and THF (160 \mbox{m} L) were added to a vial equipped with a stirrer bar. A solution of Pd(OAc)₂ (1.1 mg, 0.005 mmol) in THF, PCy₃ (2.8 mg, 0.010 mmol), 1 (11.5 \mbox{m} L, 0.1 mmol), and tetradecane (26 \mbox{m} L, 0.1 mmol), as an internal standard, were added to the mixture. The vial was sealed and heated, with stirring, by means of a preheated sand bath. After the reaction was complete, the solution was quenched with methanol and analyzed by GC. The yield was estimated by comparison of the peak areas of pentafluorobiphenyl and tetradecane with a sensitivity ratio determined by the GC spectra of isolated samples.

General procedure for the Pd⁰-catalyzed coupling of perfluoroarenes with diarylzinc compounds in the presence of Lil

In a drybox, a solution of aryImagnesium halide (1.2 mmol) in THF and ZnCl₂ (81.8 mg, 0.6 mmol) were added to a vial equipped with a stirrer bar. The mixture was diluted with THF (total volume = 5 mL) and vigorously stirred until ZnCl₂ dissolved completely. [Pd(PCy₃)₂] (33.3 mg, 0.05 mmol), Lil (321 mg, 2.4 mmol), and perfluroarene (0.1 mmol) were added to the solution. The reaction mixture was heated with stirring, then quenched with an aqueous solution of 1 mmole HCl (15 mL). The water layer was separated and extracted with ether (4×5 mL). The combined organic layers were dried over MgSO₄, filtered, and evaporated to dryness. The resulting solid was purified by flash column chromatography to give pure product.

Isolation of compound 19

In a drybox, [Pd(PCy₃)₂] (202 mg, 0.3 mmol), Lil (41 mg, 0.3 mmol), C_6F_6 (34.5 μ L, 0.3 mmol), and THF (5 mL) were added. The reaction mixture was stirred at 60 °C for 5 h in a metal bath. Volatile compounds were removed under vacuum and the resultant solid was extracted with Et₂O, filtered, and dried under vacuum to afford 19 as a yellow solid (197 mg, 68%). Recrystallization from Et₂O at -35°C afforded good crystals for analysis by X-ray diffraction. ¹H NMR (400 MHz, C_6D_6 , rt): $\delta = 2.4-1.0$ ppm (m, 66 H; Cy group); ¹⁹F NMR (376 MHz, C₆D₆, rt): $\delta = -111.2$ (d, J = 27.4 Hz, 2F), -164.7(t, J=20.1 Hz, 1F), -166.0 ppm (m, 2F); ³¹P NMR (162 MHz, C₆D₆, rt): $\delta = 29.3$ ppm (s); ¹³C NMR (100 MHz, C₆D₆, rt): $\delta = 37.1$ (t, J= 9.7 Hz), 30.8, 28.0 (t, J=5.2 Hz), 26.7 ppm (signals assigned to the $C_6 F_5$ moiety could not be detected due to multiple $^{13}\text{C}{-}^{19}\text{F}$ couplings); elemental analysis calcd (%) for $C_{42}H_{66}F_5IP_2Pd$: C 52.48, H 6.92; found: C 52.45, H 7.10; X-ray data for 19: M,=961.19; colorless; monoclinic; $P2_1/c$ (no. 14); a = 16.474(11), b = 16.227(10), c =17.847(12) Å; $\beta = 116.358(6)^{\circ}$; V = 4275(5) Å³; Z = 4; $ho_{
m calcd} =$ 1.493 g cm⁻³; T = -120(0) °C; R_1 (wR_2) = 0.0551 (0.1086).

Preparation of compound 23^[20]

Absolute ether (20 mL, dried over sodium benzophenone ketyl) and chloropentafluorobenzene (740 μ L, 6.0 mmol) were added to a two-necked round-bottomed flask equipped with a stirrer bar. The solution was cooled to -78 °C. A solution of *n*BuLi (1.6 M, 3.8 mL, 6.0 mmol) in hexane was added dropwise with stirring (*Caution!* (Pentafluorophenyl)lithium is very thermally unstable and to avoid explosion it must be prepared and reacted at low temperatures). The colorless solution was stirred for 30 min at

-78 °C. Then, [PdCl₂(py)₂] (670 mg, 2.0 mmol) was added to the solution. The resultant yellow suspension was stirred at $-78\,^\circ\text{C}$ for 1 h, then warmed to rt and stirred for 2 h. The resulting white suspension was quenched with ether (5 mL) that contained a small amount of water and evaporated to dryness. The residue was extracted with boiling acetone and the acetone solution was filtered through a pad of Celite and dried out. Recrystallization from hot acetone/ethanol at -30°C overnight afforded 23 as white needles (862 mg, 72%). ¹H NMR (400 MHz, CDCl₃, rt): $\delta = 8.74$ (m, 4H), 7.64 (tt, J=7.8, 1.5 Hz, 2 H), 7.23 ppm (m, 4 H); ¹⁹F NMR (376 MHz, CDCl₃, rt): $\delta = -122.4$ (m, 4F), -160.4 (t, J = 19.5 Hz, 2F), -162.5 ppm (m, 4F); $^{\rm 13}{\rm C}$ NMR (100 MHz, CDCl₃, rt): $\delta\!=\!$ 153.4, 137.8, 125.4 ppm (signals assigned to the C_6F_5 moiety could not be detected due to multiple ¹³C-¹⁹F couplings), elemental analysis calcd (%) for C₂₂H₁₀F₁₀N₂Pd: C 44.13, H 1.68, N 4.68; found: C 44.11, H 1.89, N 4.74; X-ray data for 23: $M_r = 598.72$; colorless; monoclinic; $P2_1/$ c (no. 14); a = 9.8891(10), b = 16.9318(13), c = 13.0111(12) Å; $\beta =$ 109.524(3)°; V=2053.3(3) ų; Z=4; $ho_{\rm calcd}$ =1.937 g cm⁻³; T= -150(0) °C; R_1 (wR_2) = 0.0355 (0.0786).

Preparation of [Pd(C₆F₅)Cl(py)₂]^[22]

Compound 23 (599 mg, 1.0 mmol), PdCl₂ (195 mg, 1.1 mmol), and acetone (35 mL) were added to a round-bottomed flask equipped with a stirrer bar. The resultant reddish-brown suspension was heated at reflux for 3 h with vigorous stirring. After the reddishbrown suspension of PdCl₂ disappeared, pyridine (1 mL) was added. After an additional 30 min of heating at reflux, the volatile compounds were removed by evaporation. The resulting solid was extracted with Et₂O. The organic layer was evaporated to dryness and recrystallization from acetone afforded $[Pd(C_6F_5)Cl(py)_2]$ as white needles (541 mg, 58%). ¹H NMR (400 MHz, C_6D_{67} rt): $\delta = 8.60$ (m, 4H), 6.44 (tt, J=7.8, 1.5 Hz, 2H), 6.13 ppm (m, 4H); ¹⁹F NMR (376 MHz, C_6D_{6r} rt): $\delta = -125.1$ (m, 2F), -162.0 (t, J = 20.2 Hz, 1F), -164.9 ppm (m, 2F); ¹³C NMR (100 MHz, C₆D₆, rt): $\delta = 153.4$, 137.6, 124.7 ppm (signals assigned to the C_6F_5 moiety could not be detected due to multiple ¹³C-¹⁹F couplings); elemental analysis calcd (%) for $C_{16}H_{10}CIF_5N_2Pd$: C 41.14, H 2.16, N 6.00; found: C 41.29, H 2.38, N 6.09. In the ¹H and ¹³C NMR spectra, the two pyridine rings were observed equivalently, which indicated they occupy the trans positions of the square-planar Pd^{II} geometry. The configuration of the product, however, was not mentioned in the original literature.^[22]

Preparation of compound 24

In a dry box, PCy₃ (287 mg, 1.02 mmol) was added to a solution of $[Pd(C_6F_5)Cl(py)_2]$ (434 mg, 0.93 mmol) in pyridine (7 mL). Hexane was added to the resultant yellow solution to give a yellowishwhite precipitate. The suspension was filtered and washed with hexane to give a yellowish-white powder. The crude material was recrystallized from acetone by cooling to -35 °C to yield yellow block crystals of 24-acetone (320 mg, 52%). ¹H NMR (400 MHz, $[D_8]$ THF, rt): $\delta = 8.88$ (m, 2 H), 7.85 (tt, J=7.6, 1.5 Hz, 1 H), 7.45 (m, 2H), 2.1–1.0 ppm (m, 33H; Cy group); ¹⁹F NMR (376 MHz, [D₈]THF, rt): $\delta = -127.5$ (m, 2 F), -169.3 (t, J = 19.6 Hz, 1 F), -170.5 ppm (m, 2F); ³¹P NMR (162 MHz, [D₈]THF, rt): $\delta = 17.7$ ppm (m); ¹³C NMR (100 MHz, [D₈]THF, rt): δ = 154.5, 139.2, 126.8, 33.6 (d, J(C,P) = 17 Hz), 30.4, 28.3 (d, J(C,P) = 11 Hz), 27.0 ppm (signals assigned to the C_6F_5 moiety could not be detected due to multiple ${}^{13}C-{}^{19}F$ couplings); elemental analysis calcd (%) for C₂₉H₃₈ClF₅NPPd·C₃H₆O: C 52.90, H 6.10, N 1.93; found: C 53.03, H 6.29, N 2.09; X-ray data for **24**-acetone: $M_r = 726.50$; yellow; monoclinic; $P2_1/c$ (no. 14); a =9.8563(4), b = 16.1075(7), c = 20.7981(10) Å; $\beta = 100.527(2)^{\circ}$; V =

Chem. Eur. J. 2014, 20, 2040 - 2048

www.chemeurj.org

CHEMISTRY A European Journal Full Paper

3246.3(3) Å³; Z=4; ρ_{calcd} =1.486 g cm⁻³; T=-120(0) °C; R₁ (wR₂)= 0.0241 (0.0281).

Preparation of compound 22

In a drybox, Nal (300 mg, 2.0 mmol) was added to a solution of 24 (145 mg, 0.2 mmol) in acetone (10 mL). The resultant orange solution was stirred for 3 h. The solution turned to an orange suspension. Toluene (30 mL) was added and the resultant precipitates were removed by filtration. All volatile compounds were removed under vacuum and the resultant solid was taken out of the drybox. The solid was washed with ethanol until no yellow color was observed in the wash liquor, then washed with small amount of water and ethanol. The resultant solid was dissolved in acetone and dried under vacuum to give 22 as a yellow powder (83 mg, 55%). The complex was recrystallized from THF/hexane. ¹H NMR (400 MHz, [D₆]acetone, rt): $\delta = 8.86$ (d, J = 5.2 Hz, 2 H), 7.98 (tt, J =7.6, 1.5 Hz, 1 H), 7.62 (m, 2 H), 2.1-1.0 ppm (m, 33 H; Cy group); ^{19}F NMR (376 MHz, [D_6]acetone, rt): $\delta\!=\!-123.2$ (m, 2F), -167.3 (t, J=18.6 Hz, 1F), -168.7 ppm (m, 2F); ³¹P NMR (162 MHz, $[D_6]$ acetone, rt): $\delta = 21.0$ ppm (m); ¹³C NMR (100 MHz, $[D_6]$ acetone, rt): $\delta = 154.0$, 140.0, 127.5, 35.1 (d, J(C,P) = 18 Hz), 31.1, 28.5 (d, J(C,P) = 10 Hz), 27.1 ppm (signals assigned to the C₆F₅ moiety could not be detected due to multiple ${}^{13}C-{}^{19}F$ couplings); elemental analysis calcd (%) for $C_{29}H_{38}F_5INPPd\colon C$ 45.84, H 5.04, N 1.84; found: C 45.92, H 5.65, N 2.39; X-ray data for 22-C₄H₈O: M_r=831.98; colorless; monoclinic; $P2_1/n$ (no. 14); a=9.9348(4), b=16.3295(7), c=21.2257(9) Å; $\beta = 105.0560(10)^{\circ}$; V = 3325.2(2) Å³; Z = 4; $\rho_{calcd} =$ 1.646 g cm⁻³; T = -150(0) °C; R_1 (wR_2) = 0.1348 (0.3479).

CCDC-958538 (**19**), -958539 (**20**·C₆H₁₄), -958540 (**21**·0.5(C₆H₁₄)), -958541 (**22**·C₄H₈O), -958542 (**23**), and -958543 (**24**·C₃H₆O) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (A) (No. 21245028), a Grant-in-Aid for Young Scientists (A) (No. 25708018), and a Grant-in-Aid for Scientific Research on Innovative Areas "Molecular Activation Directed toward Straightforward Synthesis" (No. 23105546) from MEXT. M.O. also acknowledges The Noguchi Institute.

Keywords: C–F activation · cross-coupling · palladium · perfluoroarenes · reaction mechanisms

[1] For selected examples of fluorination reactions, see: a) G. Balz, G. Schiemann, Ber. Dtsch. Chem. Ges. 1927, 60, 1186-1190; b) W. E. Barnette, J. Am. Chem. Soc. 1984, 106, 452-454; c) D. J. Adams, H. Clark, Chem. Soc. Rev. 1999, 28, 225-231; d) H. Sun, S. G. DiMagno, Angew. Chem. 2006, 118, 2786-2791; Angew. Chem. Int. Ed. 2006, 45, 2720-2725; e) G. Sandford, J. Fluorine Chem. 2007, 128, 90-104; f) P. Tang, T. Furuya, T. Ritter, J. Am. Chem. Soc. 2010, 132, 12150-12154; g) K. L. Hull, W. Q. Anani, M. S. Sanford, J. Am. Chem. Soc. 2006, 128, 7134-7135; h) D. A. Watson, M. Su, G. Teverovskiy, Y. Zhang, J. Garcia-Fortanet, T. Kinzel, S. L. Buchwald, Science 2009, 325, 1661-1664; i) T. Furuya, T. Ritter, Org. Lett. 2009, 11, 2860 - 2863; j) T. Furuya, A. E. Strom, T. Ritter, J. Am. Chem. Soc. 2009, 131, 1662-1663; k) S. Yamada, A. Gavryushin, P. Knochel, Angew. Chem. 2010, 122, 2261-2264; Angew. Chem. Int. Ed. 2010, 49, 2215-2218; I) P. Anbarasan, H. Neumannm, M. Beller, Angew. Chem. 2010, 122, 2265-2268; Angew. Chem. Int. Ed. 2010, 49, 2219-2222; m) C. S. L. Chan, M. Wasa, X. Wang, J.-Q. Yu, Angew. Chem. 2011, 123, 9247-9250; Angew. Chem. Int. Ed. 2011, 50, 9081–9084; n) P. Tang, T. Ritter, Tetrahedron 2011, 67, 4449–4454; o) P. S. Fier, J. F. Hartwig, J. Am. Chem. Soc. 2012, 134, 10795–10798; p) Y. Ye, M. S. Sanford, J. Am. Chem. Soc. 2013, 135, 4648–4651.

- [2] For recent reviews, see: a) M. F. Kuehnel, D. Lentz, T. Braun, Angew. Chem. 2013, 125, 3412–3433; Angew. Chem. Int. Ed. 2013, 52, 3328–3348; b) M. Klahn, U. Rosenthal, Organometallics 2012, 31, 1235–1244; c) A. Nova, R. Mas-Ballesté, A. Lledós, Organometallics 2012, 31, 1245–1256; d) J.-F. Paquin, Synlett 2011, 289–293; e) E. Clot, O. Eisenstein, N. Jasim, S. A. Macgregor, J. E. McGrady, R. N. Perutz, Acc. Chem. Res. 2011, 44, 333–348; f) T. Braun, F. Wehmeier, Eur. J. Inorg. Chem. 2011, 613–625; g) A. D. Sun, J. A. Love, Dalton Trans. 2010, 39, 10362–10374; h) G. Meier, T. Braun, Angew. Chem. 2009, 121, 1575–1577; Angew. Chem. Int. Ed. 2009, 48, 1546–1548; i) H. Amii, K. Uneyama, Chem. Rev. 2009, 109, 2119–2183; j) R. N. Perutz, Science 2008, 321, 1168–1169.
- [3] T. Schaub, M. Backes, U. Radius, J. Am. Chem. Soc. 2006, 128, 15964– 15965.
- [4] H. Guo, F. Kong, K.-i. Kanno, J. He, K. Nakajima, T. Takahashi, Organometallics 2006, 25, 2045 – 2048.
- [5] Y. Nakamura, N. Yoshikai, L. Ilies, E. Nakamura, Org. Lett. 2012, 14, 3316– 3319.
- [6] M. Ohashi, H. Saijo, M. Shibata, S. Ogoshi, Eur. J. Org. Chem. 2013, 443– 447.
- [7] a) M. R. Cargill, G. Sandford, A. J. Tadeusiak, D. S. Yufit, J. A. K. Howard, P. Kilickiran, G. Nelles, *J. Org. Chem.* **2010**, *75*, 5860–5866; b) M. R. Cargill, G. Sandford, P. Kilickiran, G. Nelles, *Tetrahedron* **2013**, *69*, 512–516.
- [8] For Ni-catalyzed coupling reactions of poly- or monofluoroarenes by C-F bond cleavage, see: a) K. Inamoto, J.-i. Kuroda, T. Sakamoto, K. Hiroya, Synthesis 2007, 2853-2861; b) V. P. W. Böhm, C. W. K. Gstöttmayr, T. Weskamp, W. A. Herrmann, Angew. Chem. 2001, 113, 3500-3503; Angew. Chem. Int. Ed. 2001, 40, 3387-3389; c) L. Ackermann, R. Born, J. H. Spatz, D. Meyer, Angew. Chem. 2005, 117, 7382-7386; Angew. Chem. Int. Ed. 2005, 44, 7216-7219; d) M. Tobisu, T. Xu, T. Shimasaki, N. Chatani, J. Am. Chem. Soc. 2011, 133, 19505-19511; e) A. Steffen, M. I. Sladek, T. Braun, B. Neumann, H. G. Stammler, Organometallics 2005, 24, 4057-4064; f) T. Saeki, Y. Takashima, K. Tamao, Synlett 2005, 1771-1774; g) A. D. Sun, J. A. Love, Org. Lett. 2011, 13, 2750-2753; h) T. Braun, R. N. Perutz, M. I. Sladek, Chem. Commun. 2001, 2254-2255; J.Y. Kiso, K. Tamao, M. Kumada, J. Organomet. Chem. 1973, 50, C12-C14; j) K. Tamao, K. Sumitani, Y. Kiso, M. Zembayashi, A. Fujioka, S.-i. Kodama, I. Nakajima, A. Minato, M. Kumada, Bull. Chem. Soc. Jpn. 1976, 49, 1958-1969.
- [9] For transition-metal-catalyzed (except for Ni) coupling reactions of polyor monofluoroarenes by C–F bond cleavage, see: a) R. Wilhelm, D. A. Widdowson, J. Chem. Soc. Perkin Trans. 1 2000, 3808–3813; b) D. A. Widdowson, R. Wilhelm, Chem. Commun. 2003, 578–579; c) K. Manabe, S. Ishikawa, Synthesis 2008, 2645–2649; d) T. J. Korn, M. A. Schade, S. Wirth, P. Knochel, Org. Lett. 2006, 8, 725–728; e) T. Wang, B. J. Alfonso, J. A. Love, Org. Lett. 2007, 9, 5629–5631.
- [10] a) T. Schaub, U. Radius, *Chem. Eur. J.* 2005, *11*, 5024–5030; b) T. Schaub,
 P. Fischer, A. Steffen, T. Braun, U. Radius, A. Mix, *J. Am. Chem. Soc.* 2008,
 130, 9304–9317; c) P. Fischer, K. Götz, A. Eichhorn, U. Radius, *Organometallics* 2012, *31*, 1374–1383.
- [11] For other examples for C–F bond activation on nickel(0), see: a) D. R. Fahey, J. E. Mahan, J. Am. Chem. Soc. 1977, 99, 2501–2508; b) I. Bach, K.-R. Pörschke, R. Goddard, C. Kopiske, C. Krüger, A. Rufinska, K. Seevogel, Organometallics 1996, 15, 4959–4966; c) T. Yamamoto, M. Abla, J. Organomet. Chem. 1997, 535, 209–211; d) T. Braun, S. P. Foxon, R. N. Perutz, P. H. Walton, Angew. Chem. 1999, 111, 3543–3545; Angew. Chem. Int. Ed. 1999, 38, 3326–3329; e) T. Braun, L. Cronin, C. L. Higgitt, J. E. McGrady, R. N. Perutz, M. Reinhold, New J. Chem. 2001, 25, 19–21; f) S. Kuhl, R. Schneider, Y. Fort, Adv. Synth. Catal. 2003, 345, 341–344; g) S. A. Johnson, C. W. Huff, F. Mustafa, M. Saliba, J. Am. Chem. Soc. 2008, 130, 17278–17280.
- [12] For examples of structurally-characterized Ni^{II}–F complexes as a result of C–F bond activation on nickel(0), see: a) L. Cronin, C. L. Higgitt, R. Karch, R. N. Perutz, Organometallics **1997**, *16*, 4920–4928; b) M. I. Sladek, T. Braun, B. Neumann, H.-G. Stammler, J. Chem. Soc. Dalton Trans. **2002**, 297–299; c) S. Burling, P. I. Elliott, N. A. Jasim, R. J. Lindup, J. McKenna, R. N. Perutz, S. J. Archibald, A. C. Whitwood, Dalton Trans. **2005**, 3686–3695; d) S. A. Johnson, E. T. Taylor, S. J. Cruise, Organome-

Chem. Eur. J. 2014, 20, 2040 - 2048

www.chemeurj.org

tallics 2009, 28, 3842-3855; e) M. E. Doster, S. A. Johnson, Angew. Chem. 2009, 121, 2219-2221; Angew. Chem. Int. Ed. 2009, 48, 2185-2187.

- [13] M. Ohashi, T. Kambara, T. Hatanaka, H. Saijo, R. Doi, S. Ogoshi, J. Am. Chem. Soc. 2011, 133, 3256–3259.
- [14] When isolated ZnPh₂ (purchased from Strem) was employed in the coupling reaction in place of ZnPh₂ generated in situ from ZnCl₂ and PhMgBr, **1** was obtained in 63% yield (conditions: $[Pd(PCy_3)_2]$ (10 mol%), isolated ZnPh₂ (0.6 equiv), Lil (2.0 equiv), $[D_8]THF$, 60 °C, 4 h).
- [15] Based on the fact that the catalytic reaction with pentafluoroiodobenzene (C_6F_5) as a substrate hardly gave 1 (<5% yield, 70% starting material recovered), we ruled out the possibility that C_6F_5 I could be generated as a result of nucleophilic attack of an iodide anion on C_6F_6 , and it is subsequently the species that undergoes oxidative addition at palladium(0).
- [16] A. Krasovskiy, V. Malakhov, A. Gavryushin, P. Knochel, Angew. Chem. 2006, 118, 6186–6190; Angew. Chem. Int. Ed. 2006, 45, 6040–6044.
- [17] S. A. Macgregor, D. C. Roe, W. J. Marshall, K. M. Bloch, V. I. Bakhmutov, V. V. Grushin, J. Am. Chem. Soc. 2005, 127, 15304–15321.

- [18] a) T. Kashiwabara, M. Tanaka, Organometallics 2006, 25, 4648–4652;
 b) S. Teo, Z. Weng, T. S. A. Hor, Organometallics 2006, 25, 1199–1205.
- [19] F. Barrios-Landeros, B. P. Carrow, J. F. Hartwig, J. Am. Chem. Soc. 2009, 131, 8141-8154.
- [20] R. Uson, J. Fornies, J. Gimeno, P. Espinet, R. Navarro, J. Organomet. Chem. 1974, 81, 115–122.
- [21] X. Chen, X. Luo, Y. Song, S. Zhou, L. Zhu, Polyhedron 1998, 17, 2271– 2278.
- [22] R. Usón, J. Fornies, R. Navarro, Inorg. Chim. Acta 1979, 33, 69-75.
- [23] G. T. Achonduh, N. Hadei, C. Valente, S. Avola, C. J. O'Brien, M. G. Organ, Chem. Commun. 2010, 46, 4109–4111.
- [24] T. Yoshida, S. Otsuka, D. G. Jones, J. L. Spencer, P. Binger, A. Brinkmann, P. Wedemann, *Inorg. Synth.* 1974, 19, 101 – 107.

Received: September 3, 2013 Published online on January 15, 2014