SYNTHESE EINES OXEPINO[2,3-d]ISOXAZOL-SYSTEMS

Lutz ABmann^a, Tony Debaerdemaeker^b und Willy Friedrichsen^{a*}

^aInstitut für Organische Chemie der Universität Kiel, Olshausenstrasse 40-60, D-2300 Kiel, FRG

^bSektion für Röntgen- und Elektronenbeugung der Universität Ulm, Oberer Eselsberg, D-7900 Ulm, FRG

<u>Summary:</u> The reaction of the transient furoisoxazole <u>4</u> with dimethyl acetylenedicarboxylate results in the formation of oxepine <u>9k</u>. The boat-shaped structure of <u>9k</u> has been confirmed by X-ray crystallography. The experimental findings are in accord with quantum chemical calculations (AM1, PM3).

In dieser Arbeit wird ein neuartiger, möglicherweise verallgemeinerungsfähiger Zugang zu einem heteroanellierten Oxepin, dem Oxepino[2,3-d]isoxazol <u>9k</u> beschrieben. Aus <u>1</u> läßt sich auf bekanntem Wege¹ <u>2</u> erhalten; daraus ist <u>3a</u> (Öl, Sdp. 80°C/10⁻² Torr; IR(Film): 1745, 1725 cm⁻¹) zugänglich. Nach dem Verfahren von Regitz² gewinnt man aus <u>3a</u> den Diazokörper <u>3b</u> (gelbe Krist., Schmp. 20°C; IR(Film): 2130, 1720, 1705 cm⁻¹; UV(CH₂CN): λ (lg ϵ) = 246 (3.991), 280 nm (3.928)), aus dem nach einer im Prinzip schon lange bekannten Methode³ mit Rh₂(OAc), unter N₂-Eliminierung und intramolekularer Cycloaddition ein c-anelliertes Furan 4 entsteht. Dieses⁴ läßt sich mit N-Benzylmaleinimid (zu 5) abfangen (Schmp. 147°C; IR(KBr): 1770, 1730, 1720, 1710, 1620 cm⁻¹; UV (CH₂CN): $\lambda(lg\epsilon) = 248$ (4.475), 320 nm (3.450)). Wird die N₂-Abspaltung jedoch in Gegenwart von Acetylendicarbonsäuredimethylester (ADDM) durchgeführt, so entsteht in 77proz. Ausbeute das Oxepin $\underline{9k}^5$ (gelbe Krist., Schmp. 104°C; IR(KBr): 1740, 1725, 1710, 1615 cm⁻¹; UV(CH₃CN):λ(lgε) = 225 (4.199), 380 nm (3.651); ¹H-NMR(CDCl₃): δ = 1.35 (t, 3 H, -OCH₂-CH₃, J = 7.1 Hz), 1.38 (t, 3 H, $-CO_2CH_2CH_3$, J = 7.1 Hz), 2.35 (s, 3 H, CH_3), 3.80 $(s, 3 H, C-5(6?)-CO_2CH_3)$, 3.83 $(s, 3 H, C-6(5?)-CO_2CH_3)$, 4.07 $(q, 2 H, J = CO_2CH_3)$ 7.1 Hz, $O-CH_2$, 4.30 (q, 2 H, J = 7.1 Hz, $-CO_2CH_2$), welches sich möglicherweise über 6, 7 und 8 bildet^{6,7}. Ganz offensichtlich ist die Entste-

a: n-BuLi, -78°C, CO₂; b: EtOH, SOCl₂, 40°C; c: TSN₃, CH₃CN, Et₃N, RT; d: CH₂Cl-CH₂Cl, Rh₂(GAC)₄, N-Benzylmaleinimid, Rückfluß; e: CH₂Cl-CH₂Cl, Rh₂(OAC)₄, ADDH, Rückfluß

hung von <u>9k</u> auf die nur geringe Wanderungstendenz der CO_2 Et-Gruppe zurückzuführen⁷. Die Struktur von <u>9k</u> wird durch die analytischen Daten und durch eine Röntgenstrukturanalyse⁸ belegt. Dabei wurde gefunden, daß – wie auch in anderen analogen Fällen^{5,9} – der Oxepinring nicht eben ist (Θ_1 (3a-8a-8-7) = -54.8°, Θ_2 (8a-3a-4-5) = 25.3°; s.Fig.1). Dies steht im Einklang mit AM1¹⁰-und PM3¹¹-Rechnungen (s.Tabelle)¹².

Danksagung: Wir danken dem Fonds der Chemischen Industrie und der Kultusministerin des Landes Schleswig-Holstein für die Gewährung von Sachmitteln.

- 1. L.Aßmann und W.Friedrichsen, Heterocycles 29, 103 (1989).
- 2. M.Regitz und G.Maas, Diazo Compounds. Academic Press, New York 1987.
- 3. M.Hamaguchi und T.Ibata, Chem. Lett. <u>1976</u>, 287 und spätere Arbeiten.
- Übersicht über c-anellierte Furane: W.Friedrichsen, Adv.Heterocycl.Chem.
 26, 135 (1980).
- 5. Übersicht: D.R.Boyd in Comprehensive Heterocyclic Chemistry (A.R.Katritzky und C.W.Rees), Vol. 5, S.547. Pergamon Press, Oxford 1984.
- 6. Grundsätzlich kann aus <u>7</u> auch das nach AM1-Rechnungen energetisch gleichwertige <u>10</u> entstehen (<u>8</u>: $2H_f$ (in kcal/mol) = -206.7, -230.7; <u>10</u> $2H_f$ = -206.4, -228.2 (AM1, PM3)). Allerdings sind in <u>7</u> die Ladungsdichten an C(a) und C(b) sehr unterschiedlich (q(a) = 0.2002, q(b) = 0.0454 (AM1)).

Experimentelle Geometrie

Berechnete Geometrie (PM3)

Wie berichtet³, tritt bei dem zu <u>6</u> analogen Addukt <u>11</u> eine Ringerweiterung zu einem Benzoxepin nicht ein; es wird nach der Aufarbeitung das Hydrolyseprodukt <u>12</u> isoliert.

- Bei zu <u>6</u> analogen Addukten des 1,3-Diphenylbenzo[c]furans wird eine Umlagerung unter Wanderung einer Phenylgruppe beobachtet: G.Wittig, J.Weinlich und E.R.Wilson, Chem.Ber. <u>98</u>, 458 (1965).
- 8. Kristallographische Daten: Raumgruppe P1, a = 8.357(6), b = 10.969(9), c = 11.685(3) Å, α = 97.12(4), β = 106.41(5), τ = 111.09(5), Z = 2, R = 0.0396. Weitere Einzelheiten können auf Anfrage vom Direktor des Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, erhalten werden.
- 9. H.Hoffmann, H.Fischer und M.Bremer, Chem.Ber. 120, 2087 (1987).
- M.J.S.Dewar, E.G.Zoebisch, E.F.Healy und J.J.P.Stewart, J.Am.Chem.Soc. <u>107</u>, 3902 (1985).
- 11. 11a. J.J.P.Stewart, J.Comp.Chem. <u>10</u>, 209, 221 (1989). 11b. J.J.P. Stewart, J.Comp.-Aid.Molec.Design <u>4</u>, 1 (1990).
- 12. Nach diesen Rechnungen ist die Geometrie von Oxepinen, Benz[b]oxepinen und Oxepino[2,3-d]isoxazolen signifikant von Art und Zahl der Substituenten abhängig; die folgende Tabelle belegt dies für die letztere Verbindungsklasse <u>9</u>.

<u>9</u>	R ¹	R ²	R ³	R ⁴	R ⁵	0(8a-3a-4-5)	0 (3a-8a-8-7)
a	н	н	н	н	н	0.0(-0.2)	0.2(0.1)
b	н	OMe	н	н	н	-0.9(-0.9)	1.5(2.0)
c	н	н	OMe	н	н	-4.7(-4.6)	11.0(14.9)
<u>d</u>	н	н	н	OMe	н	-6.5(-8.2)	12.0(17.3)
e	н	н	н	н	OMe	-11.0(-14.8)	24.7(36.4)
f	н	COOMe	н	н	н	-3.2(-3.4)	7.3 (7.6)
a	н	н	COOMe	н	н	-0.5(-0.9)	2.5(2.3)
<u>h</u>	н	н	н	COOMe	н	-1.4(-0.9)	2.6(2.0)
<u>i</u>	н	н	н	н	COOMe	-14.4(-16.8)	35.4 (40.1)
i	н	OMe	н	н	COOMe	-12.9(-14.7)	25.6(29.3)
<u>k</u>	сн ₃	OEt	COOMe	COOMe	COOEt	-25.5(-23.4)	50.5(46.8)

Tabelle: Diederwinkel in substituierten Oxepino[2,3-d]isoxazolen 9^a

^a Nach dem PM3-Verfahren bestimmt (Werte in Klammern: nach AM1).

(Received in Germany 11 December 1990)

ŝ