

Available online at www.sciencedirect.com

Journal of Fluorine Chemistry 127 (2006) 736-739

www.elsevier.com/locate/fluor

Formation of bromodifluoroacetyl fluoride, CF₂BrC(O)F, in the thermal gas-phase oxidation of bromotrifluoroethene, CF₂CFBr, initiated by trifluoromethylhypofluorite, CF₃OF

Joanna Czarnowski*

Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, INIFTA, Sucursal 4, Casilla de Correo 16 (1900) La Plata, República Argentina

Received 8 December 2005; received in revised form 3 February 2006; accepted 5 February 2006 Available online 23 February 2006

Abstract

The oxidation of CF₂CFBr by molecular O₂, initiated by CF₃OF, has been studied at 273, 253.5, 239 and 218 K. The initial pressure of CF₃OF was varied between 0.9 and 2.4 Torr, that of CF₂CFBr between 11.5 and 30.7 Torr and that of O₂ between 42.5 and 100.7 Torr. The main product was CF₂BrC(O)F (yields 81–95% based on the CF₂CFBr consumed). Minor amounts of C(O)F₂ and C(O)FBr and traces of bromotrifluoroethene epoxide were also formed. The reaction is a chain reaction with bromine atoms as chain carriers. Its basic steps are: the thermal generation of CF₃O[•] radical by abstraction of fluorine atom from CF₃OF, chain initiation by addition of CF₃O[•] to the double bond of alkene, leading, in presence of O₂, to the formation of bromine atom and chain propagation by the reaction of bromine atom with CF₂CFBr, originating CF₂BrCFBrO[•] radical. The predominant fate of the latter is the bromine atom extrusion with C–C bond scission playing the minor role. The full mechanism is postulated. © 2006 Elsevier B.V. All rights reserved.

Keywords: Thermal gas-phase oxidation; Bromotrifluoroethene; Trifluoromethylhypofluorite; Bromodifluoroacetyl fluoride

1. Introduction

The use of chemical initiators in absence of light permits better control of reaction course in organic synthesis. The stable and easily handled trifluoromethylhypofluorite, CF₃OF, containing a weak O-F bond (43.5 kcal/mol) [1,2,3] is an effective initiator of oxidation of haloalkenes and perfluoroolefins. The oxidations of CF₂CCl₂ [4], CHClCCl₂ [5] and CCl₂CCl₂ [6] in presence of CF₃OF are chain reactions with chlorine atoms as chain carriers, giving as the main products CX₂ClC(O)Cl, where X = H, Cl or F. Minor amounts of C(O)X₂, are also formed. In the case of C(O)HCl, it decomposes rapidly to CO and HCl. In the oxidation of CF₂CCl₂ [4] initiated by CF₃OF the formation of small quantities of 1,1-dichlorodifluoroethene epoxide was observed. The oxidations of perfluoropropene [7] and perfluorobutene-2 [8] initiated by CF₃OF are chain reactions with CF₃O[•] radicals as chain carriers, giving C(O)F₂, CF₃C(O)F and CF₃OC(O)F as products. CF₃OC-

E-mail address: bdq782@infovia.com.ar.

0022-1139/\$ – see front matter O 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.jfluchem.2006.02.003

 $F_2OCF_2C(O)F$ and a compound containing $CF(CF_3)OC(O)CF_3$ group are also formed in the respective oxidations of perfluoropropene and perfluorobutene-2.

Recently we have studied at 313.4 K the gas-phase oxidation of CF₂CFBr initiated by NO₂ [9], giving CF₂BrC(O)F as the main product, minor equivalent amounts of C(O)F₂ and C(O)FBr, and small quantities of bromotrifluoroethene epoxide and peroxynitrate, CF₂BrCFBrO₂NO₂. It is a chain reaction propagated by bromine atoms. We have not found published data on the addition of bromine atoms to the fluorinated olefins. Only the Br-atom initiated oxidations of chlorinated ethenes with chlorine atoms as chain carriers, were reported [10–12].

In this work the oxidation of CF_2CFBr in presence of CF_3OF was studied.

2. Results and discussion

The experiments were carried out at 273, 253.5, 239 and 218 K. The initial pressure of CF_3OF was varied between 0.9 and 2.4 Torr, that of CF_2CFBr between 11.5 and 30.7 Torr and that of O_2 between 42.5 and 100.7 Torr.

^{*} Tel.: +54 221 4220961; fax: +54 221 4254642.

The products were identified by their infrared spectra after oxygen was eliminated from the reaction system. The main product was CF2BrC(O)F (yields 81-95% based on the CF₂CFBr consumed). Minor quantities of C(O)F₂ and C(O)FBr, traces of CF₃OCF₂C(O)F and bromotrifluoroethene epoxide, $CF_2 \sim CF_2 CF_Br$, were also formed. The compound $CF_2BrC(O)F$ was characterized by its IR spectrum consistent with the gauche structure, by comparing it with the calculated one for this molecule using ab initio and Density Functional Theory methods [13]. For this molecule the most intense absorption bands appear at 1887, 1195, 1102 and 937 cm⁻¹, and are assigned to the ν (CO), $v_{as}(CF_2)$, $v_s(CF_2)$ and v(CF), respectively. The compounds C(O)F₂ [14], C(O)FBr [15,16] and CF₃OCF₂C(O)F [17] were identified by their respective IR spectra. The bromotrifluoroethene epoxide, present in the reaction mixture, was characterized by its infrared band at 1540 cm^{-1} , assigned to the ring-breathing mode, that is characteristic of fluoroepoxides. This band appears at 1500 cm⁻¹ for 1,1-dichloro-2.2-difluoroethene epoxide [18], at 1545 cm^{-1} for chlorotrifluoroethene epoxide [18] and at 1551 cm^{-1} for perfluoropropene epoxide [19].

The very strong absorption band of CF_3OOCF_3 at 1166 cm⁻¹ [20] and that of $CF_3C(O)F$ [21] at 1122–1119 cm⁻¹ were not observed.

To determine the concentration of $CF_2BrC(O)F$ and that of non-consumed CF_2CFBr , the room temperature infrared calibration curves were made, using the pure compounds, thus allowing conversion of the absorption intensities at 1887 cm⁻¹ to the pressures of $CF_2BrC(O)F$ and those at 1779 cm⁻¹ to the pressures of CF_2CFBr . The pressures corresponding to the temperature of each run were calculated using the pressures of $CF_2BrC(O)F$ and CF_2CFBr at room temperature obtained from the calibration curves.

The analytical data of nine experiments are summarized in Table 1, where indices i and f denote initial and final and Δt is the time of permanence of the reaction system CF₃OF + CF₂CFBr + O₂ in the reaction vessel for each run. These data show that CF₂CFBr was completely consumed in the temperature range 273–239 K.

When the temperature of the reaction system, initially at 218 K, was raised rapidly to the room temperature without

previously removing O_2 , an explosion occurred with emission of light, giving CO_2 , $C(O)F_2$, CF_4 and Br_2 as only products.

The reaction is a chain reaction. At the pressures of O_2 used in this work, the reaction does not depend on the concentration of O_2 , showing the pseudo-zero order with respect to O_2 as reactant and indicating the third body character of O_2 .

In order to propose the reaction mechanism, in addition to the analysis of the products, the following reactions were considered: the oxidations of CF_2CCl_2 [4], $CHClCCl_2$ [5] and CCl_2CCl_2 [6] initiated by addition of CF_3OF to the double bond and the oxidation of CF_2CFBr initiated by NO₂ [9].

The following reactions are consistent with the experimental results obtained in this work:

CF ₃ OF +	$CF_2CFBr \rightarrow$	CF ₃ CFBr•	$+ CF_3O^{\bullet}$	(1)
----------------------	------------------------	-----------------------	---------------------	-----

$$CF_3CFBr^{\bullet} + O_2 + M \rightarrow CF_3CFBrO_2^{\bullet} + M$$
 (2)

 $2CF_3CFBrO_2^{\bullet} \rightarrow 2CF_3CFBrO^{\bullet} + O_2 \tag{3}$

$$CF_3CFBrO^{\bullet} \rightarrow CF_3C(O)F + Br^{\bullet}$$
 (4)

$$CF_3CFBrO^{\bullet} \rightarrow CF_3^{\bullet} + C(O)FBr$$
 (5)

$$CF_3^{\bullet} + O_2 + M \to CF_3O_2^{\bullet} + M \tag{6}$$

$$2CF_3O_2^{\bullet} \to 2CF_3O^{\bullet} + O_2 \tag{7}$$

$$CF_3O^{\bullet} + CF_2CFBr \rightarrow CF_3OCF_2CFBr^{\bullet}$$
 (8)

$$CF_3OCF_2CFBr^{\bullet} + O_2 + M \rightarrow CF_3OCF_2CFBrO_2^{\bullet} + M$$
 (9)

$$2CF_3OCF_2CFBrO_2^{\bullet} \rightarrow 2CF_3OCF_2CFBrO^{\bullet} + O_2$$
(10)

$$CF_3OCF_2CFBrO^{\bullet} \rightarrow CF_3OCF_2C(O)F + Br^{\bullet}$$
 (11)

$$Br + CF_2 CFBr \to CF_2 Br CFBr^{\bullet}$$
(12)

$$CF_2BrCFBr^{\bullet} + O_2 + M \rightarrow CF_2BrCFBrO_2^{\bullet} + M$$
 (13)

$$2CF_2BrCFBrO_2^{\bullet} \rightarrow 2CF_2BrCFBrO^{\bullet} + O_2$$
(14)

$$CF_2BrCFBrO_2^{\bullet} + CF_2CFBr \rightarrow CF_2BrCFBrO_2CF_2CFBr^{\bullet}$$

(15)

Table 1

Analytical data of nine experiments, where indices i and f denote initial and final and Δp is the time of permanence of reaction system CF₃OF + CF₂CFBr + O₂ in reaction vessel

Run	T (K)	$\Delta t \ (\min)$	CF ₃ OF _i (Torr)	CF ₂ CFBr _i (Torr)	CF ₂ CFBr _f (Torr)	O ₂ (Torr)	CF ₂ BrC(O)F (Torr)
2	273.0	10.0	1.6	12.4	_	42.5	10.0
8	253.5	42.0	2.1	18.9	-	63.6	16.5
4	239.0	121.0	2.4	16.5	-	95.2	15.6
5	239.0	64.5	1.0	30.7	-	100.7	27.5
6	239.0	65.2	0.9	12.3	-	76.0	11.6
7	239.0	120.0	1.1	12.7	-	69.2	11.9
10	218.0	180.0	0.9	11.5	0.8	48.2	10.1
11 ^a	218.0	180.0	0.9	20.7	-	65.9	_
13	218.0	66.5	1.0	19.0	13.5	66.3	5.2

^a In this run the temperature of the reaction system $CF_3OF + CF_2CFBr + O_2$, initially at 218 K, was raised rapidly to room temperature without previously removing the oxygen. An explosion occurred with emission of light, giving CO_2 , $C(O)F_2$, CF_4 and Br_2 as products.

$$CF_2BrCFBrO_2CF_2CFBr^{\bullet} \rightarrow CF_2BrCFBrO^{\bullet} + CF_2 \xrightarrow{O} CFBr$$
 (16)

$$CF_2BrCFBrO^{\bullet} \rightarrow CF_2BrC(O)F + Br^{\bullet}$$
 (17)

$$CF_2BrCFBrO^{\bullet} \rightarrow CF_2Br^{\bullet} + C(O)FBr$$
 (18)

$$CF_2Br^{\bullet} + O_2 + M \rightarrow CF_2BrO_2^{\bullet} + M$$
⁽¹⁹⁾

$$2CF_2BrO_2^{\bullet} \to 2CF_2BrO^{\bullet} + O_2 \tag{20}$$

$$CF_2BrO^{\bullet} \rightarrow C(O)F_2 + Br^{\bullet}$$
 (21)

The primary path is the homolytic cleavage of a rather weak O–F bond in a bimolecular reaction between CF₃OF and CF₂CFBr, originating radicals CF₃O[•]. The radicals CF₃O[•] add rapidly to the double bond forming CF₃OCF₂CFBr[•] radical. The lack of formation of CF₃OOCF₃ confirms that the addition of CF₃O[•] to the double bond is faster that any other reaction of this radical. The values of order 10^{10} dm³ mol⁻¹ s⁻¹ were obtained for the addition of CF₃O[•] to the alkenes [22–25].

The radicals CF₃OCF₂CFBr[•] react with O₂, producing oxyradicals CF₃OCF₂CFBrO[•] through the reactions (9) and (10). The equilibrium study of $\mathbb{R}^{\bullet} + \mathbb{O}_2 \leftrightarrow \mathbb{RO}_2^{\bullet}$ [26], where R^{\bullet} are alkyl radicals, suggests that at the pressure of O_2 used in this work the haloalkyl radicals generated in this reaction system are almost completely eliminated by O₂. It was also reported [27], that the rate constants for the reactions of methyl and halomethyl radicals with O₂ exceed those for fluorine-atom abstraction from CF₃OF by three to four orders of magnitude. It indicates that the reaction between radical CF₃OCF₂CFBr[•] and CF₃OF to give the corresponding adduct $CF_3OCF_2CF_2Br$ and CF_3O^{\bullet} can be neglected. The oxyradicals CF₃OCF₂CFBrO[•] decompose eliminating bromine atoms, which, analogously to the chlorine atoms [4-6,28] add rapidly to the double bond, initiating the chain reaction and leading to the formation of radicals CF₂BrCFBrO[•] in presence of O₂. The obtained products point out that the CF_3O^{\bullet} and bromine atom add to the less bulky CF2 group of the CF2CFBr, which is consistent with the fact that the steric effects govern the addition process.

The formation of traces of bromotrifluoroethene epoxide, indicates that a few peroxy radicals $CF_2BrCFBrO_2^{\bullet}$ add to the double bond of CF_2CFBr , regenerating $CF_2BrCFBrO^{\bullet}$. The epoxidation of alkenes by addition of peroxy radical RO₂ to the double bond, producing RO[•] radical and epoxide, was reported [29].

The production of $CF_2BrC(O)F$ as the main product indicates that at the temperature range 273–218 K the extrusion of Br[•] from $CF_2BrCFBrO^{•}$ predominates over the scission of the C–C bond.

No product of the reaction (4) was detected. It indicates that, in comparison to the chain reaction products, the amount of $CF_3C(O)F$ formed was not detectable.

3. Experimental

The experiments were performed in a grease-free conventional static system allowing pressure measurements at constant volume and temperature. A spherical quartz bulb with a volume of 270 cm³ was used as reaction vessel. The pressure was measured with a quartz spiral gauge. Infrared spectra were recorded on a Shimadzu IR-435 spectrometer and a Perkin-Elmer 1600 Series FTIR spectrometer, using 10 cm cells provided with NaCl and KBr windows, respectively.

All reactants were purchased commercially. CF_3OF (PCR, 97–98%) was washed with 0.1 mol dm⁻³ NaOH solution and filtered at 80 K [30]. The CF₂CFBr (PCR, 97–98%) contained CF₄, and CF₃CF₃ as impurities. These impurities are more volatile than CF₂CFBr, but could not be separated by fractional condensation, distilling together. The CF₂CFBr was purified by intermittent brief evacuation cycles at 153 K, opening and closing the trap valve. This procedure was repeated several times until the disappearance of the respective very strong absorption bands of CF₄ [31] and CF₃CF₃ [32] at 1279 and 1250 cm⁻¹ in the IR spectrum of CF₂CFBr. Oxygen (La Oxigena, 99.99%) was bubbled through 98% analytical-grade H₂SO₄, and passed slowly through a Pyrex coil at 153 K.

Fourteen experiments were made in the temperature range 273–218 K. The initial pressure of CF_3OF was varied between 0.9 and 2.4 Torr, that of CF_2CFBr between 11.5 and 30.7 Torr and that of O_2 between 42.5 and 100.7 Torr.

To eliminate the oxygen in excess from the reaction mixture, the reaction vessel was rapidly cooled down to liquid–air temperature and O_2 evacuated.

Acknowledgments

This work was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. The author thanks Mr. Z. Czarnowski for helpful comments and the Max Planck Institute for Biophysical Chemistry, Goettingen, through the Partner Group for Chlorofluorocarbons in the Atmosphere, for financial support.

References

- [1] J. Czarnowski, E. Castellano, H.J. Schumacher, Z. Phys. Chem. N. F. 65 (1969) 225–237.
- [2] J. Czarnowski, H.J. Schumacher, Z. Phys. Chem. N. F. 73 (1970) 68– 76.
- [3] R.C. Kennedy, J.B. Levy, J Phys. Chem. 76 (1972) 3480-3488.
- [4] J. Czarnowski, J. Chem. Soc. Faraday Trans. 2 85 (1989) 1425-1437.
- [5] J. Czarnowski, Z. Phys. Chem. 191 (1995) 103–118.
- [6] J. Czarnowski, Z. Phys. Chem. 203 (1998) 183-197.
- [7] M. dos Santos Afonso, R.M. Romano, C.O. Della Védova, J. Czarnowski, Phys. Chem. Chem. Phys. 2 (2000) 1393–1399.
- [8] R.M. Romano, C.O. Della Védova, J. Czarnowski, Int. J. Chem. Kinet. 35 (2003) 532–541.
- [9] V. Arce, M. dos Santos Afonso, R.M. Romano, J. Czarnowski, J. Argentine Chem. Soc., in press
- [10] V. Catoire, P.A. Ariya, H. Niki, G.W. Harris, Int. J. Chem. Kinet. 29 (1997) 695–704.
- [11] P.A. Ariya, V. Catoire, R. Sander, H. Niki, G.W. Harris, Tellus 49B (1997) 583–591.

- [12] B. Ramacher, J.J. Orlando, G.S. Tyndall, Int. J. Chem. Kinet. 33 (2001) 198–211.
- [13] V. Arce, J. Czarnowski, R.M. Romano, J. Mol. Struct., in preparation.
- [14] A.H. Nielsen, T.G. Burke, P.J.W. Woltz, E.A. Jones, J. Chem. Phys. 20 (1952) 596–604.
- [15] M.J. Parkington, T.A. Ryan, K.R. Seddon, J. Chem. Soc. Dalton Trans. (1997) 251–256.
- [16] P. García, H. Willner, H. Oberhammer, J.S. Francisco, J. Chem. Phys. 121 (2004) 11900–11906.
- [17] C.J. Schack, K.O. Christe, J. Fluor. Chem. 14 (1979) 519-522.
- [18] D. Chow, M.H. Jones, M.P. Thorne, E.C. Wong, Can. J. Chem. 47 (1969) 2491–2494.
- [19] R.M. Romano, J. Czarnowski, Z. Phys. Chem. 218 (2004) 575-597.
- [20] J.R. Durig, D.W. Wertz, J. Mol. Spectrosc. 25 (1968) 467-478.
- [21] K.R. Loos, R.C. Lord, Spectrochim. Acta 21 (1965) 119–125.

- [22] J. Chen, T. Zhu, V. Young, H. Niki, J. Phys. Chem. 97 (1993) 7174–7177.
- [23] C. Kelly, J. Treacy, H.W. Sidebottom, O.J. Nielsen, Chem. Phys. Lett. 207 (1993) 498–503.
- [24] C. Kelly, H.W. Sidebottom, J. Treacy, O.J. Nielsen, Chem. Phys. Lett. 218 (1994) 29–33.
- [25] H. Niki, J. Chen, V. Young, Res. Chem. Intermediat. 20 (1994) 277-301.
- [26] V. Knyazew, I.R. Slage, J. Phys. Chem. A 102 (1998) 1770–1778.
- [27] A.A. Shoiket, M.A. Teitelboim, V.I. Vedeenev, Kinet. Catal. 24 (1983) 225–227.
- [28] R. Atkinson, S.M. Aschmann, Int. J. Chem. Kinet. 19 (1987) 1097-1105.
- [29] M.S. Stark, J. Phys. Chem. A 101 (1997) 8296-8301.
- [30] F.A. Hohorts, J.M. Shreeve, Inorg. Synth. 11 (1967) 143-146.
- [31] P.J.H. Woltz, A.H. Nielsen, J. Chem. Phys. 20 (1952) 307-312.
- [32] J.R. Nielsen, C.M. Richards, H.L. McMurry, J. Chem. Phys. 16 (1948) 67– 73.