
Inorganica Chimica Acta 394 (2013) 605-615

Contents lists available at SciVerse ScienceDirect

Inorganica Chimica Acta

Metal derivatives of N¹-substituted thiosemicarbazones: Synthesis, structures and spectroscopy of nickel(II) and cobalt(III) complexes

Tarlok S. Lobana^{a,*}, Poonam Kumari^a, Geeta Hundal^a, Ray J. Butcher^b, A. Castineiras^c, Takashiro Akitsu^d

^a Department of Chemistry, Guru Nanak Dev University, Amritsar 143 005, India

^b Department of Chemistry, Howard University, Washington, DC 20059, USA

^c Departamento De Quimica Inorganica, Facultad de Farmacia, Universidad de Santiago, 15782 Santiago, Spain

^d Department of Chemistry, Tokyo University of Science, Tokyo 1628601, Japan

ARTICLE INFO

Article history: Received 8 February 2012 Received in revised form 17 September 2012 Accepted 20 September 2012 Available online 3 October 2012

Keywords: Thiosemicarbazone Nickel(II) Bis(diphenylphosphino)methane Cobalt(III) 2-Phenylpyridine

ABSTRACT

Reactions of nickel(II) and cobalt(II) salts with various N¹-substituted thiosemicarbazones [R¹R²C²=N³-N²H-C¹(=S)-N¹HR³, H₂L; R¹ = C₆H₅-, R² = H, H₂L¹(R³ = Me); H₂L²(R³ = Ph), R¹ = 2-OHC₆H₄-, R² = H, H₂L³(R³ = Me), H₂L⁴(R³ = Et), H₂L⁵(R³ = Ph); R² = Me, H₂L⁶(R³ = Me), R² = Me, H₂L⁷(R³ = Et) and R², R³ = H, Me, H₂L⁸(R¹ = C₄H₃S), H₂L⁹(R¹ = C₄H₃O)] are described. Reactions of Ni(OAC)₂ with the ligands having R¹ as phenyl group at C² carbon (H₂L¹, H₂L²) gave complexes, [Ni(κ²-N³, S-HL)₂] (HL⁻ = HL¹, 1; HL², 2). Other ligands with R¹ as 2-hydroxyphenyl groups, namely, H₂L³-H₂L⁷, with Ni(OAC)₂ yielded trust colored compounds, {Ni(κ³-O, N³, S-L)} (L²⁻ = L³-L⁷) which after the addition of PPh₂-CH₂-PPh₂ yielded dinuclear, [Ni₂(κ³-O, N³, S-L)₂(µ-P, P-PPh₂-CH₂-PPh₂)] (L²⁻ = L³, 3; L⁴, 4; L⁵, 5) and monouclear, [Ni(κ³-O, N³, S-L)(κ³-P-PPh₂) (L²⁻ = L⁶, 6; L⁷, 7) complexes. Likewise, {Ni(κ³-O, N³, S-L⁵} with 2-phenylypridine(2-Phpy) has yielded a monouclear complex, [Ni(κ³-O, N³, S-L⁵)(κ¹-N-2-Php₂)] 8. The geometry around Ni metal center can be formally described as square planar in each of complexes **1–8**. Reactions of CoCl₂ with H₂L⁸ and H₂L⁹ involved oxidation of Co^{III} and yielded octahedral complexes, [Co(κ²-N, S-HL)₃] (HL⁻ = HL⁸, **9**; HL⁹, **10**).

© 2012 Elsevier B.V. All rights reserved.

Inorganica Chimica Acta

1. Introduction

Thiosemicarbazones $\{R^1R^2C^2=N^3-N^2H-C^1(=S)-N^1HR^3(I)\}$ represent an interesting class of Schiff bases due to their variable donor ability and structural diversity [1-8]. Applications of thiosemicarbazones as well as their complexes in biology form some of the key motives to pursue their coordination chemistry [1]. Nickel(II) was found to affect the DNA repair mechanisms by inhibiting the base excision repair (BER) and nucleotide excision repair (NER) processes [9,10], which may become a potential merit in the design of antitumor agents. Several nickel(II) complexes have been found to inhibit proliferation of diverse cancer cells [11–13]. For example, a square planar nickel(II) complex of thiophene-2-carbaldehyde thiosemicarbazone was tested against MelanomaB16F10 and FLC cell lines [14] and octahedral nickel(II) complex of phenanthrenequinone thiosemicarbazone was tested on human breast cancer cell line, T47D rich in the progesterone receptors and has a synergistic effect on the antiproliferative activity of the cell lines [15].

The interaction of thiosemicarbazones with several metals such as copper(I), silver(I), gold(I), mercury(II), palladium(II), platinum(II), ruthenium(II) and nickel(II) have yielded mono-,

* Corresponding author. Fax: +91 183 2 258820.

di-, tri- and poly-nuclear complexes [1]. The nature of substituents at C² carbon, the type of anion, co-ligands and solvents all influenced bonding and nuclearity of complexes [16]. For example, it was observed that furan-2-carbaldehyde thiosemicarbazones (R² = H) with Ni^{II} formed trans-(R³ = Me, Et) and cis-(R³ = Ph) square planar complexes, [Ni(κ^2 -N, S-HL)₂] [17]. For R² = methyl, furan ring showed coordination to Ni^{II} and formed octahedral complexes, [Ni(κ^3 -O, N, S-HL)₂] (R³ = Me, Et, Ph) [18]. The analogous thiophene thiosemicarbazones (R² = H, Me) only formed trans square planar complexes, [Ni(κ^2 -N, S-HL)₂].

Further, there are limited reports on complexes of nickel(II) with benzaldehyde-/salicylaldehyde-based thiosemicarbazones. The 4-fluorobenzaldehyde thiosemicarbazone formed a square planar complex, [Ni(κ^2 -N, S-HL)₂] [19], and salicylaldehyde thiosemicarbazones formed either monomers, [Ni(κ^3 -O, N³, S-L)Y] (Y = PPh₃, py, NH₃) [20–27] or oligomers [Ni(κ^3 -O, N³, S-L)]_n (*n* = 2, 3) [28,24]. As regards Co^{II/III}, in literature, tetrahedral [Co^{III}(κ^3 -O, N, S-L)(κ^2 -N, N-bipy)(N₃)] (L = 2-hydroxy acetophenone thiosemicarbazonate), [Co^{III}(κ^3 -O, N, S-HL)₃]·4H₂O (HL = *N*-(anthracen-9-yl)methyleneamino]thioureate) and [Co^{III}(κ^3 -O, N, S-HL)₃]·2MeOH (L = *N*-(2-hydroxyethyl)-2-(thiophene-2-ylmethelene)-hydrazinecarbothioamide) complexes are reported [29].

E-mail address: tarlokslobana@yahoo.co.in (T.S. Lobana).

^{0020-1693/\$ -} see front matter @ 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.ica.2012.09.021

Complexes of nickel(II) with the thio-ligands shown in Chart 1 are synthesized using PPh₂-CH₂-PPh₂ and 2-Phpy as co-ligands. A few reactions of furan- and thiophene-2-carbaldehyde thiosemicarbazones with cobalt(II) salt are also investigated. Various complexes synthesized have been characterized with the help of analytical data, spectroscopic techniques (IR, ¹H and ³¹P NMR) and single crystal X-ray crystallography (1, 2, 4 and 7–9).

2. Experimental

2.1. Materials and techniques

Metal salts, namely, NiCl₂, Ni(OAc)₂, CoCl₂, as well as N-methyl thiosemicarbazide, N-ethyl thiosemicarbazide, N-phenyl thiosemicarbazide, benzaldehyde, 2-hydroxybenzaldehyde, 2-hydroxy acetophenone, bis(diphenylphosphino)methane, 2-phenylpyridine and Et₃N were procured from Aldrich Sigma Ltd. The thio-ligands were synthesized by conventional procedures [30]. Elemental analysis for C, H and N were carried out using a thermoelectron FLAS-HEA1112 analyzer. The melting points were determined with a Gallenkamp electrically heated apparatus. The IR spectra were recorded using KBr pellets on a Varian 666-IR FT-IR spectrometer. ¹H NMR spectra were recorded on a JEOL AL300 FT spectrometer at 300 MHz in CDCl₃ with TMS as the internal reference. The ³¹P NMR spectra were recorded at 121.5 MHz with $P(OMe)_3$ as the external reference.

2.2. Synthesis of complexes

2.2.1. Trans-[Ni(κ^2 -N³, S-HL¹)₂] (**1**)

To a colorless solution of H_2L^1 (0.038 g, 0.200 mmol) in methanol (10 mL) was added solid Ni(OAc)₂ (0.025 g, 0.100 mmol). The color of the solution changed to dark brown and the contents were stirred for about 4 h. The clear solution after filtration was left for slow evaporation at room temperature which gave brown crystals. Yield: 77%; m.p. 192–195 °C. Anal. Calc. for C₁₈H₂₀N₆NiS₂: C, 48.73; H, 4.51; N, 18.95. Found: C, 48.54; H, 4.33; N, 19.01%. IR (KBr, cm⁻¹, selected absorption bands): v(N¹-H) 3387br; v(C-H), 2987m, 2876m; v(C=N) + v(C=C) 1548s, 1497s; v(C-N) 1067s, 1013s, 875s; v(C-S) 768s. ¹H NMR (δ, ppm; CDCl₃): 8.05 (d, 4H, C⁴H & C⁸H), 7.45 (s, 2H, C²H), 7.37 (m, 6H, C⁵⁻⁷H), 5.03 (sb, 2H, N¹H), 3.00 (d, 6H, CH₃).

Complex 2 was synthesized by a similar method.

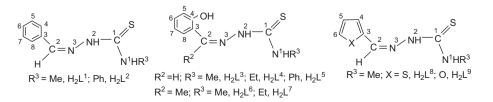
2.2.2. Trans-[Ni(κ^2 -N³, S-HL²)₂] (**2**)

Yield: 73%; m.p. 210-212 °C. Anal. Calc. for C₂₈H₂₄N₆NiS₂: C, 59.22; H, 4.23; N, 14.81. Found: C, 58.99; H, 4.35; N, 14.95%. IR (KBr, cm⁻¹, selected absorption bands): $v(N^{1}-H)$ 3398br; v(C-H)3012m, 2998m; v(C=N) + v(C=C) 1545s, 1478s; v(C-N) 1058s, 1017s; v(C-S) 771s. ¹H NMR (δ, ppm; CDCl₃): 8.01 (d, 4H, C⁴H & C⁸H), 7.61 (s, 2H, C²H), 7.35 (m, 14H, C⁵H & C⁷H & o- & p- & m-H), 7.09 (t, 2H, C⁶H), 6.89 (sb, 2H, N¹H).

2.2.3. [$Ni_2(\kappa^3-0, N^3, S-L^3)_2(\mu-P, P-PPh_2-CH_2-PPh_2)$] (**3**) To a solution of H₂L³ (0.021 g, 0.100 mmol) in acetonitrile was added solid NiCl₂ salt (0.025 g, 0.100 mmol) followed by the addition of Et₃N base (1 mL) and the contents were stirred for 1 h. To this was added solid PPh₂-CH₂-PPh₂ (0.039 g, 0.100 mmol) and the contents further stirred for about 4 h and the clear solution was allowed to evaporate at room temperature which yielded red crystals along with the formation of Et₃NH⁺Cl⁻ salt. Yield: 58%; m.p. 210-212 °C. Anal. Calc. for C43H40Ni2N6O2P2S2: C, 56.36; H, 4.40; N, 9.17. Found: C, 56.18; H, 4.61; N, 9.56%. IR (KBr, cm⁻¹, selected absorption bands): $v(N^1-H)$ 3412s; v(C-H)3049w, 2991w, 2927w, 2878m; v(C=N) + v(C=C) 1600s, 1541s; v(P-C_{Ph}) 1097s; v(C-N) 1026s, 989s, 916s; v(C-S) 752s. ¹H NMR (δ, ppm; CDCl₃): 8.00 (s, 2H, C²H), 7.87 (m, 4H, C⁵H & C⁸H), 7.15 (m, 20H, o- & p- & m-H), 6.54 (m, 4H, C⁶H & C⁷H), 4.91 (db, 2H, N¹H), 2.86 (s, 2H, CH₂), 2.10 (d, 6H, CH₃(N¹)). ³¹P NMR (δ , ppm; CDCl₃): -127.74; coordination shift, $\Delta \delta (\delta_{complex} - \delta_{dppm}) = 34.93$ $(\delta_{dppm} = -162.67 \text{ dppm}).$

Complexes **4** and **5** were synthesized by a similar method.

2.2.4. [Ni₂(κ³-O, N³, S-L⁴)₂(μ-P, P-PPh₂-CH₂-PPh₂)] (**4**)


Yield: 60%; m.p. 215–217 °C. Anal. Calc. for C₄₅H₄₄Ni₂N₆O₂P₂S₂: C, 57.18; H, 4.66; N, 8.89. Found: C, 56.98; H, 4.45; N, 9.01%. IR (KBr, cm^{-1} , selected absorption bands): $v(N^1-H)$ 3419s; v(C-H)3078w, 2963w, 2927w, 2867m; v(C=N) + v(C=C) 1600s, 1541s; v(P-C_{ph}) 1097s; v(C-N) 1045s, 1027s, 999s; v(C-S) 764s. ¹H NMR (δ, ppm; CDCl₃): 7.99 (m, 6H, C²H, C⁵H & C⁸H), 7.22 (m, 20H, o- & *p*- & *m*-H), 6.50 (m, 4H, C⁶H & C⁷H), 4.43 (db, 2H, N¹H), 3.27 (m, 4H, CH₂(N¹)), 2.01 (s, 2H, CH₂), 1.14 (d, 6H, CH₃(N¹)). ³¹P NMR (δ , ppm; CDCl₃): -127.55; coordination shift, $\Delta\delta$ ($\delta_{complex}$ - $\delta_{\rm dppm}$) = 35.11.

2.2.5. $[Ni_2(\kappa^3-0, N^3, S-L^5)_2(\mu-P, P-PPh_2-CH_2-PPh_2)] \cdot CH_3CN(5)$

Yield: 59%; m.p. 180–182 °C. Anal. Calc. for C₅₅H₄₇Ni₂N₇O₂P₂S₂: C, 61.09; H, 4.35; N, 9.07. Found: C, 69.24; H, 4.49; N, 8.87%. IR (KBr, cm⁻¹, selected absorption bands): $v(N^1-H)$ 3433br; v(C-H)3052m, 2998w; v(C=N) + v(C=C) 1602s, 1535s; $v(P-C_{Ph})$ 1097s; v(C-N) 1020s, 996s, 902w; v(C-S) 745s. ¹H NMR (δ, ppm; CDCl₃): 8.20 (s, 2H, C²H), 7.96 (m, 12H, C⁵H & C⁸H & N¹Ph-Hs), 7.48-6.94 (m, 20H, o- & p- & m-H), 6.52 (s, 4H, C⁶H & C⁷H), 6.45 (sb, 2H, N¹H), 3.21 (s, 2H, CH₂). ³¹P NMR (δ, ppm; CDCl₃): -126.61; coordination shift, $\Delta \delta (\delta_{\text{complex}} - \delta_{\text{dppm}}) = 36.06$.

2.2.6. $[Ni(\kappa^3-0, N^3, S-L^6)(\kappa^1-P-PPh_2-CH_2-PPh_2)]$ (6)

To a light yellow solution of H_2L^6 (0.022 g, 0.100 mmol) in CH₃CN (10 mL) was added solid Ni(OAc)₂ (0.025 g, 0.100 mmol) and the contents stirred for 2 h. During stirring rust colored compound got separated and to this was added solid dppm (0.034 g, 0.100 mmol) with a further stirring for 15 min. The color of the solution changed to reddish brown and slow evaporation of the solution formed sticky mass, which was crystallized in methanol. Yield: 69%; m.p. 176–178 °C. Anal. Calc. for C₃₅H₃₃N₃NiOP₂S: C, 63.28; H, 4.97; N, 6.33. Found: C, 63.45; H, 5.14; N, 6.19%. IR (KBr, cm⁻¹, selected absorption bands): $v(N^1-H)$ 3420br; v(C-H)3051m, 2925m, 2856w; v(C=N) + v(C=C) 1542s, 1483s; $v(P-C_{Ph})$

1099s; v(C-N) 1068s, 1025m, 915s; v(C-S) 758s. ¹H NMR (δ , ppm; CDCl₃): 7.95 (d, 1H, C⁵–H), 7.82 (dd, 1H, C⁸–H), 7.72–6.97 (m, 20H, *o*- & *p*- & *m*-H), 6.92 (s, 2H, C⁶H & C⁷H), 4.42 (sb, 1H, N¹H), 3.45 (d, 2H, CH₂), 2.88 (s, 3H, CH₃(C²)), 2.71 (s, 3H, CH₃(N¹)). ³¹P NMR (δ , ppm; CDCl₃): -127.73, -166.59; coordination shift, $\Delta\delta$ ($\delta_{complex} - -\delta_{dppm}$) = 34.94, -3.92.

Complexes **7** and **8** were synthesized by a similar method.

2.2.7. $[Ni(\kappa^3-O, N^3, S-L^7)(\kappa^1-P-PPh_2-CH_2-PPh_2)]$ (7)

Yield: 65%; m.p. 198–200 °C. *Anal.* Calc. for C₃₆H₃₅N₃NiOP₂S: C, 63.68; H, 5.16; N, 6.19. Found: C, 63.97; H, 4.98; N, 6.27%. IR (KBr, cm⁻¹, selected absorption bands): *v*(N¹–H) 3451br; *v*(C–H) 3043m, 2927m, 2878w; *v*(C=N) + *v*(C=C) 1548s, 1480s; *v*(P–C_{Ph}) 1100s; *v*(C–N) 1024s; *v*(C–S) 763s. ¹H NMR (δ, ppm; CDCl₃): 7.81 (dd, 1H, C⁵H), 7.58 (dd, 1H, C⁸H), 7.42–6.78 (m, 20H, *o*– & *p*– & *m*-H), 6.59 (m, 1H, C⁶H), 6.45 (dd, 1H, C⁷H), 4.48 (sb, 1H, N¹H), 3.30 (m, 2H, CH₂(N¹)), 3.17 (d, 2H, CH₂), 2.73 (s, 3H, CH₃(C²)), 1.15 (t, 6H, CH₃(N¹)). ³¹P NMR (δ, ppm; CDCl₃): –122.46, –165.14; coordination shift, $\Delta\delta(\delta_{complex} - \delta_{dppm}) = 40.21, -2.47$.

2.2.8. $[Ni(\kappa^3-0, N^3, S-L^5)(\kappa^1-N-2-Phpy)]$ (8)

Yield: 72%; m.p. 175–177 °C. *Anal.* Calc. for C₂₅H₂₀NiN₄OS: C, 62.08; H, 4.14; N, 11.59. Found: C, 61.92; H, 4.11; N, 12.10%. IR (KBr, cm⁻¹, selected absorption bands): $v(N^1-H)$ 3436br; v(C-H) 3105w, 3080w, 2986w; v(C=N) + v(C=C) 1598s, 1517s; v(C-N) 1075s, 1019s, 942w; v(C-S) 763s. ¹H NMR (δ , ppm; CDCl₃): 9.56 (s, 1H, C²H), 8.65 (dd, 2H, C⁹H & C⁵H), 8.62 (d, 1H, C¹²H), 8.00–7.15 (m, 10H, *o*- & *p*- & *m*-H), 7.14 (m, 1H, N¹H), 7.08 (m, 2H, C¹⁰H & C¹¹H), 6.71 (m, 3H, C⁸H & C⁶H & C⁷H).

2.2.9. $[Co(\kappa^2 - N^3, S - L^8)_3] \cdot H_2O(\mathbf{9})$

To a suspension of H_2L^8 (0.063 g, 0.315 mmol) in toluene (10 mL) was added solid CoCl₂·6H₂O (0.025 g, 0.105 mmol) and the contents

Table 1	
Crystallographic data f	for compounds 1 , 2 , 4 and 7 – 9 .

stirred for 2 h followed by refluxing for 15 min. During refluxing a black compound got separated along with Et₃NH⁺Cl⁻ salt. Both compounds were separated and crystals for X-ray were grown in CH₂Cl₂ and CH₃OH mixture (3:1::v/v). Yield: 71%; m.p. 150–152 °C. *Anal.* Calc. for C₂₁H₂₆N₉CoOS₆: C, 37.51; H, 3.87; N, 18.76. Found: C, 37.89; H, 4.09; N, 18.68%. IR (KBr, cm⁻¹, selected absorption bands): v(N-H) 3396s; v(C-H) 3048m, 2957m, 2929br; v(C=N) + v(C-C) 1510s, 1403s; v(C-N) 1045s; v(C-S) 767s. ¹H NMR (δ , ppm; CDCl₃): 7.56 (d, 3H, C²H), 7.40 (m, 3H, C⁶H), 7.23 (m, 3H, C⁴H), 7.05 (m, 3H, C⁵H), 5.22 (sb, 3H, N¹H), 3.25 (d, 9H, CH₃).

Complex **10** was synthesized by a similar method.

2.2.10. $[Co(\kappa^2 - N^3, S - L^9)_3]$ (10)

Yield: 65%; m.p. 210–212 °C. *Anal.* Calc. for $C_{21}H_{26}N_9CoO_3S_3$: C, 37.51; H, 3.87; N, 18.76. Found: C, 37.89; H, 4.09; N, 18.68%. IR (KBr, cm⁻¹, selected absorption bands): v(N-H) 3404br; v(C-H) 3005w, 2959m, 2887w; v(C=N) + v(C-C) 1502s, 1402s; v(C-N) 1084s, 1011s, 945m; v(C-S) 750s. ¹H NMR (δ , ppm; CDCl₃): 8.53 (d, 3H, C²H), 7.63 (q, 3H, C⁶H), 7.42 (t, 3H, C⁴H), 6.59 (t, 3H, C⁵H), 5.25 (sb, 3H, N¹H), 3.09 (d, 9H, CH₃).

2.3. X-ray crystallography

A single crystal was mounted on a glass fiber and used for data collection using a Siemens P4 (1), Bruker X8 Kappa APEXII (2), Bruker APEX-II CCD (4) and Xcalibur, Ruby, Gemini (7, 8) and Bruker SMART CCD 1000 (9) diffractometers, equipped with Graphite monochromated Mo K α ($\lambda = 0.71073$ Å). Crystal data were collected at 298(2) (1), 100(2) (2), 128(2) (4), 293(2) (7), 123(2) (8) and 110(2) (9) K. For complex 1, structure was solved by direct methods and refined by full-matrix least-squares refinement techniques on F^2 using SIR-92 and SHELXL-97 in the Wingx package of programs [31]. Data reduction, structure solution, refinement and

	1	2	4	7	8	9
Empirical formula	C18H20N6NiS2	C28H24N6NiS2	$C_{45}H_{44}N_6Ni_2O_2P_2S_2$	C36H35N3NiOP2S	C ₂₅ H ₂₀ N ₄ NiOS	C21H26CoN9OS6
Formula weight	443.23	567.36	944.34	678.38	483.22	671.80
T (K)	295(2) K	100(2)	128(2)	293(2)	123(2)	100(2)
Crystal system	monoclinic	triclinic	monoclinic	monoclinic	monoclinic	monoclinic
Space group	C2/c	ΡĪ	C2/c	$P2_1/c$	$P2_1/c$	$P2_1/c$
Unit cell dimensions						
a (Å)	19.749(5)	9.447(5)	19.444(2)	12.007(1)	21.158(4)	10.738(1)
b (Å)	7.474(5)	10.750(6)	8.829(1)	10.239(1)	6.069(1)	29.112(3)
c (Å)	14.628(5)	12.636(6)	24.684(3)	27.191(4)	16.845(3)	9.992(1)
α (°)	90.00	84.357(2)	90.00	90.00	90.00	90.00
β (°)	109.480(5)	75.071(2)	95.10(2)	100.80(2)	90.83(2)	114.96(2)
γ (°)	90.00	84.480(2)	90.00	90.00	90.00	90.00
$V(Å^3)$	2035.6(2)	1230.63(1)	4220.6(8)	3283.4(8)	2162.5(7)	2831.7(5)
Ζ	4	2	4	4	4	4
D_{calc} (g cm ⁻³)	1.446	1.531	1.486	1.372	1.484	1.576
$\mu ({\rm mm}^{-1})$	1.173	0.990	1.114	0.786	1.020	1.083
F(000)	920	588	1960	1416	1000	1384
Crystal size (mm ³)	$0.20 \times 0.10 \times 0.10$	$0.67 \times 0.08 \times 0.08$	$0.40 \times 0.30 \times 0.25$	$0.46 \times 0.35 \times 0.24$	$0.49 \times 0.23 \times 0.18$	$0.37 \times 0.30 \times 0.29$
Reflections collected	1946	25885	12649	30228	27298	33631
Unique reflections (R_{int})	1889 (0.0226)	5042 (0.0518)	4848 (0.0271)	11040 (0.0789)	13819 (0.0249)	6068 (0.0512)
Data/restraints/ parameters	1889/0/128	5042/0/334	4848/0/272	11040/0/399	13819/0/289	6068/0/343
Index ranges	$0 \leqslant h \leqslant 23$,	$-11 \leqslant h \leqslant 11$,	$-22 \leqslant h \leqslant 25$,	$-13 \leqslant h \leqslant 17$,	$-38 \leqslant h \leqslant 32$,	$-13 \leqslant h \leqslant 12$,
	$0\leqslant k\leqslant 9$, -	$-13 \leqslant k \leqslant 13$,	$-11 \leqslant k \leqslant 9$,	$-15 \leqslant k \leqslant 15$,	$-11 \leqslant k \leqslant 11$,	$0 \leqslant k \leqslant 36$,
	$17 \leq l \leq 16$	$0 \leq l \leq 15$	$-31 \leqslant l \leqslant 32$	$-36 \leqslant l \leqslant 41$	$-30 \leqslant l \leqslant 30$	$0 \leqslant l \leqslant 12$
Final R	$R_1 = 0.0463$,	$R_1 = 0.0343$,	$R_1 = 0.0340$,	$R_1 = 0.0645$,	$R_1 = 0.0424$,	$R_1 = 0.0365$,
indices[$I > 2\sigma(I)$]	$wR_2 = 0.1201$	$wR_2 = 0.0696$	$wR_2 = 0.1038$	$wR_2 = 0.1445$	$wR_2 = 0.0901$	$wR_2 = 0.0793$
R indices (all data)	$R_1 = 0.0657,$	$R_1 = 0.0505,$	$R_1 = 0.0428$,	$R_1 = 0.1231$,	$R_1 = 0.0624$,	$R_1 = 0.0525,$
	$wR_2 = 0.1267$	$wR_2 = 0.0779$	$wR_2 = 0.1133$	$wR_2 = 0.1577$	$wR_2 = 0.0988$	$wR_2 = 0.0856$
Largest difference peak and hole (e Å ⁻³)	0.732 and -0.640	0.362 and –0.372	0.499 and -0.249	1.457 and -0.491	0.634 and –0.493	0.807 and –0.397

Table 2	
Bond parameters of compounds 1, 2, 4 and 7-9	•

6			
Compound 1			
Ni-N(1)	1.906(3)	Ni-S(1)	2.1819(1)
C(7)–N(1)	1.296(5)	C(8)-S(1)	1.744(4)
N(1)-Ni-S(1)	85.26(9)	$N(1)^{\#1}-Ni-S(1)$	94.74(9)
$N(1)^{\#1} - Ni - N(1)$	180	$S(1) - Ni - S(1)^{\#1}$	180
	100	5(1) 11 5(1)	100
Compound 2			
Ni(1)-N(12)	1.924(2)	Ni(1)-N(22)	1.9223(2)
Ni(1)-S(1)	2.175(6)	Ni(1)-S(2)	2.179(6)
N(12)-C(17)	1.297(3)	N(22)-C(27)	1.301(3)
	1.739(2)		• •
S(1)-C(18)	. ,	S(2)-C(28)	1.736(2)
N(12)-Ni(1)-S(1)	85.55(5)	N(22)-Ni(1)-S(2)	85.47(5)
N(12)-Ni(1)-S(2)	95.27(5)	N(22)-Ni(1)-S(1)	93.80(5)
S(1)-Ni(1)-S(2)	175.89(3)	N(22)-Ni(1)-N(12)	178.62(8)
C			
Compound 4			
Ni(1)-O(1)	1.845(1)	Ni(1)–N(1)	1.889(2)
Ni(1)-S(2)	2.122(6)	Ni(1)-P(1)	2.197(5)
S(2)-C(8)	1.756(2)	N(1)-C(7)	1.297(2)
O(1)-Ni(1)-N(1)	95.62(6)	N(1)-Ni(1)-S(2)	87.40(5)
O(1) - Ni(1) - P(1)	82.62(4)	S(2)-Ni(1)-P(1)	94.20(2)
O(1) - Ni(1) - S(2)	176.51(5)	N(1)-Ni(1)-P(1)	174.49(5)
O(1) = IVI(1) = S(2)	170.51(5)	N(1) = NI(1) = F(1)	174.49(3)
Compound 7			
Ni-O(1)	1.838(2)	Ni-N(1)	1.902(2)
Ni-S	2.143(9)	Ni-P(1)	2.196(8)
S-C(9)	1.745(3)	N(1)-C(7)	1.304(3)
O(1)-Ni-N(1)	95.07(9)	N(1)-Ni-S	88.19(7)
O(1) - Ni - P(1)	85.55(6)	S-Ni-P(1)	90.97(3)
O(1)-Ni-S	174.73(7)	N(1)-Ni-P(1)	176.82(7)
Compound 8			
Ni–O(1A)	1.854(8)	Ni-N(1A)	1.861(9)
Ni–N(1B)	1.930(9)	Ni-S	2.147(3)
	1.742(1)	NI 5	2.147(3)
S-C(8A)		O(1A) NI N(1D)	06 10(4)
O(1A)-Ni-N(1A)	96.06(4)	O(1A)–Ni–N(1B)	86.18(4)
N(1A)–Ni–S	87.34(3)	N(1B)–Ni–S	91.65(3)
N(1A)-Ni-N(1B)	172.15(4)	O(1A)–Ni–S	170.40(3)
Compound 9			
Co(1)-N(22)	1 040(2)	$C_{0}(1) N(12)$	1.054(2)
	1.949(2)	Co(1)-N(12)	1.954(2)
Co(1)-N(32)	1.973(2)	Co(1)-S(12)	2.221(7)
Co(1)-S(32)	2.223(7)	Co(1)–S(22)	2.231(7)
S(11)-C(11)	1.711(3)	S(11)-C(14)	1.722(3)
S(12)-C(16)	1.743(3)	N(22)-C(25)	1.299(3)
N(32)-C(35)	1.305(3)	N(12)-C(15)	1.289(3)
N(22)-Co(1)-N(12)	93.73(8)	N(22)-Co(1)-N(32)	93.24(8)
N(12)-Co(1)-N(32)	93.19(8)	N(22)-Co(1)-S(12)	91.35(6)
N(12)-Co(1)-N(32) N(12)-Co(1)-S(12)	86.11(6)	N(12)-Co(1)-S(32)	89.71(6)
	• •		• •
N(32)-Co(1)-S(32)	85.82(6)	S(12)-Co(1)-S(32)	89.62(3)
N(22)-Co(1)-S(22)	84.94(6)	N(32)-Co(1)-S(22)	89.76(6)
S(12)-Co(1)-S(22)	91.04(3)	S(32)-Co(1)-S(22)	91.65(3)
N(32)-Co(1)-S(12)	175.39(6)	N(22)-Co(1)-S(32)	176.47(6)
N(12)-Co(1)-S(22)	176.83(7)		
	. ,		

molecular graphics were performed using SHELXTL-PC [32] and WINGX [33]. The data were processed with APEX2 and corrected for absorption using SADABS [34] for complexes **2**, **4** and CRYSALISPRO CCD (data collection), CRYSALISPRO RED (cell refinement, data reduction) [35] for complexes **7** and **8**. For complex **9**, data were processed with SAINT [36] and corrected for absorption using SADABS [34]. The structures were solved by direct methods using the program SHELXS-97 and refined by full-matrix least-squares techniques against F^2 using SHEL-XL-97 [31]. Atomic scattering factors were taken from "International Tables for Crystallography" [37]. Molecular graphics were taken from PLATON [38] and SCHAKAL [39]. The crystallographic data and important bond parameters and H-bonds of complexes (**1**, **2**, **4**, **7**, **8** and **9**) are given in Tables 1–3 respectively.

3. Results and discussion

3.1. Syntheses and IR spectroscopy

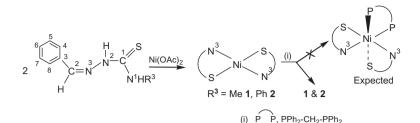
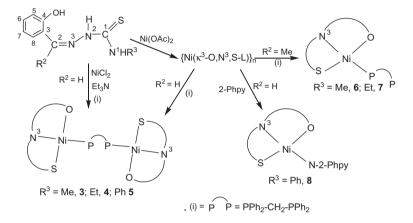
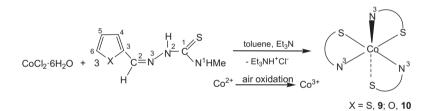

Schemes 1–3 depict the formation of complexes 1–10. The reactions of Ni(OAc)₂ with H_2L^1 and H_2L^2 in 1:2 M ratio (M:L) in

Table 3		
Hydrogen bonds (Å) for Complexes 1 '	2	1 and 7_0


Complex No.	D−H···A	d(D- H)	$d(H{\cdot}{\cdot}{\cdot}A)$	$d(D{\cdot}{\cdot}{\cdot}A)$	((DHA)
1	C(9)−H(9A)· · ·Ni	0.960	2.620	3.540(5)	160.62
	$N(3)-H(31)\cdots N(2)^{\#1}$	0.825	2.450	3.201(5)	151.75
	$C(9)-H(9C)\cdots S(1)^{\#1}$	0.960	2.920	3.843(5)	161.50
2	$N(24)-H(24A)\cdots S(1)$	0.890	3.010	3.676(2)	133.20
	$C(15)-H(15)\cdots C(22)$	0.950	2.865	3.766	158.70
	$C(15)-H(15)\cdots C(21)$	0.950	2.763	3.578	144.26
	$C(10)-H(10)\cdots C(26)$	0.950	2.826	3.300	111.85
4	C(19) - H(19) - S(2)	0.950	2.881	3.533	126.86
	$N(3)-H(3D)\cdots C(19)$	0.711	2.734	3.432	167.43
	C(10)-	0.980	2.865	3.797	159.41
	H(10B)···C(22)				
7	$C(15)-H(15A)\cdots N(2)$	0.929	2.450	3.375	173.04
8	C(10B)−H(8BA)····S	0.950	2.971	3.837	152.34
	C(1B)-	0.950	2.769	3.320	117.80
	$H(1BA) \cdot \cdot \cdot C(1A)$				
	C(1B)-	0.950	2.784	3.474	130.14
	$H(1BA) \cdot \cdot \cdot C(2A)$				
	C(1B)-	0.950	2.851	3.730	154.38
	$H(1BA) \cdot \cdot \cdot C(3A)$				
	C(1B)-	0.950	2.883	3.831	175.42
	$H(1BA) \cdot \cdot \cdot C(4A)$				
	C(1B)-	0.950	2.873	3.710	147.63
	$H(1BA) \cdot \cdot \cdot C(5A)$				
	C(1B)-	0.950	2.847	3.488	125.67
	$H(1BA) \cdot \cdot \cdot C(6A)$				
	N(3A)-	0.880	2.864	3.470	127.48
	$H(3AB) \cdot \cdot \cdot C(12A)$				
	N(3A)-	0.880	2.725	3.547	156.01
	$H(3AB) \cdot \cdot \cdot C(13A)$				
	C(14A)-	0.949	2.766	3.625	150.91
	H(14A)···C(9A)				
9	N(14)-	0.750	2.830	3.566(2)	167.80
	$H(14A) \cdots S(32)$	0.000	0.000	0.001(0)	450.00
	N(34) - H(34A) - O(1)	0.880	2.060	2.891(3)	158.20
	$O(1)-H(1B)\cdots S(32)$	0.960	2.850	3.811(3)	177.50

methanol formed a clear brown solution in each case which on slow evaporation yielded complexes of stoichiometry, $[Ni(\kappa^2-N,$ $S-HL_{2}$ (HL⁻ = HL¹, **1**; HL², **2**). Here, the deprotonation of $-N^{2}H$ group occurred and the ligands coordinate as uninegative bidentate anions. The same products were obtained when reactions were performed in 1:1 M ratios. The PPh₂-CH₂-PPh₂ did not show coordination to Ni^{II} in complexes **1** and **2**. Reactions of NiCl₂ with the thio-ligands, H_2L^3 , H_2L^4 and H_2L^5 in the presence of Et₃N base using PPh₂-CH₂-PPh₂ as co-ligand gave clear solutions in each case and from which crystals of dinuclear complexes, $[Ni_2(\kappa^3-0, N^3, S-$ L)₂(μ -P, P-PPh₂-CH₂-PPh₂)] (L = L³, **3**; L⁴, **4**; and L⁵, **5**) were obtained. For R^2 = Me, the addition of PPh₂-CH₂-PPh₂ to the brown suspension of {Ni(κ^3 -O, N³, S-L)} (L²⁻ = L⁶, L⁷) in CH₃CN (obtained from Ni(OAc)₂ and the thio-ligands, H_2L^6 , H_2L^7) formed reddish brown solution from which complexes of stoichiometry. [Ni(κ^3 -O, N³, S–L)(κ^{1} -P–PPh₂–CH₂–PPh₂)] (L²⁻ = L⁶, **6**; L⁷, **7**) were obtained. Further, reactions of 2-Phpy with {Ni(κ^3 -O, N³, S-L⁵)} in acetonitrile gave crystals of composition, $[Ni(\kappa^3-0, N^3, S-L^5)(\kappa^1-N-2-$ Phpy)] 8. This coordination behavior is similar to that of pyridine [20]. Reactions of CoCl₂ with heterocyclic thiosemicarbazones (H_2L^8, H_2L^9) in the presence of triethyl amine base was anticipated to form tetrahedral complexes of composition, $[Co(\kappa^2-N, S-HL)_2]$. However, during crystallization, Co^{II} got oxidized to Co^{III} and yielded octahedral complexes of stoichiometry, $[Co(\kappa^2-N, S-HL)_3]$ $(HL^{-} = HL^{8}, 9; HL^{9}, 10).$


IR spectroscopy revealed deprotonation of $-N^2H$ – group in complexes **1–10**. In addition, the –OH group is also deprotonated during formation of complexes **3–8** which is further confirmed by the single crystal X-ray crystallography (vide infra). The diagnostic v(C-S) bands (745–771 cm⁻¹) show low energy shift vis-à-vis the free ligands (809–821 cm⁻¹) and suggested that thio-ligands

Scheme 2.

coordinate to the metal centers through thiolato sulfur atoms [17,20]. The presence of tertiary phosphine is supported by its characteristic $v(P-C_{Ph})$ bands in the range, 1097–1100 cm⁻¹ (see Section 2).

3.2. Crystal structures

The crystal structure of $[Ni(\kappa^2-N, S-HL^1)_2]$ **1** complex has shown that two uninegative (HL¹)⁻ ligands chelate to nickel(II) metal center through azomethine nitrogen (N) and thiolato sulfur (S) atoms in trans-N₂S₂ fashion forming the five membered rings (Fig. 1). The bond distances, Ni-N1 {1.906(3) Å} and Ni-S1 {2.182(1) Å}, are similar to those in a related complex, $[Ni(\kappa^2-N, S-HL^9)_2]$ {Ni-N, 1.926(2); Ni–S, 2.175(9) Å [17,40]. The parameters, C8–S1 bond length, the N1...C8 distance and the N1-N2-C8 angle, have been used for distinguishing between anionic and neutral coordinated thiosemicarbazone ligands. These parameters {angle N1-N2-C8, 110.64°; distance N1···C8, 2.231 Å and bond length C8–S1, 1.74 Å} are similar to those for complexes with anionic thiosemicarbazone ligands reported in literature [40a]. Further C8-S1 bond distance $\{1.744(4) \text{ Å}\}$ shows a partial double bond character $\{C-S, A\}$ 1.81; C=S 1.62 Å) as observed earlier for such thiosemicarbazone complexes [1,40]. Trans angles, N–Ni–N and S–Ni–S {180}, suggest a square planar geometry with nickel(II) located on inversion center with perfectly coplanar NiSCN₂ planes.On changing R³ = Ph in place of Me at N¹ nitrogen in H₂L², again trans square planar complex, [Ni(κ^2 -N, S-HL²)₂] **2** has been obtained, which is similar to **1** (Fig. 2). In complex **2**, the trans bond angles N–Ni–N and S–Ni–S are 178.62(8)° and 175.89(3)° respectively suggesting a slight deviation from the regular square planar geometry. Other bond parameters are similar to those found in **1**.

For $R^2 = H$ at C^2 carbon and $R^3 = Et$ at N^1 atom, H_2L^4 , the dinuclear complex, $[Ni_2(\kappa^3-0, N, S-L^4)_2(\mu-P, P-PPh_2-CH_2-PPh_2)]$ **4** has been obtained. Here, each nickel(II) ion is coordinated to a dinegative $(L^4)^{2-}$ thio-ligand through O, N and S atoms and two such three coordinated units are bridged by $PPh_2-CH_2-PPh_2$ ligand (Fig. 3). The bond distances around two nickel centers are similar $\{Ni(1)-O(1), 1.845(1); Ni(1)-N(1), 1.889(2); Ni(1)-S(2), 2.122(6);$ Ni(1)-P(1), 2.197(5) Å}. These parameters are similar to those of complex, $[Ni(\kappa^3-0, N, S-L^3)(PPh_3)]$, reported in the literature [19]. The O, N and S donor atoms have formed six and five membered chelate rings with the bite angles, O(1)-Ni(1)-N(1) and N(1)-Ni(1)-S(2) of 95.62(6)° and 87.40(5)° respectively and are similar to those reported in the literature [19]. The trans bond angles O(1)-Ni(1)-S(2) and N(1)-Ni(1)-P(1) are 176.51(5)° and 174.49(5)° respectively and suggest a distortion from a regular

Fig. 1. Molecular structure of complex $[Ni(\kappa^2-N, S-HL^1)_2]$ **1** (Note: The carbon and nitrogen atoms are numbered differently in Chart 1 and Schemes 1–3 from those in molecular structures of **1**, **2**, **4**, and **7–9**).

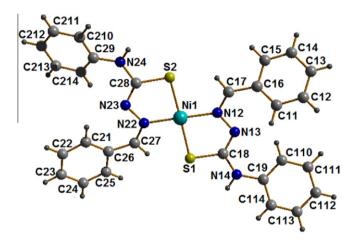


Fig. 2. Molecular structure of complex $[Ni(\kappa^2-N, S-HL^2)_2]$ 2.

square planar geometry. Further, Ni…Ni separation (5.573 Å) is much longer than twice the sum of the van der Waals radius of nickel atoms, 3.26 Å [41]. The introduction of methyl group (R² = Me in place of H) at C² carbon with R³ = Et, the thio-ligand H₂L⁷ formed a mononuclear complex, [Ni(κ^3 -O, N, S-L⁷)(κ^1 -P-PPh₂-CH₂-PPh₂)] **7**. In this complex, the dinegative thio-ligand (L⁷)²⁻ coordinated to the metal center through O, N and S donor atoms. The fourth coordination site is occupied by P atom of PPh₂-CH₂-PPh₂ co-ligand (Fig. 4). Unlike that in complex **4**, here one PPh₂ group is pendant. The bond distances, Ni-O(1) {1.838(2) Å}, Ni-N(1) {1.902(2) Å}, Ni-S {2.143(9) Å}, Ni-P(1) {2.196(8) Å} are close to those found in complex **4**. Trans angles {174.73(7), 176.82(7)°} suggest a distorted square planar geometry around the metal center.

The 2-pyridylphenyl co-ligand is coordinated to Ni(II) in complex, [Ni(κ^3 -O, N, S-L⁵)(κ^1 -N-2-Phpy)] **8**. Here, the dinegative thiosemicarbazone ligand (L⁵)²⁻ is bonded to the nickel(II) center through O, N, S donor atoms and formed six and five membered chelate rings (Fig. 5). It was expected that nickel(II) might metallate to 2-pyridylphenyl and form C, N-chelate bond or simply show coordination similar to pyridine. It however showed simple coordination by pyridyl nitrogen and formed a square planar complex (**8**) similar to pyridine complex [Ni(κ^3 -O, N, S-L³)(κ^1 -N-py] [20]. However, the bond parameters in **8** are slightly different than those found in pyridine complex in literature [20]. For example, the bond distance, Ni-O {1.853(8) Å}, is smaller and Ni-N_{2-Phpy} {1.930(9) Å} is longer {1.907(1) and 1.745(2) Å} [20]. The trans angles, 172.15(4)° and 170.40(3)°, suggest distorted square planar geometry.

Finally, X- ray crystal structure of complex, $[Co(\kappa^2-N, S-HL^8)_3]$. H₂O (**9**), shows that three uninegative (HL⁸)⁻ ligands are coordinated to cobalt(III) center via sulfur and azomethine nitrogen atoms (Fig. 6). The bond lengths Co-N_(azomethine) {1.954(2), 1.949(2), 1.973(2) Å} and Co-S {2.221(7), 2.231(7), 2.223(7) Å} are close to those observed in bis complex, $[CoL_2](NO_3)$ ·H₂O (L = pyridine-2-carbaldehyde-*N*-phenylethylthiosemicarbazonate) {Co-N, 1.885(5), 1.876(5); Co-S, 2.232(2), 2.204(2) Å} [42]. The C-S bond distances, (1.711(3), 1.722(3), 1.743(3) Å) are close to those found in the literature [42]. The trans angles, N(32)-Co(1)-S(12), 175.39(6)°; N(32)-Co(1)-S(32), 176.47(6)° and N(12)-Co(1)-S(22), 176.83(7)°, reveal a slight distortion from an octahedral geometry.

3.3. H-bonded networks

In complex **1**, the phenyl group present at C(7) carbon is not engaged in the intermolecular interactions and the polymeric

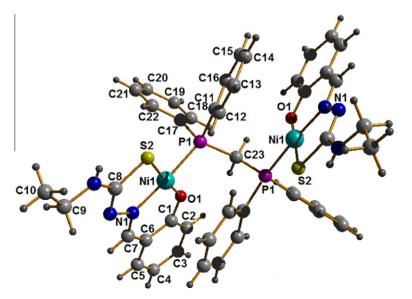


Fig. 3. Molecular structure of complex [Ni₂(κ³-O, N, S-L⁴)₂(μ-P, P-PPh₂-CH₂-PPh₂)] 4.

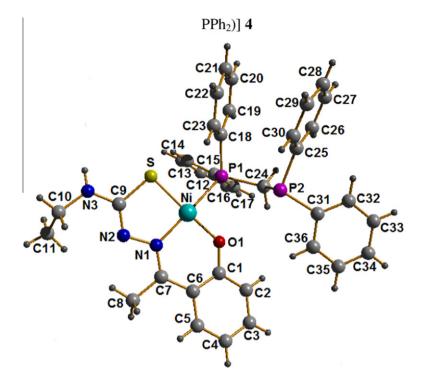
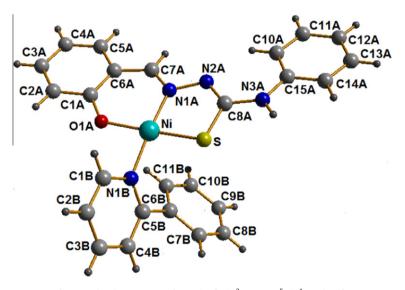
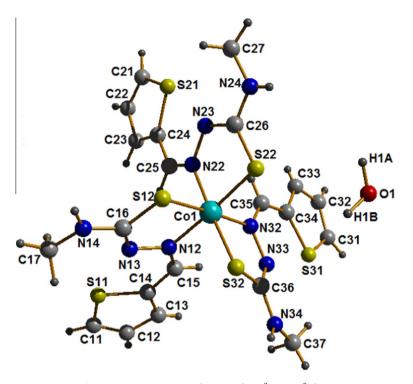



Fig. 4. Molecular structure of complex [Ni(κ^3 -O, N, S-L⁷)₂(κ^1 -P-PPh₂-CH₂-PPh₂)] 7.


Fig. 5. Molecular structure of complex [Ni(κ^3 -O, N, S-L⁵)₂(κ^1 -N-Phpy)] **8**.

network is formed via N(3)-H(31)···N(2)^{#1} (2.450 Å), C(9)-H(9C)···S(1)^{#1} (2.920 Å) and C(9)-H(9A)···Ni (2.620 Å) interactions between adjacent molecules (Fig. 7). Polymeric network of this complex shows the presence of cavities. In complex **2**, interactions between phenyl ring at C(17) carbon atom of one independent molecule with phenyl ring at C(27) carbon atom of the adjacent molecule {C(15)-H(15)··· π (C(22)), 2.865; C(15)-H(15)··· π (C(21)), 2.763 Å} led to the formation of 1D chain. Two adjacent 1D chains are connected via phenyl groups at N(14) and C(27) atoms {(C(26))··· π (C(110)), 3.300; C(10)-H(10)··· π (C(26)), 2.826 Å} which formed a 2D sheet (Fig. 8).

Packing diagram of complex **4** shows that 1D chain is formed by interactions between thioamide moiety of one independent

dinuclear unit with the phenyl group of PPh₂–CH₂–PPh₂ ligand of the adjacent dinuclear unit {C(19)–H(19)···S(2), 2.881; N(3)–H(3D)··· π (C(19)), 2.734 Å}. This 1D chain is linked with the similar chain through C(10)–H(10B)··· π (C(22)), 2.865 Å interaction and formed 2D sheet (Fig. 9). Complex **7** exists as a linear H-bonded polymer which is formed through intermolecular interactions between phenyl ring of PPh₂–CH₂–PPh₂ co-ligand and hydrazinic nitrogen atom, C(15)–H(15A)···N(2), 2.450 Å (Fig. 10).

In complex **8**, one molecule is connected with the adjacent molecule via C(10B)–H(8BA)···S, 2.971 and C(1B)–H(1BA)··· π (C(1A)), 2.769; C(1B)–H(1BA)··· π (C(2A)), 2.784; C(1B)–H(1BA)··· π (C(3A)), 2.851; C(1B)–H(1BA)··· π (C(4A)), 2.883; C(1B)–H(1BA)··· π (C(5A)), 2.873; C(1B)–H(1BA)··· π (C(6A)), 2.847 Å interactions, and formed

Fig. 6. Molecular structure of complex $[Co(\kappa^2-N, S-HL^8)_3]$ (9).

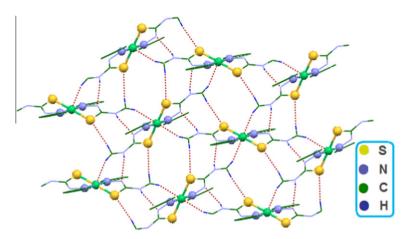


Fig. 7. Packing interactions in complex 1.

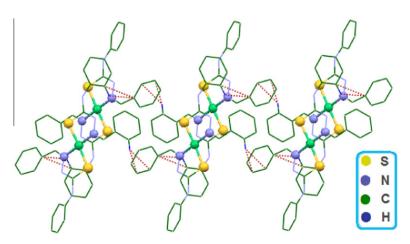


Fig. 8. Packing interactions in complex 2.

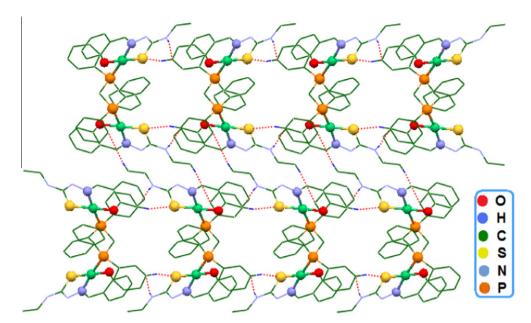


Fig. 9. Packing interactions in complex 4.

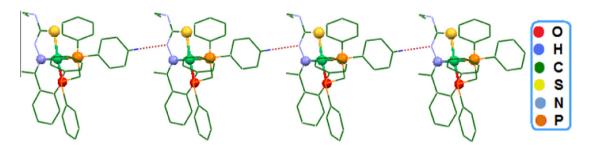


Fig. 10. The intermolecular interactions between adjacent molecules of complex 7.

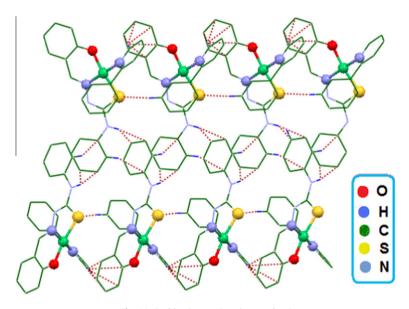


Fig. 11. Packing interactions in complex 8.

1D polymeric chain. Interactions between these 1D chains through phenyl ring and amino hydrogen $\{N(3A)-H(3AB)\cdots\}$

 $\pi(C(12A)), 2.864; N(3A)-H(3AB)\cdots\pi(C(13A)), 2.725; C(14A)-H(14A)\cdots\pi(C(9A)), 2.766 Å}$ formed 2D sheet (Fig. 11).

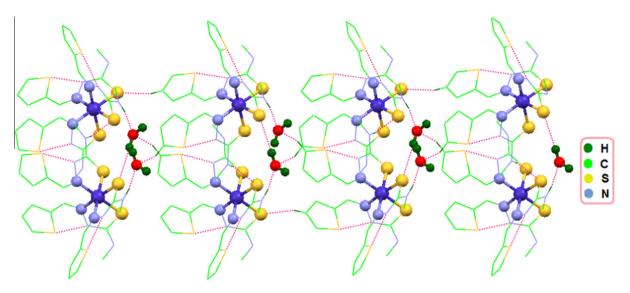


Fig. 12. Packing interactions in complex 9.

In complex **9**, thiophene ring is engaged in intramolecular interaction with deprotonated hydrazinic hydrogen, $S(11)\cdots N(13)$, 2.745; $S(21)\cdots N(23)$, 2.743; $S(31)\cdots N(33)$, 2.740 Å. One independent molecule interacts with the adjacent molecule either directly {N(14)–H(14A) $\cdots S(32)$, 2.830 Å} or through water molecule present in the crystal lattice {N(34)–H(34A) $\cdots O(1)$, 2.060; O(1)–H(1B) $\cdots S(32)$, 2.850 Å} and formed a dinuclear unit. Two such dinuclear units are connected through water molecule in the lattice via N(34)–H(34A) $\cdots O(1)$, 2.060 and C(11)–H(11) $\cdots O(1)$, 2.613 Å interactions and formed polymeric chain (Fig. 12).

3.4. Solution phase behavior

The ¹H NMR spectrum of the free thio-ligand shows a strong signal at δ 9.41 ppm, due to hydrazinic N²H hydrogen. The absence of this signal in complex **1** confirms the deprotonation of N²H hydrogen during complex formation [17]. Further, in this complex, signal due to N¹H proton at δ 5.03 ppm showed upfield shift vis-à-vis the free ligand (δ 7.49 ppm). The C²H signal merges with phenyl ring proton C⁴H and appears as doublet at δ 8.05 ppm. The N¹CH₃ protons appear as doublet at δ 3.00 ppm and show upfield shift relative to the free ligand (δ 3.27 ppm). Complex **2** showed a similar behavior (see Section 2).

In free ligand, H_2L^3 , signals due to OH and N²H groups appear at δ 10.95 and 9.61 ppm respectively, but in complex **3**, the disappearance of these proton signals suggested their deprotonation during complexation [20]. The N¹H proton signal at δ 4.91 ppm in complex showed upfield shift relative to the free ligand (δ 7.56 ppm). The signals of dppm ligand due to phenyl ring protons are present as multiplets at δ 7.15 ppm and –CH₂– protons as singlet at δ 2.86 ppm. The methyl group at N¹ nitrogen { δ 2.10 ppm} moved upfield relative to the free ligand { δ 3.12 ppm}. Complexes **4–8** also showed the similar behavior. The characteristic signals due to groups at N¹ and C² atoms of these complexes are listed in Section 2.

The most characteristic signal due to N²H group in the free ligands { δ 9.15, H₂L⁸; 10.80, H₂L⁹ ppm} is absent in complexes **9** and **10**, which revealed the deprotonation of this group during complexation [17]. The broad signal due to N¹H proton in complexes (**9**, δ 5.22; **10**, 5.25, ppm) showed upfield shift relative to the free ligands (δ 7.06, 6.48 ppm). Similarly, C²H signal at δ 7.56 (**9**), 8.53 (**10**) ppm, showed up- and down- field shifts vis-à-vis the free ligands, δ 7.93, 7.86 ppm. The ligand ring protons appear in the range, δ 7.63–6.59 ppm. The N¹HCH₃ methyl protons appear as a doublet at δ 3.25 (**9**), 3.09 (**10**) ppm.

The ³¹P NMR spectra of complexes **3–7** confirmed the different types of coordination behavior shown by PPh₂-CH₂-PPh₂ co-ligand. In complexes **3–5**, a single peak is observed at δ –127.74(**3**), –127.55(**4**), –126.61(**5**) ppm (coordination shift \approx 35) which demonstrated the equivalence of P atoms of the bridging PPh₂-CH₂-PPh₂ ligand [43]. However, complexes **6** and **7** showed two signals which supported the presence of non equivalent phosphorus atoms in these complexes. The presence of two different peaks is assigned as follows: the signal at δ –166.59 (**6**), –165.14 (**7**) ppm is due to pendant P atom and that at δ –127.73 (**6**), –122.46 (**7**) ppm is due to coordinated P atom of κ^1 -PPh₂-CH₂-PPh₂ in these complexes. The coordination shifts ($\Delta \delta$) are 34.94 ppm in **6** and 40.21 ppm in **7** [43].

4. Conclusion

Benzaldehyde thiosemicarbazones (H_2L^1, H_2L^2) have shown N³, S-chelation and formed only trans square planar nickel(II) complexes **1** and **2**, a behavior which is similar to that reported with 4-fluorobenzaldehyde thiosemicarbazone [19]. Salicylaldehyde thiosemicarbazones $(H_2L^3-H_2L^7)$ have formed dppm bridged dinuclear (**3–5**) complexes when R² substituent at C² was hydrogen and mononuclear (**6**, **7**) complexes with one PPh₂ group of dppm pendant when R² substituent at C² was methyl. The difference could be attributed to the enhanced Lewis basicity of thio-ligands coupled with steric effect of methyl group altering the mode of dppm ligand. 2-Pyridylphenyl in **8** behaves in the same way as does pyridine. Complexes **3–7** report first examples of nickel(II) complexes of thiosemicarbazones with a diphosphine as a co-ligand. The thioligands H₂L⁸ and H₂L⁹ have formed tris octahedral complexes **9** and **10** [1].

Acknowledgements

Financial assistance from CSIR, (Letter No. 09/254(0188)/2009-EMR-I), New Delhi is gratefully acknowledged.

Appendix A. Supplementary material

CCDC 863154–863159; contains the supplementary crystallographic data for complexes **1**, **2**, **4** and **7–9**. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.ica.2012.09.021.

References

- [1] T.S. Lobana, R. Sharma, G. Bawa, S. Khanna, Coord. Chem. Rev. 253 (2009) 977.
- [2] M. Akbar Ali, S.E. Livingstone, Coord. Chem. Rev. 13 (1974) 115.
- [3] M.J.M. Campbell, Coord. Chem. Rev. 15 (1975) 279.
- [4] S. Padhye, G.B. Kauffman, Coord. Chem. Rev. 63 (1985) 127.
- [5] D.X. West, S. Padhye, P.B. Sonawane, Struct. Bonding (Berlin, Ger.) 76 (1991) 4.
 [6] D.X. West, A.E. Liberta, S. Padhye, R.C. Chilkate, P.B. Sonawane, A.S. Kumbhar, R.G. Yerande, Coord. Chem. Rev. 123 (1993) 49.
- [7] J.S. Casas, M.S. Garcia-Tasende, J. Sordo, Coord. Chem. Rev. 209 (2000) 197.
- [8] J.S. Casas, M.S. Garcia-Tasende, J. Sordo, Coord. Chem. Rev. 193 (1999) 283.
- [9] A. Hartwig, T. Schwerdtle, Toxicol. Lett. 127 (2002) 47.
- [10] K.S. Kasprzak, F.W. Sunderman Jr., K. Salnikow, Mutat. Res. 533 (2003) 67.
- [11] M.B. Ferrari, F. Bisceglie, G. Pelosi, M. Sassi, P. Tarasconi, M. Cornia, S. Capacchi, R. Albertini, S. Pinelli, J. Inorg. Biochem. 90 (2002) 113.
- [12] F. Liang, P. Wang, X. Zhou, T. Li, Z.Y. Li, H.K. Lin, D.Z. Gao, C.Y. Zheng, C.T. Wu, Bioorg. Med. Chem. Lett. 14 (2004) 1901.
- [13] S.S. Matkar, L.A. Wrischnik, P.R. Jones, U. Hellmann-Blumberg, Biochem. Biophys. Res. Commun. 343 (2006) 754.
- [14] J. Garcia-Tojal, J.L. Pizarro, A. Garcia-Orad, A.R. Perez-Sanz, M. Ugalde, A.A. Diaz, J.L. Serra, M.I. Arriortua, T. Rojo, J. Inorg. Biochem. 86 (2001) 627.
- [15] L. Ze-Hua, D. Chun-ying, L. Ji-hui, L. Yong-jiang, M. Yu-Hua, Y. Xiao-Zeng, New J. Chem. 24 (2000) 1057.
- [16] (a) T.S. Lobana, G. Bawa, G. Hundal, M. Zeller, Z. Anorg. Allg. Chem. 634 (2008) 931;
 - (b) T.S. Lobana, G. Bawa, A. Castineiras, R.J. Butcher, M. Zeller, Organometallics 27 (2008) 175;

(c) T.S. Lobana, Rekha, R.J. Butcher, A. Castineiras, E. Bermejo, P.V. Bharatam, Inorg. Chem. 45 (2006) 1535;

- (d) T.S. Lobana, S. Khanna, G. Hundal, P. Kaur, B. Thakur, S. Attri, R.J. Butcher, Polyhedron 28 (2009) 1583:
- (e) T.S. Lobana, S. Khanna, R.J. Butcher, A. Hunter, M. Zeller, Inorg. Chem. 46 (2007) 5826;
- (f) T.S. Lobana, P. Kumari, R.J. Butcher, Inorg. Chem. Commun. 11 (2008) 11.
- [17] T.S. Lobana, P. Kumari, M. Zeller, R.J. Butcher, Inorg. Chem. Commun. 11 (2008) 972.
- [18] T.S. Lobana, P. Kumari, R. Sharma, A. Castineiras, R.J. Butcher, T. Akitsu, Y. Aritake, Dalton Trans. 40 (2011) 3219.
- [19] M.B. Ferrari, S. Capacchi, G. Reffo, G. Pelosi, P. Tarasconi, R. Albertini, S. Pinelli, P. Lunghi, J. Inorg. Biochem. 81 (2000) 89.
- [20] T.S. Lobana, P. Kumari, G. Hundal, R.J. Butcher, Polyhedron 29 (2010) 1130.
- [21] L.E. Nikolaeva, T.N. Tarkhova, N.V. Belov, Kristallografiya (Russ.) (Crystallogr. Rep.) 19 (1974) 746.

- [22] E. Gyepes, T. Glowiak, Proc. Conf. Coord. Chem. 11 (1987) 87.
- [23] M. Soriano-Garcia, R.A. Toscano, J. Valdes-Martinez, J.M. Fernanadez, Acta Crystallogr., Sect. C 41 (1985) 498.
- [24] A. Berkessel, G. Hermann, O.-T. Rauch, M. Buchner, A. Jacobi, G. Huttner, Chem. Ber. 129 (1996) 1421.
- [25] J. Valdes-Martínez, S. Hernandez-Ortega, V.B. Jimenez, Acta Crystallogr., Sect. E 58 (2002) m710.
- [26] J. Valdes-Martinez, S. Hernandez-Ortega, V.B. Jimenez, Acta Crystallogr., Sect. E 60 (2004) 42.
- [27] (a) R. Prabhakaran, R. Karvembu, T. Hashimoto, K. Shimizu, K. Natarajan, Inorg. Chim. Acta 358 (2005) 2093;
- (b) Z.-Y. Cao, Z.-P. Deng, S. Gao, Acta Crystallogr., Sect. E 63 (2007) m1961.
- [28] Z. Lu, C. White, A.L. Rheingold, R.H. Crabtree, Inorg. Chem. 32 (1993) 3991.
- [29] (a) M. Bonamico, G. Dessy, V. Fares, L. Scaramuzza, Cryst. Struct. Commun. 4 (1975) 629;
 - (b) R.P. John, A. Sreekanth, M.R.P. Kurup, S.M. Mobin, Polyhedron 21 (2002) 2515;
 - (c) J. Zhao, Y. Zhang, Acta Crystallogr., Sect. E 64 (2008) m1355;
- (d) M. Hakimi, R. Takjoo, V. Erfaniyan, E. Schuh, F. Mohr, Trans. Met. Chem. 35 (2010) 959.
- [30] T.S. Lobana, A. Sanchez, J.S. Casas, A. Castineiras, J. Sordo, M.S. Garcia-Tasende, E.M.V. Lopaz, J. Chem. Soc., Dalton Trans. (1997) 4289.
- [31] G.M. Sheldrick, Acta Crystallogr., Sect. A 64 (2008) 112.
- [32] G.M. Sheldrick, SHELXTL-PC, release 5.03, Siemens Analytical X-ray Instruments Inc., Madison, WI, USA, 1995.
- [33] G.X. Win, L.J. Farrugia, J. Appl. Crystallogr. 32 (1999) 837.
- [34] G.M. Sheldrick, SADABS, Program for Empirical Absorption Correction of Area Detector Data, University of Goettingen, Germany, 1997.
- [35] Oxford Diffraction, CrysAlisPro CCD and CrysAlisPro RED Oxford Diffraction Ltd., Yarnton, England, 2009.
- [36] Bruker, SMART and SAINT, Area Detector Control and Integration Software, Bruker Analytical X-ray Instruments Inc., Madison, WI, USA, 1997.
- [37] A.J.C. Wilson, International Tables for Crystallography, vol. C, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995.
- [38] A.L. Spek, J. Appl. Crystallogr. 36 (2003) 7.
- [39] E. Keller, SCHAKAL-97, A Computer Program for the Graphic Representation of Molecular and Crystallographyc Models, University of Freiburg, Germany, 1997.
- [40] (a) P.S. Zhao, H.Y. Wag, J. Song, L.D. Lu, Struct. Chem. 21 (2011) 977;
 (b) H.Y. Wang, P.S. Zhao, J. Song, R.Q. Li, J. Chem. Cryst. 41 (2011) 379;
 (c) R. Gil-Gercia, R. Zichner, V. Diez-Gomez, B. Donnadieu, G. Madariaga, M. Insausti, L. Lezama, P. Vitoria, M.R. Pedrosa, J. Garcia-Tojal, Eur. J. Inorg. Chem. (2010) 4513.
- [41] J.E. Huheey, E.A. Keiter, R.L. Keiter, Inorganic Chemistry Principles of Structure and reactivity, fourth ed., Harper Collins, New York, 1993.
- [42] P.F. Rapheal, E. Manoj, M.R.P. Kurup, E. Suresh, Polyhedron 26 (2007) 607.
- [43] T.S. Lobana, G. Bawa, G. Hundal, R.J. Butcher, A. Castineiras, Z. Anorg. Allg. Chem. 635 (2009) 1447.