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Abstract—The synthesis of N,N 0-trisubstituted 1,2-diamines can be achieved by simple reduction of an aminal derived from (1R,2R)-
diaminocyclohexane. We comment on the scope and limitation of this reduction and discuss its application towards the synthesis of
unsymmetrical N,N 0-tetrasubstituted 1,2-diamines.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The synthesis of enantiomerically pure symmetrical1 and
unsymmetrical2 N,N 0-tetrasubstituted 1,2-diamines such
as 1 and 2 are well known (Scheme 1). By comparison,
the synthesis of cyclic 1,2-diamines,3 like 3 is much less
documented (Scheme 1), and reports into the synthesis
of unsymmetrically trisubstituted and tetrasubstituted
1,2-diamines, such as 4 and 5, derived from the corre-
0040-4039/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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Scheme 1.
sponding 1,2-diamine [e.g., (R,R)-6] are rare (Scheme
1).4

Alexakis has recently reported5 an elegant approach for
the synthesis of trisubstituted 1,2-diamines involving
reduction of an aminal (R,R)-8 [derived from the enan-
tiomerically pure 1,2-diamine (R,R)-7] using sodium
borohydride to give the required trisubstituted 1,2-di-
amine (R,R)-9 in excellent yield (Scheme 2).

We have recently become interested in the synthesis of
enantiomerically pure symmetrical6 and unsymmetri-
cal6,7 N,N 0-tetrasubstituted 1,2-diamines [e.g., (R,R)-
10, (R,R)-11 and (R,R)-12] derived from the readily
available (1R,2R)-diaminocyclohexane (R,R)-6 (Scheme
3). We have previously focused6,7 on the use of direct N-
alkylation using SN2 active electrophiles, such as methyl
iodide, benzyl bromide and allyl bromide mediated by
lithium hydroxide monohydrate (LiOHÆH2O) as a stoi-
chiometric base to give tetrasubstituted 1,2-diamines in
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good yield. We now report an extension to our method-
ology for the synthesis of N,N 0-trisubstituted 1,2-diam-
ines, and we discuss their functionalisation as an
efficient method for the formation of unsymmetrical
N,N 0-tetrasubstituted 1,2-diamines.

We initially focused our attention towards the synthesis
of trisubstituted 1,2-diamine (R,R)-15 (Scheme 4). We
chose to study the simple reduction of aminal (R,R)-
14—synthesised by condensation8 of benzaldehyde with
the N,N 0-dibenzyl 1,2-diamine (R,R)-139 in 90% yield—
as a potential method for constructing the trisubstituted
1,2-diamine (R,R)-15 (Scheme 4). Simple addition of the
aminal (R,R)-14 to a stirred solution of sodium boro-
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hydride in absolute ethanol gave, after 12 h the required
N,N 0-tribenzyl 1,2-diamine (R,R)-15 in 79% yield
(Scheme 4).

With this 1,2-diamine (R,R)-15 in hand, we next investi-
gated its direct N-alkylation using our standard reaction
protocol6 (e.g., alkylating agent and LiOHÆH2O in
dichloromethane) as a method for synthesising N,N 0-
tetrasubstituted 1,2-diamines. We first used benzyl
bromide 16 as the alkylating agent as this would lead to
the known symmetrically tetrasubstituted 1,2-diamine
(R,R)-176 (Scheme 5). Addition of benzyl bromide 16
to a stirred solution of trisubstituted 1,2-diamine
(R,R)-15 and LiOHÆH2O in dichloromethane gave, after
12 h, the C2-symmetric N,N 0-tetrabenzyl 1,2-diamine
(R,R)-176 in good yield (Scheme 5). We next focused
on the use of substituted bromides 18, 20 and 26, and
chlorides 22 and 24, in an attempt to synthesise unsym-
metrically N,N 0-tetrasubstituted 1,2-diamines (Schemes
6–8). Addition of the trisubstituted 1,2-diamine (R,R)-
15 to a stirred solution of lithium hydroxide mono-
hydrate and bromides 18, 20 and 26, and chlorides 22
and 24 in dichloromethane gave, after 12 h, the tetrasub-
stituted 1,2-diamines (R,R)-19, (R,R)-21, (R,R)-23,
(R,R)-25 and (R,R)-27 in moderate to good yield
(Schemes 6–8). This protocol appears to be efficient
for a wide variety of structurally related activated bro-
mides 16, 18, 20 and 26 and chlorides 22 and 24.

We next turned our attention towards the synthesis of
unsymmetrically trisubstituted 1,2-diamines (R,R)-34–
39 by reduction of the corresponding aminals (R,R)-
28–33 (Scheme 9). These reductions proceed smoothly
leading to the required trisubstituted 1,2-diamines
(R,R)-34–38 in good yield. However, for the remaining
aminal (R,R)-33, reduction to give the related 1,2-di-
amine (R,R)-39 did not occur. This may presumably
be due to the electron-withdrawing nitro-substituent
disfavouring formation of the intermediate (positively
charged) iminium ion.

We next studied the alkylation of these unsymmetrically
N,N 0-trisubstituted 1,2-diamines as a method for the
formation of unsymmetrically N,N 0-tetrasubstituted
1,2-diamines. Addition of these trisubstituted 1,2-diam-
ines (R,R)-34–37 to a stirred solution of lithium hydrox-
ide monohydrate and bromides 16 and 26 in
dichloromethane, gave the required tetrasubstituted
1,2-diamines (R,R)-40, (R,R)-42 and (R,R)-44, and
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(R,R)-41, (R,R)-43, (R,R)-45, (R,R)-46 and (R,R)-47 in
good yield (Schemes 10 and 11).

We next probed the structural nature of the parent
N,N 0-disubstituted diamine to investigate the scope
and limitations of this methodology. We first studied
the synthesis of trisubstituted 1,2-diamine (R,R)-50
derived from the known N,N 0-di-2-methoxybenzyl 1,2-di-
amine (R,R)-4810 (Scheme 12). Addition of benz-
aldehyde to 1,2-diamine (R,R)-48 gave the aminal
(R,R)-49 (in 76% yield) and reduction with sodium
minal
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borohydride in absolute ethanol gave the required tri-
substituted 1,2-diamine (R,R)-50 in 46% yield. This
was converted to the unsymmetrically N,N 0-tetrasubsti-
tuted 1,2-diamine (R,R)-51 in 94% yield by simple addi-
tion of allyl bromide 26 and lithium hydroxide
monohydrate in dichloromethane (Scheme 12).

In addition, we studied the use of N,N 0-difuryl 1,2-
diamine (R,R)-52 as our parent disubstituted 1,2-diam-
ine (Scheme 13). The corresponding aminal (R,R)-53
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was efficiently synthesised in 96% yield by condensation
with benzaldehyde. However, reduction using sodium
NaBH4
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borohydride under our standard conditions proceeded
slowly to give the trisubstituted 1,2-diamine (R,R)-54
in low yield. However, this 1,2-diamine (R,R)-54 was
efficiently converted to the required unsymmetrical
tetrasubstituted 1,2-diamines (R,R)-55–57 by simple
addition to a solution of lithium hydroxide mono-
hydrate and bromides 18 and 26, and chloride 22 in
dichloromethane (Scheme 14).

In conclusion, we report an efficient and practical route
for the synthesis of tri- and tetrasubstituted 1,2-diamines
[e.g., (R,R)-15 and (R,R)-27] derived from readily avail-
able N,N 0-disubstituted 1,2-diamines [e.g., (R,R)-13].
From this study, it appears the structural nature of the
substituents present in the trisubstituted 1,2-diamines
(R,R)-15, (R,R)-34–38, (R,R)-50 and (R,R)-54 plays lit-
tle or no role within formation of these tetrasubstituted
1,2-diamines (R,R)-17, (R,R)-19, (R,R)-21, (R,R)-23,
(R,R)-25, (R,R)-27, (R,R)-40–47, (R,R)-51 and (R,R)-
55–57. However, reduction of the corresponding aminal
was found to be dependent on the structural nature of
the N,N 0-substituents. The presence of an electron defi-
cient group [e.g., a 4-nitrobenzyl substituent in (R,R)-
33 and a furyl ring in (R,R)-53] appears to disfavour
formation of the intermediate iminium ion and conse-
quently lowers the rate of reduction. These particular
tri- and tetrasubstituted 1,2-diamines are valuable
synthetic products as related 1,2-diamines11 have been
shown to be useful chiral mediators for a wide variety
of important stereoselective transformations.12
2. Representative experimental procedures

2.1. (�)-2-Phenyl-1,3-dibenzyloctahydrobenzoimidazole
(R,R)-14

Benzaldehyde (1.43 g, 1.37 mL, 13.5 mmol) was added
to a stirred solution of N,N 0-dibenzyldiaminocyclohex-
ane (R,R)-13 (3.96 g, 13.5 mmol) in absolute ethanol
(20 mL). The resulting solution was stirred for 2 h.
The reaction solvent was removed under vacuum to
give the 2-phenyl-1,3-dibenzyloctahydrobenzoimidazole
(R,R)-14 (4.64 g, 90%) as a yellow oil; ½a�22D �45.5 (c
1.0, CHCl3); dH (270 MHz, CDCl3): 7.20–7.00 (15H,
br m, 15 · H; 3 · Ph), 4.59 (1H, s, NCHN), 3.81 (1H,
d, J 13.8 Hz, CHAHBPh), 3.64 (1H, d, J 13.8 Hz,
CHAHBPh), 3.53 (1H, d, J 14.6 Hz, CHCHDPh), 3.28
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(1H, d, J 14.6 Hz, CHCHDPh), 2.79 (1H, br m, NCH),
2.47 (1H, br m, NCH), 1.73 (4H, br m, 4 · CH) and
1.21 (4H, br m, 4 · CH); dC (100 MHz, CDCl3): 129.8,
129.0, 128.5, 128.2, 127.8, 127.5, 127.0 and 126.3
(8 · CH; 3 · Ph) 85.7 (NCN), 68.6 (NCH2Ph), 67.5
(NCH2Ph), 56.4 (NCH), 52.3 (NCH), 30.5 (CH2), 29.9
(CH2) and 24.5 (2 · CH2).

2.2. (�)-(R,R)-N,N,N 0-Tribenzyl-1,2-diaminocyclo-
hexane 15

Sodium borohydride (2.27 g, 60.6 mmol) was cautiously
added to a solution of aminal (R,R)-14 (4.64 g,
12.1 mmol) in ethanol (50 mL). The resulting solution
was stirred for 1 h at room temperature and reflux for
a further 12 h. The solvent was removed under vacuum.
The residue was dissolved in dichloromethane (20 mL).
Dilute aqueous HCl (1 M, 3 mL) was added dropwise
until the effervescence ceased. The organic layer was
separated, dried over MgSO4 and evaporated under
reduced pressure to give (�)-(R,R)-N,N,N 0-tribenzyl-
1,2-diaminocyclohexane 15 (3.67 g, 79%) as a yellow
oil; ½a�22D �46.2 (c 2.9, CHCl3); mmax (NaCl)/cm

�1

3301 (N–H), 2804, 1604, 1496, 1454, 1311 and 1026;
dH (270 MHz, CDCl3): 7.22–7.15 (15H, m, 15 · CH;
3 · Ph), 3.87 (1H, d, J 13.9 Hz, CHAHBPh), 3.74 (2H,
d, J 13.7 Hz, 2 · CHAHBPh), 3.51 (1H, d, J 13.9 Hz,
CHAHBPh), 3.40 (2H, d, J 13.7 Hz, 2 · CHAHBPh),
2.49 (2H, br m, 2 · NCH), 2.12 (1H, m, CH), 2.01
(1H, m, CH), 1.80 (2H, m, 2 · CH), 1.67 (1H, br s,
NH) and 1.20 (4H, br m, 4 · CH); dC (67.5 MHz,
CDCl3): 141.0, 140.0, 130.0, 129.1, 128.8, 128.4, 128.2,
127.8, 127.6, 127.4, 126.9 and 126.6 (12 · C; 3 · Ph),
62.1 (CN), 57.9 (CN), 53.8 (CN), 53.6 (CN), 51.5
(CN), 31.8, 25.8, 24.7 and 22.8 (4 · CH2).
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