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The reaction of cyclooctatetraene with 1,3-diphenylisobenzofuran afforded two kinds of 1:1 [27+4n]-

cycloadducts, a cage-type 1:1 cycloadduct and two classes of 1:2 cycloadducts.

The cage-type compound was

formed from one of the [2n+47n]-cycloadducts via an unprecedented second [2r+47]-cycloaddition reaction in

which the double bond of the benzene moiety acted as a dienophile.
cyclooctatetraene-1,2-dicarboxylate gave a 1:1 [27n+47n]-cycloadduct and a 1:2 cycloadduct.

compound was formed.

Cyclooctatetraene (1) is known to react either as a
dienophile (2rn-component)!) or as a diene (4n-
component) in thermal [27n+47]-cycloaddition reac-
tions.? Many papers have been published which dis-
cuss cycloaddition reactions in which 1 acts as a diene;
the mechanisms of these reactions have been discussed
in detail. However, examples of cycloadditions in
which 1 acts as a dienophile are relatively few in
number.

Thermal cycloaddition reactions of benzene have
been researched extensively, and it is known that
benzene acts only as a diene in the Diels-Alder reac-
tion.?) We are unaware of any thermal [2n+47n]-
cycloadditions in which the benzene moiety reacts as a
dienophile.

As a part of our research on the cycloaddition reac-
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tions of cyclic olefins,? we have studied the addition
reactions of two cyclooctatetraenes with 1,3-diphenyl-
isobenzofuran (2) and have found novel reactions in
which 1 and the benzene moiety both behave as dieno-
philes. We now wish to report on the details of this
investigation.?

Results and Discussion

A solution of 1 and an equimolar amount of 2 in
benzene was heated at 200°C for 72 h in a sealed
ampule. A chromatographic separation of the com-
ponents of the reaction mixture on silica gel afforded
two adducts 3 and 4 in 28 and 11% yield respectively.
In the same reaction, but under milder conditions
(100°C for 26 h), 3 and three different cycloaddition
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products 5, 6, and 7 were obtained in 3, 4, 6, and 30%
yield, respectively. Dimethyl cyclooctatetraene-1,2-
dicarboxylate (8) gave two cycloadducts 9 and 10 in 9
and 12% yields, respectively, in a related sequence of
reactions.

The elemental analyses and the molecular ion peaks
in the mass spectra showed that 3, 5, and 6 were 1:1
adducts of 1 and 2, while 4 and 7 were proven to be 1:2
adducts of 1 and 2, respectively.

The structure of 3 was determined mainly on the
basis of its NMR spectral properties through the use of
double and triple resonance techniques, as well as
from the following facts. The reaction of 3 with 2
and dimethyl acetylenedicarboxylate gave 1 : 1 adducts
4 and 11, respectively,® indicating that 3 has an iso-
lated olefinic bond and a conjugated diene system.
The structure of 3 was finally confirmed by single-
crystal X-ray analysis.6?

The structure of 7 was determined mainly on the
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basis of its NMR spectral properties, employing dou-
ble and triple resonance techniques. The structure of
7 was further supported by a comparison of the
1H NMR spectral data of 7 with those of the analogous
compound 12, whose structure had been determined
earlier by single-crystal X-ray analysis.®

The structures of 5 and 6 were determined on the
basis of their NMR spectral properties and by their
chemical behaviors. Upon heating at 130°C, 5 gave
3 and 2 in 22 and 19% yields, respectively, accompa-
nied by the recovery of 5in 31% yield. The formation
of 2 is the result of a retro-Diels-Alder reaction of 5,
and the formation of 3 is the result of an intramolecu-
lar [27+47]-cycloaddition reaction.

The reaction of 6 with three molar equivalents of 2
in xylene at 110°C for 3 h afforded 7 in quantitative
yield. The reversible nature of this cycloaddition
reaction was demonstrated when 7 was maintained at
140°C for 24 h in xylene. At the end of this period,
the reaction mixture contained 6 and unreacted 7 in
yields of 57 and 40%. Under these reaction condi-
tions, no interconversion between 5 and 6 was
observed.

The structure of 10 was deduced on the basis of the
NMR spectral properties observed using double and

Fig. 5.
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triple resonance techniques and by a close comparison
of the THNMR data of 10 with those of 7. The
structure of 9 was also deduced mainly on the basis of
its TH NMR spectral properties and by the observation
that heating of a chloroform solution of 10 at 60 °C for
6 h afforded 9 in 21% yield accompanied by the recov-
ery of 10 (57%).

It is of interest to explore the series of reactions
described above from a mechanistic point of view. As
indicated, a [2n+47]-cycloaddition of 1 to 2 formed
primary products 5 and 6. 1,3-Diphenylisobenzo-
furan (2) is known to be a powerful 47 component in
Diels-Alder reactions. As a result, it is not surprising
that 2 acted as the diene and that the role of 1 was
changed from its usual role of diene to that of the
dienophile (2r component). Similar conclusions can
be drawn for the cycloaddition reaction of 8 to 2 to
form9. Again, 2 played the role of the 47 component
while 8 took on the unusual role of the 27 component
in the Diels-Alder reaction.?

The cyclohexadiene moiety of both 6 and 9 under-
went a second reaction with 2 to form 2:1 adducts 7
and 10, respectively. Interestingly, 2 again served as
the 47 component while the 1,3-cyclohexadiene sys-
tem provided the 27 component.

The formation of 3 from 5 is considered to have
proceeded via an intramolecular [2n+47]-cycloaddi-
tion where the benzene moiety acted as a 2r compo-
nent. Benzene is known to react as a 47 component
in thermal [27-+47n]-cycloaddition reactions with acet-
ylene and ethylene derivatives to give barrelene and
dihydrobarrelene derivatives, respectively.® It is also
well-known that benzene reacts as a 2z component in
photoinduced [27+2n]-cycloaddition reactions with
acetylenes to give cyclooctatetraenes!® and reacts as a
47 component in photoinduced [47+47]-cycloaddi-
tion reactions with conjugated dienes to give
bicyclo[4.2.2]decatrienes. 100

However, we are unaware of any reactions in which
the benzene ring acts as a 2z component in thermal
[2n+4m]-cycloaddition reactions. We believe that the
isomerization of 5 to 3 constitutes the first example of
a thermal [2n+47]-cycloaddition reaction where ben-
zene reacts as a 2 component. The forced proximity
of the 2p-orbitals of the benzene moiety to the 2p-
orbitals of the ends of the butadiene moiety in 5 is
considered to account for the reaction.1V
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Experimental

All melting points are uncorrected. HNMR spectra
were measured with a Varian HA 100 or a Hitachi R-20B
spectrometer with tetramethylsilane as an internal standard.
UV and IR spectra were measured with Hitachi 220A and
DS-701G spectrometers, respectively. Mass spectra were
measured with a Hitachi M-52 spectrometer. Wakogel C-
200 and Wakogel B5F were used for column and thin-layer
chromatography, respectively.

Reaction of Cyclooctatetraene (1) with 1,3-Diphenyliso-
benzofuran (2) at 200°C. A mixture of 1 (0.83 g, 80 mmol)
and 2 (2.18 g, 81 mmol) in benzene (25 ml) was heated at
200°C for 72 h in a sealed ampule. After evaporation of the
solvent the tarry residue was chromatographed on a silica-
gel column to give crystalline 3 (844 mg, 28%) by elution
with petroleum ether-benzene (1:1) and crystalline 4 (582
mg, 11%) by elution with petroleum ether-benzene (2:3).
Recrystallization of 3 and 4 from ethyl acetate gave pure
samples with the properties described.

3: mp 217—218°C. Found: C, 89.85; H, 5.84%. Calcd
for CasH220: C, 89.84; H, 5.88%. MS m/z (rel intensity): 374
(M™, 13), 269 (6), 220 (100), 191 (7), 156 (65). UV (EtOH):
275 nm (loge, 3.51). IR (KBr): 3050, 2910, 1600 cm-l.
IHNMR (CDCls): 6=2.57 (2H, m, H.), 3.01 (2H, m, Hy), 3.20
(2H, m, H.), 4.59 (2H, m, Ha), 5.50 (2H, m, H.), 6.27 (2H, m,
Hi), 7.2—7.5 (10H, m, Ph).

4: mp>300°C. Found: C, 89.18; H, 5.48%. Calcd for
CasH36O2: C, 89.41; H, 5.63%. MS m/z (rel intensity): 346
(2), 283 (3), 270 (12), 220 (100), 185 (4). UV (EtOH): 265 nm
(loge, 3.70), 272 (3.71), 284 (3.65). IR (KBr): 3030, 2920,
1600 cm-1. 'HNMR (CDCls): 6=2.03 (2H, m, H.), 2.38
(2H, m, Hy), 2.42 (2H, m, H.), 2.76 (2H, m, Hq), 4.46 (2H, m,
H.), 5.67 (2H, m, Hy), 6.9—7.7 (24H, m, Ph).

Reaction of Cyclooctatetraene (1) with 1,3-Diphenyliso-
benzofuran (2) at 100°C. A solution of 1 (1.00 g, 96 mmol)
and 2 (2.60 g, 96 mmol) in benzene (30 ml) was heated at
100°C for 26 h in a sealed ampule. After evaporation of the
solvent the tarry material was chromatographed on a silica-
gel column to give crystalline 5 (144 mg, 3.9%) by elution
with petroleum ether-benzene (7:3), crystalline 6 (206 mg,
5.6%), crystalline 3 (114 mg, 3.1%), and crystalline 7 (1900
mg, 30%) eluted in this order with petroleum ether-benzene
(6:4). These crystalline compounds were purified by
recrystallization from ethyl acetate and had the following
properties.

5: mp 173—174°C. Found: C, 89.79; H, 5.93%. Calcd
for CasH220: C, 89.84; H, 5.88%. MS m/z (rel intensity): 374
(M, 3.2), 296 (8.1), 283 (17.5), 270 (100), 241 (11), 164 (16).
UV (EtOH): 266 nm (log ¢, 3.70), 273 (3.72). IR (KBr): 3030,
2910, 1605 cm~t. 'HNMR (CDCls): 6=2.67 (2H, m, H.),
3.03 (2H, m, Hy), 5.48 (4H, m, H,, Hy), 6.9—7.7 (14H, Ph).

6: mp 176—177°C. Found: C, 89:72; H, 6.16%. Calcd
for CasH220: C, 89.84; H, 5.88%. MS m/z (rel intensity): 374
(M, 0.5), 356 (3), 296 (23), 283 (37), 270 (100), 241 (20), 165
(23). UV (EtOH): 266 (loge, 3.66), 273 (3.43). IR (KBr):
3030, 2910, 1605 cm~1. 'HNMR (CDCls): 6=2.08 (2H, m,
H.), 3.31 (2H, m, Hs), 5.71 (4H, m, H., Hq), 6.9—7.6 (14H, m,
Ph).

7: mp 203—204°C. Found: C, 89.42; H, 5.55%. Calcd
for CyHs602: C, 89.41; H, 5.63%. MS m/z (rel intensity):
296 (2.4), 283 (28), 270 (100), 241 (40), 155 (96). UV (EtOH):
265 nm (loge, 3.73), 272 (3.50). IR (KBr): 3030, 2910, 1605
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cm~l. THNMR (CDCls): 6=0.77 (m, Ha.), 1.37 (m, H), 2.66
(m, He), 3.04 (m, Hy), 3.20 (m, H.), 3.53 (m, Hy), 5.48 (m, H,),
5.80 (m, Hy), 6.48 (m, H;), 6.8—7.7 (27H, m, Ph). Coupling
constants (Hz): Ja=9, Jo=4, J&s=3, Jan=2, Jee=10, Jb.=6,
]d[=10, ]ﬂ.=4, ]ghzll‘

Reaction of Dimethyl Cyclooctatetraene-1,2-dicarboxylate
(8) with 1,3-Diphenylisobenzofuran (2). A mixture of 8
(2.00 g, 91 mmol) and 2 (2.45 g, 91 mmol) in xylene (25 ml)
was heated at 185°C for 20 h. After evaporation of the
solvent, the tarry residue was chromatographed on a silica-
gel column to give crystalline 9 (386 mg, 8.7%) by elution
with petroleum ether-benzene (2:3) and crystalline 10 (822
mg, 12%) by elution with benzene. Recrystallization from
ethanol and benzene gave pure 9 and 10, respectively, with
the following properties.

9: mp 137—138°C. Found: C, 78.30; H, 5.51%. Calcd
for Cs2H260s: C, 78.35; H, 5.34%. MS m/z (rel intensity):
490 (M™, 0.7), 283 (10.3), 270 (100), 220 (32), 160 (60). UV
(EtOH): 250 nm (loge, sh, 3.30). IR (KBr): 3030, 2970, 1730
cm-1. 'HNMR (CDCls): 6=2.86 (m, H.), 2.95 (m, Hy), 3.12
(m, He), 3.34 (m, Ha), 3.48 (3H, s), 3.70 (3H, s), 5.71 (dd, H.),
6.10 (d, Hs), 7.0—7.8 (14H, m, Ph). Coupling constants
(Hz): J=2, Ja=3, Jae=4, Joa=3, Je«a=T, J«=10.

10: mp 125—126°C. Found: C, 81.89; H, 5.31%.
Calcd for Cs2Hg0Os: C, 82.08; H, 5.30%. MS m/z (rel inten-
sity): 296 (1), 270 (100), 241 (20), 193 (7), 135 (19). UV
(EtOH): 243 nm (loge, 3.70). IR (KBr): 3030, 2980, 1730
cm~l. IHNMR (CDCls): 6=1.46 (m, Ha,), 2.29 (m, Hy), 2.64
(m, He), 2.98 (m, Ha), 3.12 (3H, s), 3.22 (d, H.), 3.48 (3H, s),
4.18 (d, Hy), 6.8—8.0 (28H, m, Ph). Coupling constants
(Hz): J2=8, Joc=4, Jva=8, Ja=6, J«=10.

Reaction of the 1:1 Adduct 3 with Dimethyl Acetylenedi-
carboxylate. A solution of 3 (200 mg, 0.54 mmol) and
dimethyl acetylenedicarboxylate (310 mg, 2.18 mmol) in
benzene (2.5 ml) was heated at 120°C for 68 h. After
evaporation of the solvent the residue was chromatographed
on a silica-gel thin-layer plate using benzene as the develop-
ing solvent to give crystalline 11 (194 mg, 70%, R=0.25).

11: mp 268—270°C. Found: C, 79.00; H, 5.38%.
Calcd for Cs4H2s0s: C, 79.05; H, 5.46%. MS m/z (rel inten-
sity): 516 (M, 20), 322 (35), 270 (29), 220 (100), 163 (40): UV
(EtOH): 244 nm (loge, 4.57). IR (KBr): 3030, 2980, 1710
cm~l. 'HNMR (CDCls): 6=2.43 (2H, m, H.), 2.90 (2H, m,
Hs), 3.14 (2H, m, H.), 3.26 (2H, m, H,), 6.12 (2H, m, H.),
6.23 (2H, m, Hy), 7.2—7.3 (10H, m, Ph).

Reaction of the 1:1 Adduct 3 with 1,3-Diphenyliso-
benzofuran (2). A solution of 3 (57 mg, 0.15 mmol) and 2
(41 mg, 0.15 mmol) in benzene (5 ml) was heated at 170°C
for 24 h. After evaporation of the solvent the residue was
subjected to thin-layer chromatography on silica gel using
cyclohexane-benzene (3:2) as a developing solvent to give
crystals of recovered 3 (43 mg, 75%, R=0.6) and crystalline 4
(9 mg, 9.2%, R=0.5).

Thermal Isomerization of the 1:1 Adduct 5 to 3. A
solution of 5 (45 mg, 0.12 mmol) in benzene (0.5 ml) was
heated at 130°C for 27 h and the reaction mixture was
chromatographed on a silica-gel thin-layer plate using pet-
roleum ether-benzene (1 :1) as the developing solvent to give
crystalline 2 (6 mg, 19%, R=0.85), recovered 5 (14 mg, 31%,
R=0.70) and crystalline 3 (10 mg, 22%, R~=0.35).

Thermal Decomposition of the 1:2 Adduct 7. A solution
of 7 (1.50 g) in xylene (10 ml) was heated at 140 °C for 24 h.
After evaporation of the solvent, the residue was chromato-
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graphed on a silica-gel column to give crystalline 6 (496 mg,
57%) by elution with petroleum ether-benzene (1:1) and
recovered 7 (588 mg), by elution with petroleum ether-
benzene (1:4).

Reaction of the 1:1 Adduct 6 with 1,3-Diphenyliso-
benzofuran (2). A mixture of 6 (40 mg, 0.11 mmol) and 2
(80 mg, 0.30 mmol) in xylene (0.3 ml) was heated at 110°C
for 3 h. After evaporation of the solvent, the residue was
separated with thin-layer chromatography on silica gel
using petroleum ether-benzene (1 : 2) as a developing solvent
to give crystalline 7 (51 mg, 74%, R=0.35).

Thermal Decomposition of the 1:2 Adduct 10. A solu-
tion of 10 (470 mg, 0.62 mmol) in benzene (35 ml) was heated
at 80°C for 11 h. After evaporation of the solvent, the
residue was subjected to thin-layer chromatography on sil-
ica gel using benzene-ether (9:1) as the developing solvent
to give crystalline 2 (114 mg, 68%, R=0.85), recovered 10 (76
mg, R=0.75), and crystalline 9 (239 mg, 79%, R=0.70).
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and Professor Louis H. Pignolet for their help in the
X-ray study. P G G is indebted to the National
Science Foundation for a grant which partially sup-
ported this investigation and for grant CHE77-2805,
which aided in the purchase of an Enraf-Nonius X-ray
diffractometer.
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possible. In all of these transition states, no secondary
orbital interactions exist resulting that the steric stability
controls the reaction as follws. The steric repulsion
between the cyclohexadiene moieties of 2 and 1b in 17
should be larger than the repulsion between the cyclohexa-
diene part of 1b and the ether oxygen atom of 2 in the
transition form 18. This consideration leads to the conclu-
sion that the adduct 19 should be formed rather than 5.
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The same relation can be applied to the transition states
20 and 22. The repulsion between the brigde-head protons
of 1b and the ether oxygen atom of 2 in 20 should be smaller
than the repulsion between the bridge-head protons of 1b
and the cyclohexadiene part of 2 in 22, resulting that the
adduct 21 should be afforded rather than 6. These consid-
eration seems to support the endo-addition mechanism via
the cyclooctatetraene form.




