

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry 12 (2004) 5361–5378

Bioorganic & Medicinal Chemistry

Discovery of a new class of potent, selective, and orally active prostaglandin D₂ receptor antagonists

Kazuhiko Torisu,^{a,*} Kaoru Kobayashi,^a Maki Iwahashi,^a Yoshihiko Nakai,^a Takahiro Onoda,^b Toshihiko Nagase,^a Isamu Sugimoto,^a Yutaka Okada,^a Ryoji Matsumoto,^a Fumio Nanbu,^a Shuichi Ohuchida,^b Hisao Nakai^a and Masaaki Toda^a

^aMinase Research Institute, Ono Pharmaceutical Co., Ltd, Shimamoto, Mishima, Osaka 618-8585, Japan ^bFukui Research Institute, Ono Pharmaceutical Co., Ltd, Technoport, Yamagishi, Mikuni, Sakai, Fukui 913-8538, Japan

> Received 28 June 2004; revised 23 July 2004; accepted 23 July 2004 Available online 23 August 2004

Abstract—The process of discovering a series of N-(p-alkoxy)benzoyl-2-methylindole-4-acetic acid analogs is presented since these compounds represent a new class of potent, selective, and orally active prostaglandin D₂ (PGD₂) receptor antagonists. Most of these compounds exhibit strong PGD₂ receptor binding and PGD₂ receptor antagonism in cAMP formation assays. When given orally, these new antagonists dramatically suppress allergic inflammatory responses, such as the PGD₂-induced or OVA-induced increase of vascular permeability. Structure–activity relationship (SAR) data are also discussed. © 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Prostanoids (prostaglandins and thromboxanes) are products of cyclooxygenase that are derived from arachidonic acid. It has been proposed that specific prostanoid receptors exist for each of the primary prostanoids, including PGD₂, PGE₂, PGF₂, PGI₂, and TXA₂, which have been designated as the DP, EP, FP, IP, and TP receptors, respectively.¹ In addition, the EP receptor is classified into four subtypes (EP₁, EP₂, EP₃, and EP₄), all of which respond to PGE₂ in different ways.

Prostaglandin D₂ (PGD₂) receptor antagonists might have potential clinical uses because PGD₂ is considered to play an important role in various allergic diseases, including allergic rhinitis,² atopic asthma,³ allergic conjunctivitis,⁴ and atopic dermatitis.⁵ However, there have been few reports on the efficacy of PGD₂ receptor antagonists in animal models of allergy or human allergic diseases.⁶ A selective DP receptor antagonist would be expected to show potential therapeutic value for various allergic disorders. In preceding papers,⁷ we have reported on the discovery of a new class of selective DP receptor antagonists starting from the chemical modification of Indomethacin analogs. Here we report on the identification of hDP receptor antagonists $2\mathbf{r}$ -s, which exhibited efficacy in animal models, starting from the chemical modification of 1 and 4 (Fig. 1).

2. Chemistry

The synthesis of $5\mathbf{a}-\mathbf{i}$ is outlined in Scheme 1. *N*-Acylation of 2-methylindole-4-acetic acid esters 6 and 7 with acid chlorides $8\mathbf{a}-\mathbf{i}$ afforded $9\mathbf{a}-\mathbf{i}$, respectively, after which deprotection by conventional methods gave $5\mathbf{a}-\mathbf{i}$, respectively.

Synthesis of **2a–s** according to a polymer-supported solid phase technique is described in Scheme 2.⁸ *N*-Acylation of **7** with *p*-acetyloxybenzoyl chloride provided **10**, catalytic hydrogenation of which led to **11**. The carboxylic acid **11** was supported with a resin to produce **12**, the acetyl moiety of which was removed by aminolysis to give a phenol **13**. Mitsunobu reaction⁹ of the polymer-supported phenol **13** with alcohols **15a–s** resulted in **14a–s**, respectively. Removal of the resin from **14a–s** was achieved by a reported method⁸ to give **2a–s**, respectively.

Keywords: Prostaglandin; DP receptor; Antagonist.

^{*} Corresponding author. Tel.: +81-75-961-1151; fax: +81-75-962-9314; e-mail: torisu@ono.co.jp

^{0968-0896/\$ -} see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmc.2004.07.048

Figure 1.

CIOC

8a-i

Scheme 1. Synthesis of 5a-i. Reagents: (a) NaOH (powdered), 8a-i, TBACl, H₂Cl₂; (b) morpholine, Pd(PPh₃)₄, THF; (c) H₂, Pd-C, MeOH, EtOAc.

i: X = *p*-F

X = m-OMe g: X = o-F

c: X = p-OMe **h**: X = m-F

b:

d: X = o-Me

e: X = m-Me

Preparation of 15c, 15k, and 15m-s is described in Scheme 3. O-Alkylation of a catechol 16 with methyl dichloroacetate in the presence of sodium hydride afforded 17, after which lithium aluminum hydride reduction led to 15c (Scheme 3a). N-Methylation of 18,¹⁰ followed by lithium aluminum-hydride reduction, produced 15k¹¹ (Scheme 3b). The optically active *N*-methyl benzoxazine **15m** was prepared by *N*-methylation of **19**, 12 followed by catalytic hydrogenolysis (Scheme 3c). The N-ethyl benzoxazine 15n was prepared by N-ethylation of 15j (Scheme 3d). Sodium borohydride reduction of a quinoxaline 20^{13} led to the tetrahydroquinoxaline 21,¹⁴ after which N, N'-dimethylation provided 150 (Scheme 3e). N-Methylation of indoline-2-carboxylic acid 22, followed by lithium aluminum hydride reduction, produced 15p (Scheme 3f). Lithium aluminum hydride reduction of N-^tbutoxycarbonylindoline 24¹⁵ resulted in a N-methylindoline 15q (Scheme 3g). Compounds 15r-s were prepared from 25a-b, respectively as outlined in Scheme 3h. N-Tosylation of 25a-b with tosyl chloride gave 26a-b, respectively. N-Alkylation of 26a-b with (S)-(-)-glycidyl triphenylmethyl ether provided 27a-b, respectively. Cyclization reaction of 27a-b, followed by removal of the *N*-tosyl moiety, produced **28a**–**b**, respectively. *N*-Methylation of **28a**–**b** followed by acidic deprotection produced 15r-s, respectively.

The synthesis of 15a, 15b, 15d and 15e is reported in Refs. [16–19].

3. Results and discussion

The test compounds listed in Tables 1–4 were biologically evaluated for inhibition of the specific binding of a radiolabeled ligand, [³H]PGD₂, to membrane fractions prepared from cells stably expressing each prostanoid receptor and for inhibition of cAMP formation evoked by PGD₂ in CHO cells in the presence of bovine serum albumin (BSA). Test compounds were also evaluated for binding to all the subtypes of the mouse PGE₂ receptor (mEP1, mEP2, mEP3, and mEP4) and to the human PGI₂ receptor (hIP).

In one of the earlier papers,^{7b} we reported on the high mDP receptor affinity and antagonist activity of *N*-benzoyl-2-methylindole-4-acetic acids **3**, **4**, and **1**. However, the hDP receptor affinity and antagonist activity of these compounds was found to be relatively lower than their mDP receptor affinity and mDP antagonist activity, respectively, as described in Table 1.

Based on the results reported in the preceding paper,^{7b} the optimum position of the acetic acid residue, which corresponds to the acidic part of PGs, was identified as the position-4 of the *N*-benzoyl-2-methylindole template. Thus, our next focus was placed on further optimization of the *p*-alkoxy moiety, which corresponds to the lipophilic part of PGs.

Scheme 2. Synthesis of 2a–s. Reagents: (a) NaOH (powdered), *p*-acetoxybenzoyl chloride, CH_2Cl_2 ; (b) $Pd(OH)_2$, H_2 , EtOAc; (c) resin, diisopropylethylamine; (d) piperidine, CH_2Cl_2 ; (e) 15a–s, DEAD, PPh₃; (f) AcOH, CF_3CH_2OH , CH_2Cl_2 . (a) Commercially available; (b) reported; (c) described in Scheme 3a–h.

Because more diverse chemical modification of the terminal phenyl moiety relative to 3 was expected to be possible, compounds 4 and 1 were selected as the chemical leads for further optimizations.

Introduction of a substituent into the terminal phenyl moiety of 4 was followed by biological evaluation, as shown in Table 2. Introduction of a methoxy moiety at the terminal phenyl moiety of 4 afforded 5a-c. The *o*-methoxy derivative 5a showed slightly weaker mDP

receptor affinity, nearly equal hDP receptor affinity, and slightly lower hDP antagonist activity relative to 4.

The *m*-methoxy derivative **5b** showed more than 25-fold weaker mDP receptor affinity, nearly 2-fold weaker hDP receptor affinity, and 10-fold higher hDP antagonist activity compared with **4**.

The *p*-methoxy derivative **5c** demonstrated nearly 3-fold weaker mDP receptor affinity, slightly weaker hDP

Scheme 3. Synthesis of 15c, 15k, and 15m-s. (a) Reagents: (a) NaH, methyl dichloroacetate, DMF; (b) LiAlH₄, THF. (b) Reagents: (a) K_2CO_3 , MeI, acetone; (b) LiAlH₄, THF. (c) Reagents: (a) K_2CO_3 , MeI, acetone; (b) H₂, Pd-C, HCl, MeOH. (d) Reagents: (a) K_2CO_3 , EtI, DMF. (e) Reagents: (a) NaBH₄, MeOH, THF; (b) K_2CO_3 , MeI, acetone: (f) Reagents: (a) K_2CO_3 , MeI, acetone; (b) LiAlH₄, THF. (g) Reagents: (a) LiAlH₄, ether. (h) Reagents: (a) TsCl, Pyridine, CH₂Cl₂; (b) (S)-(-)-glycidyl triphenylmethyl ether, K_2CO_3 , BnEt₃NCl, 1,4-dioxane; (c) 'BuOK, THF; (d) Na, naphthalene, DME; (e) MeI, K_2CO_3 , acetone; (f) AcOH, THF, H₂O.

receptor affinity, and nearly 3-fold lower hDP receptor antagonist activity compared with 4. Introduction of a methyl moiety at the terminal phenyl moiety of 4 afforded **5d**–**f**. The *o*-methyl derivative **5d** showed more than 10-fold weaker mDP receptor affinity, nearly equal hDP receptor affinity, and 5-fold higher hDP antagonist

Table 1. New chemical leads for a DP receptor antagonist

Compd	R	Binding K_i (μ M)		$IC_{50} \left(\mu M \right)^a$	
		mDP	hDP	mDP	hDP
3	~	0.020	0.18	0.074	0.20
4		0.0018	0.087	0.12	0.15
1	~_O	0.017	0.29	0.053	0.25

^a IC₅₀ (µM): hDP receptor antagonist activity.

activity compared with 4. The *m*-methyl derivative **5e** showed nearly 7-fold weaker mDP receptor affinity, nearly equal hDP receptor affinity and nearly 10-fold higher hDP receptor antagonist activity relative to 4. The *p*-methyl derivative demonstrated nearly 10-fold weaker mDP receptor affinity, nearly 3-fold weaker hDP receptor affinity, and nearly 2-fold lower hDP receptor antagonist activity relative to 4. Introduction of a fluoro residue at the terminal phenyl moiety of 4 provided **5g**–i.

The *o*-fluoro derivative 5g showed nearly equal mDP receptor affinity, nearly 2-fold stronger hDP receptor affinity, and equal hDP receptor antagonist activity relative to 4. The *m*-fluoro derivative 5h showed nearly 10-fold weaker mDP receptor affinity, nearly 3-fold weaker

Table 2. Effect of the terminal phenyl moiety on the activity profiles

As a result, it was concluded that the increase of hDP receptor affinity was not so great as that of mDP receptor affinity in the above-described chemical modification of **4**. Thus structural transformation of the terminal phenoxy moiety of **1** to a fused bicyclic structures as described in Figure 1 instead of simply introducing a substituent was carried out as another approach for the optimization.

Synthesis and evaluation of the dihydrobenzofuran, 1,2methylenedioxybenzene, dihydrobenzopyran, and benzodioxane derivatives listed in Table 3 was carried out.

As shown in Table 3, dihydrobenzofuran derivative 2a demonstrated slightly weaker mDP receptor affinity and 10-fold stronger hDP receptor affinity relative to 1, while it showed nearly 7-fold higher hDP receptor antagonist activity. The regio isomer 2b exhibited higher hDP receptor antagonist activity, although its mDP and hDP receptor affinity was weaker than that of 2a.

Introduction of another oxygen into the fused dihydrofuran of **2a** afforded **2c**, which showed nearly 2-fold stronger mDP receptor affinity, slightly weaker hDP receptor affinity, and slightly lower hDP receptor

Compd	R	Binding K_i (μ M)								
		mEP1	mEP2	mEP3	mEP4	hIP	mDP	hDP	hDP	
4	Н	0.40	1.3	2.2	1.9	0.14	0.0018	0.087	0.15	
5a	o-OMe	2.4	0.42	4.1	1.9	0.099	0.0039	0.10	0.25	
5b	<i>m</i> -OMe	>10	0.55	>10	2.9	NT ^a	0.045	0.190	0.015	
5c	p-OMe	0.69	0.68	>10	2.6	0.95	0.0064	0.14	0.40	
5d	o-Me	0.65	0.23	2.3	1.8	0.050	0.026	0.11	0.032	
5e	<i>m</i> -Me	1.4	0.79	>10	1.8	0.083	0.013	0.13	0.016	
5f	<i>p</i> -Me	1.1	1.7	>10	3.9	0.29	0.025	0.30	0.28	
5g	o-F	0.27	0.24	1.4	1.9	0.026	0.0024	0.046	0.15	
5h	<i>m</i> -F	1.2	0.73	2.0	1.6	NT ^a	0.019	0.20	0.37	
5i	p-F	0.20	0.71	2.8	3.5	0.29	0.0093	0.13	0.47	

^a NT: not tested.

^b IC₅₀ (µM): hDP receptor antagonist activity.

Table 3. Activity profiles of benzofuran, benzopyran, and benzodioxane derivatives

Compd	R	Binding K_i (μ M)							
		mEP1	mEP2	mEP3	mEP4	hIP	mDP	hDP	hDP
1	~0	5.6	0.54	>10	>10	>10	0.017	0.29	0.25
2a		7.8	0.45	0.98	>10	0.27	0.022	0.029	0.036
2b		3.1	0.78	1.4	2.9	0.33	0.068	0.042	0.013
2c		0.78	0.25	0.75	>10	0.33	0.0094	0.039	0.056
2d		3.8	0.092	>10	3.1	0.16	0.061	0.052	0.030
2e		>10	0.28	>10	3.5	NT ^a	0.18	0.39	NT^{a}
2f		7.0	2.9	>10	>10	NT ^a	0.18	NT ^a	0.24
2g		>10	0.24	>10	>10	0.27	0.012	0.032	0.024
2h	RO	2.0	0.064	>10	>10	0.22	0.016	0.018	0.031
2i	s 0	2.3	1.3	>10	1.3	1.6	0.12	0.13	0.27

^a NT: not tested.

^b IC₅₀ (µM): hDP receptor antagonist activity.

antagonist activity. Subtype selectivity of **2a-c** was reduced relative to that of **4**, mainly because of the increased mEP3 and hIP receptor affinity.

Benzopyran derivative 2d showed 3.5-fold weaker mDP receptor affinity, and 5.5-fold stronger hDP receptor affinity relative to 1, while it showed nearly 8-fold higher hDP receptor antagonist activity. Another dihydrobenz-opyran 2e showed weaker affinity for the mDP and hDP receptors compared with 2d. Introduction of another phenolic oxygen at the fused dihydropyran of 2d afforded 2g, which showed nearly 5-fold stronger mDP receptor affinity and 2-fold stronger hDP receptor affinity. As illustrated in the transformation from 2d to 2g, introduction of another oxygen was effective for improving sub-type selectivity and maintaining strong hDP antagonist activity. Replacement of the benzodioxane-2-yl methyl

with a benzodioxane-2-yl ethyl moiety afforded **2f**, which showed nearly 10-fold weaker mDP receptor affinity and 10-fold lower hDP receptor antagonist activity.

Synthesis and biological evaluation of the optically active forms 2h and 2i was also conducted. The *R*-isomer 2h demonstrated nearly equal mDP receptor affinity, nearly 2-fold stronger hDP receptor affinity, and nearly equal hDP receptor antagonist activity relative to its racemic form 2g, while the *S*-isomer 2i showed more than 10-fold weaker affinity for the mDP and hDP receptors and nearly 10-fold lower hDP receptor antagonist activity. The subtype selectivity of the dihydrobenzofuran analogs 2a-c and the benzodioxane analog 2g was lower than that of chemical lead 1, while the subtype selectivity of the optically active *R*-isomer 2h was higher than that of the *S*-isomer 2i.

5367

Table 4. Activity profiles of benzomorpholine, benzopiperazine, and indoline derivatives

Compd	R	Binding K _i (µM)							
		mEP1	mEP2	mEP3	mEP4	hIP	mDP	hDP	hDP
2j		2.0	0.45	>10	2.8	NT ^a	0.16	0.087	0.021
2k	N Me	>10	0.11	>10	4.7	0.13	0.027	0.0038	0.0039
21	s N Me	6.2	0.10	1.7	>10	0.037	0.016	0.0035	0.0012
2m	R N Me	>10	0.41	>10	>10	NT ^a	0.23	0.17	0.019
2n		>10	1.7	>10	3.3	0.94	0.024	0.018	0.013
20	Me N N Me	>10	2.7	>10	>10	NT ^a	0.19	0.21	0.022
2p	Me	8.1	3.9	>10	>10	NT ^a	0.22	0.22	0.16
2q	Ne Me	>10	0.74	1.4	>10	0.19	0.30	0.066	0.011
2r	S N F Me	>10	2.1	1.7	>10	0.26	0.023	0.0053	0.00081
2s	S N Me Me	>10	2.4	>10	>10	1.2	0.021	0.018	0.0021

^a NT: not tested.

^b IC₅₀ (μM): hDP receptor antagonist activity.

Further optimization of **2a–b** and **2g** was successfully carried out by introducing a nitrogen instead of an oxygen at the same position, as illustrated in Table 4. Replacing the 4-oxygen of the benzodioxane moiety of **2g** with NH led to **2j**, which showed reduced mDP and hDP receptor affinity, while **2j** showed equal hDP receptor antagonist activity relative to **2g**. *N*-Methylation of the nitrogen of the benzomorpholine of **2j** gave **2k**, with improved mDP and hDP receptor affinity as well as a marked increase of hDP receptor antagonist activity. *N*-Ethylation of the benzomorpholine of 2jafforded 2n, which showed increased mDP and hDP receptor affinity as well as nearly 2-fold higher hDP receptor antagonist activity, although the increase of antagonist activity was not as great as that of the *N*methylated compound. Replacement of the oxygen of the benzomorpholine moiety of 2k with a *N*-methyl moiety afforded 2o, which demonstrated a marked decrease of mDP and hDP receptor affinity as well as 5-fold lower antagonist activity. Accordingly, synthesis and biological evaluation of the optically active forms of the most potent analog 2k was conducted.

The 2S-isomer **2I**, which showed an increase of receptor affinity and antagonist activity compared with the racemate **2k**, demonstrated markedly higher DP receptor affinity and antagonist activity than the 2*R*-isomer **2m**. Replacement of the oxygen atom of the benzofuran derivative **2a** with an *N*-methyl moiety afforded **2p**, which showed nearly 10-fold weaker affinity for mDP and hDP receptors and nearly 4-fold lower hDP antagonist activity. The regioisomer **2q** showed nearly 14-fold higher hDP antagonist activity than **2p**, while it showed nearly equal affinity and nearly 3-fold stronger affinity for the mDP and hDP receptors, respectively.

Introduction of a 7-fluoro moiety and a 6-methyl moiety at the *N*-methylbenzomorpholine of the more active enantiomer **2l** afforded **2r** and **2s**, respectively, with nearly equal mDP receptor affinity. Compound **2r** exhibited nearly 1.5-fold lower hDP receptor affinity relative to **2l**, while **2s** showed 5-fold weaker hDP receptor affinity. With regard to hDP receptor antagonist activity, that of **2r** was 1.5-fold higher relative to **2l**, while that of **2s** was nearly 1.8-fold lower. As a result, **2r** exhibited the most potent hDP antagonist activity among the test compounds. Thus, **2r** and **2s** were identified as more optimized subtype selective hDP antagonist because of the increased affinity of **2l** for the hIP receptor.

Pharmacological evaluation of the antagonist activity of the optimized compounds was carried out as follows. Some of the selected compounds were evaluated for inhibition of the increase of vascular permeability in the guinea pig conjunctiva after oral administration.

As shown in Table 5, when chemical lead 4 was given orally (po), it caused 46% inhibition and 51% inhibition at a dose of 1 and 3 mg/kg, respectively. The optically active isomer **2r** had significantly greater potency than 4, and achieved 60% inhibition at 0.3 mg/kg, po. The optically active *N*-methyl benzomorpholine analog **2s** was equipotent to **2r**, but exhibited more potency than 4.

These compounds were also evaluated for their ability to inhibit the increase of vascular permeability caused by OVA (1%, $20 \,\mu$ L) in the guinea pig conjunctiva.

As shown in Table 6, when compounds 2r and 2s were given orally, they caused 21% inhibition and 40% inhibition at 10 mg/kg, respectively, while a positive control (Pyrilamine) caused 68% inhibition when a dose of 1 mg/kg was given intravenously.

Table 5. Inhibitory effects of **4**, **2r**, and **2s** on PGD₂-induced vascular permeability in guinea pig conjunctiva (n = 8). ** 0.01 versus Control with Dunnett's test

Compd	Dose (mg/kg, po)	% inhibition
4	1	46
	3	51
2r	0.3	60**
2s	0.3	61**

Inhibition of increase in conjunctival vascular permeability caused by topical application of PGD₂ (0.01%, $20 \mu L/eye$) in guinea pigs. All antagonists were administered po 1 h before the challenge.

Table 6. Inhibitory effects of 2r and 2s on OVA-induced vascular permeability in guinea pig conjunctiva (n = 7) *0.1 versus Control with Dunnett's test

Compd Dose (mg/kg, po)		% inhibition
2r	10	21
2s	10	40*
Pyrilamine	1 (mg/kg, iv)	68

Inhibition of increase in conjunctival vascular permeability caused by topical application of OVA (1%, 20 μ L/eye) in actively sensitized guinea pigs. All antagonists were administered po 1h before the antigen challenge.

Based on these findings, the newly discovered DP antagonists such as **2r** and **2s** were expected to have therapeutic potential for allergic diseases.

The results of pharmacokinetic (PK) study of compound **2s** was shown in Table 7 as a representive example. When **2s** was administered orally to male rats at a dose of 10 mg/kg under fasting condition. Compound **2s** had a good pharmacokinetic profile in rats (Table 7). Administration of this compound to rats (1 mg/kg, iv; 10 mg/kg, po; n = 3) led to detectable plasma levels, with a $T_{1/2}$ of 9.2h (iv) and 7.8h (po). The volume of distribution (Vss) was calculated to be 1408 mL/kg, indicating distribution to the tissues. Systemic clearance (CL) was 2.10 mL/min/kg. The peak plasma level (C_{max}) was 4371 µg/mL at 0.7h, and the oral bioavailability was 48% at a dose of 10 mg/kg. The AUC was 8.69 µgh/mL (iv) and 42.1 µg/mL (po).

4. Summary

Further optimization of the new chemical leads 1 and 4 was successfully achieved. Modification of these chemical leads was concentrated on their terminal phenyl moiety, which was still not optimized. The *N*-methyl benzomorpholine derivative 2k showed the most potent hDP receptor antagonist activity among the racemic compounds tested. Optically active 2r and 2s were identified as more optimum hDP receptor selective

Table 7. Pharmacokinetic data for 2s in rats

	Dose (mg/kg)	AUC_{inf} (µgh/mL)	$T_{\rm max}$ (h)	$C_{\rm max}~(\mu g/{\rm mL})$	CL _{tot} (mL/min/kg)	$T_{1/2}$ (h)	Vss (mL/kg)	BA (%)
iv	1	8.69			2.1	9.2	1408	
ро	10	42.1	0.7	4371		7.8		48

antagonists relative to **2l** because both showed weaker hIP receptor affinity. Some of the selected compounds were evaluated in animal models, and compound **2s** exhibited good biological and PK profiles.

5. Experimental

5.1. General directions

Analytical samples were homogeneous as confirmed by TLC, and afforded spectroscopic results consistent with the assigned structures. Proton nuclear magnetic resonance spectra (¹H NMR) were taken on a Varian Mercury 300 spectrometer or Varian GEMINI-200 or VXR-200s spectrometer using deuterated chloroform $(CDCl_3)$ or deuterated methanol (CD_3OD) or deuterated dimethylsulfoxide (DMSO- d_6) as the solvent. Fast atom bombardment mass spectra (FAB-MS) and electron ionization (EI) were obtained on a JEOL JMS-DX303HF spectrometer. The matrix assisted laser desorption ionization-time of flight high-resolution mass spectra (MALDI-TOF, HRMS) were obtained on a PerSeptive Voyager Elite spectrometer. Atmospheric pressure chemical ionization (APCI) was determined on a HITACHI M1200H spectrometer. Infrared spectra (IR) were measured on a Perkin-Elmer FT-IR 1760X spectrometer. Melting points and results of elemental analyses were uncorrected. Column chromatography was carried out on silica gel [Merck silica gel 60 (0.063~0.200 mm), Wako gel C200 or Fuji Silysia BW235]. Thin layer chromatography was performed on silica gel (Merck TLC or HPTLC plates, silica gel 60 F_{254}). The following abbreviations for solvents and reagents are used; tetrahydrofuran (THF), ethyl acetate (EtOAc), dimethylformamide (DMF), dichloromethane (CH₂Cl₂), chloroform (CHCl₃), methanol (MeOH), acetic acid (AcOH), triethylamine (TEA) and diisopropylethylamine (DIPEA).

5.2. General procedure for the preparation of *N*-(*p*-(2-arylethyloxy)benzoyl)-2-methyl-indole-4-acetic acids (9a–i)

5.2.1. Allyl (2-methyl-1-{4-[2-(2-methylphenyl)ethoxy]benzoyl}-1H-indol-4-yl)acetate (9d). To a stirred mixture of 6 (100mg, 0.436mmol) and NaOH (powdered, 87.2 mg, 2.18 mmol) in CH₂Cl₂ (5 mL) were added TBACl (6mg, 0.02mmol) and p-((2-(o-methylphenyl)ethyloxy))benzoyl chloride (180mg, 0.655mmol) at room temperature. After stirring for 30min at room temperature, the reaction mixture was quenched with 2M HCl ag and extracted with EtOAc. The combined organic layers were washed with water, brine, dried over Na_2SO_4 and evaporated to afford the residue, which was purified by column chromatography on silica gel to yield **9d** (107 mg, 53%); TLC $R_f = 0.38$ (*n*-hexane/EtOAc, 3/1); ¹H NMR (300 MHz, CDCl₃) δ 7.69 (d, J = 8.8 Hz, 2H), 7.22–7.17 (m, 4H), 7.02–6.92 (m, 5H), 6.50 (s, 1H), 6.01– 5.81 (m, 1H), 5.31–5.18 (m, 2H), 4.61 (dt, J = 5.6, 1.4 Hz, 2H), 4.23 (t, J = 7.2 Hz, 2H), 3.86 (s, 2H), 3.16 (t, J = 7.2 Hz, 2H), 2.44 (s, 3H), 2.40 (s, 3H); MS (APCI,Pos, 20V.) m/z 468 (M+H)⁺.

5.2.2. Allyl (1-{4-[2-(2-methoxyphenyl)ethoxy]benzoyl}-2-methyl-1*H*-indol-4-yl)acetate (9a). 65% yield; TLCC $R_f = 0.35$ (*n*-hexane/EtOAc, 3/1); ¹H NMR (200 MHz, CDCl₃) δ 7.69 (d, J = 8.8 Hz, 2H), 7.22 (d, J = 7.2 Hz, 2H), 7.04–6.90 (m, 7H), 6.50 (s, 1H), 6.02–5.80 (m, 1H), 5.32–5.17 (m, 2H), 4.63–4.60 (m, 2H), 4.24 (t, J = 7.4 Hz, 2H), 3.85 (s, 2H), 3.84 (s, 3H), 3.12 (t, J 7.4 Hz, 2H), 2.45 (s, 3H).

5.2.3. Allyl (1-{4-[2-(3-Methoxyphenyl)ethoxy]benzoyl}-2-methyl-1*H*-indol-4-yl)acetate (9b). 70% yield; TLC $R_f = 0.37$ (*n*-hexane/EtOAc, 3/1); ¹H NMR (300 MHz, CDCl₃) δ 7.69 (d, J = 8.8 Hz, 2H), 7.44– 7.36 (m, 1H), 7.27–7.20 (m, 2H), 7.06–6.90 (m, 6H), 6.50 (s, 1H), 6.02–5.79 (m, 1H), 5.32–5.18 (m, 2H), 4.63–4.60 (m, 2H), 4.24 (t, J = 7.0 Hz, 2H), 3.88 (s, 5H), 3.15 (t, J = 7.0 Hz, 2H), 2.45 (s, 3H).

5.2.4. Allyl (2-methyl-1-{4-[2-(3-methylphenyl)ethoxy]benzoyl}-1*H*-indol-4-yl)acetate (9e). 81% yield; TLC $R_f = 0.40$ (*n*-hexane/EtOAc, 1/1); ¹H NMR (200 MHz, CDCl₃) δ 7.69 (d, J = 9.0 Hz, 2H), 7.22–6.92 (m, 9H), 6.50 (s, 1H), 6.01–5.81 (m, 1H), 5.32–5.18 (m, 2H), 4.61 (dt, J = 5.4, 1.2 Hz, 2H), 4.25 (t, J = 7.0 Hz, 2H), 3.86 (s, 2H), 3.10 (t, J = 7.0 Hz, 2H), 2.44 (d, J = 1.0 Hz, 3H), 2.40 (s, 3H); MS (APCI, Pos, 20V.) m/z 468 (M+H)⁺.

5.2.5. Allyl (2-methyl-1-{4-[2-(4-methylphenyl)ethoxy]benzoyl}-1*H*-indol-4-yl)acetate (9f). 34% yield; TLC $R_f = 0.25$ (*n*-hexane/EtOAc, 4/1); ¹H NMR (200 MHz, CDCl₃) δ 7.69 (d, J = 8.6 Hz, 2H), 7.18–7.16 (m, 4H), 7.02–6.92 (m, 5H), 6.50 (s, 1H), 6.01–5.81 (m, 1H), 5.32–5.18 (m, 2H), 4.61 (dt, J = 5.6, 1.4Hz, 2H), 4.23 (t, J = 7.2 Hz, 2H), 3.86 (s, 2H), 3.10 (t, J = 7.2 Hz, 2H), 2.44 (d, J = 0.8 Hz, 3H), 2.34 (s, 3H); MS (APCI, Pos, 20V.) m/z 468 (M+H)⁺.

5.2.6. Allyl (1-{4-[2-(2-fluorophenyl)ethoxy]benzoyl}-2methyl-1*H*-indol-4-yl)acetate (9g). 87% yield; TLC $R_f = 0.47$ (*n*-hexane/EtOAc, 3/1); ¹H NMR (200 MHz, CDCl₃) δ 7.68 (d, J = 8.8 Hz, 2H), 7.40–7.10 (m, 4H), 7.06–6.89 (m, 5H), 6.49 (s, 1H), 6.01–5.80 (m, 1H), 5.32–5.18 (m, 2H), 4.63–4.60 (m, 2H), 4.25 (t, J 6.9 Hz, 2H), 3.86 (s, 2H), 3.18 (t, J = 6.9 Hz, 2H), 2.42 (s, 3H).

5.2.7. Allyl (1-{4-[2-(3-fluorophenyl)ethoxy]benzoyl}-2methyl-1*H*-indol-4-yl)acetate (9h). 80% yield; TLC $R_f = 0.45$ (*n*-hexane/EtOAc, 3/1); ¹H NMR (200 MHz, CDCl₃) δ 7.69 (d, J = 8.8 Hz, 2H), 7.38–7.20 (m, 2H), 7.09–6.85 (m, 7H), 6.49 (s, 1H), 6.01–5.81 (m, 1H), 5.33–5.16 (m, 2H), 4.63–4.60 (m, 2H), 4.25 (t, J = 6.6 Hz, 2H), 3.86 (s, 2H), 3.13 (t, J = 6.6 Hz, 2H), 2.42 (s, 3H).

5.2.8. Allyl (1-{4-[2-(4-fluorophenyl)ethoxy]benzoyl}-2methyl-1*H*-indol-4-yl)acetate (9i). 90% yield; TLC $R_f = 0.50$ (*n*-hexane/EtOAc, 3/1); ¹H NMR (200 MHz, CDCl₃) δ 7.72–7.63 (m, 2H), 7.23–7.17 (m, 2H), 7.06–6.82 (m, 7H), 6.49 (s, 1H), 6.02–5.80 (m, 1H), 5.35–5.17 (m, 2H), 4.63–4.59 (m, 2H), 4.21 (t, J = 7.0 Hz, 2H), 3.88 (s, 2H), 3.08 (t, J = 7.0 Hz, 2H), 2.42 (s, 3H). **5.2.9.** Benzyl (1-{4-[2-(4-methoxyphenyl)ethoxy]benzoyl}-**2-methyl-1***H*-indol-4-yl)acetate (9c). 28% yield; TLC $R_f = 0.68$ (*n*-hexane/EtOAc, 5/1); ¹H NMR (200 MHz, CDCl₃) δ 7.73–7.65 (m, 2H), 7.40–7.16 (m, 7H), 7.06– 6.83 (m, 7H), 6.45 (s, 1H), 5.15 (s, 2H), 4.20 (t, J = 7.0 Hz, 2H), 3.86 (s, 2H), 3.80 (s, 3H), 3.08 (t, J = 7.0 Hz, 2H), 2.42 (s, 3H).

5.3. General procedure for the preparation of *N*-(*p*-(2-arylethyloxy)benzoyl)-2-methyl-indole-4-acetic acids (5a, b, d–i)

5.3.1. (2-Methyl-1-{4-[2-(2-methylphenyl)ethoxy]benzoyl}-1H-indol-4-yl)acetic acid (5d). To a stirred solution of 9d (107mg, 0.229mmol) in THF (5mL) was added $Pd(PPh_3)_4$ (26 mg, 0.022 mmol) at room temperature under argon atmosphere. After stirring for 15 min, morpholine (0.10mL, 1.2mmol) was added. After 1h, the reaction mixture was quenched with water and extracted with EtOAc (\times 2). The combined organic layers were washed with water, brine, dried over Na₂SO₄ and concentrated in vacuo to give a residue, which was purified by column chromatography on silica gel to yield 5d (45 mg, 48%); TLC $R_f = 0.50$ (CHCl₃/CH₃OH, 9/1); ¹H NMR (200 MHz, CDCl₃) δ 7.69 (d, J = 9.0 Hz, 2H), 7.23–6.91 (m, 9H), 6.48 (s, 1H), 4.23 (t, J = 7.2 Hz, 2H), 3.86 (s, 2H), 3.16 (t, J = 7.2 Hz, 2H), 2.44 (s, 3H), 2.39 (s, 3H); MS (APCI, Neg, 20V.) m/z 426 (M-H)⁻; HRMS (EI, Pos.) calcd for C₂₇H₂₅NO₄: 427.1784; found: 427.1765; IR (KBr) 3419, 2926, 1684, 1605, 1574, 1510, 1434, 1370, 1300, 1256, 1221, 1169, 1019, 912, 778, 760, 642, $615 \,\mathrm{cm}^{-1}$

5.3.2. (1-{4-[2-(2-Methoxyphenyl)ethoxy]benzoyl}-2methyl-1*H*-indol-4-yl)acetic acid (5a). 42% yield; TLC $R_f = 0.45$ (CHCl₃/CH₃OH, 10/1); ¹H NMR (200 MHz, CDCl₃) δ 7.69 (d, J = 8.8 Hz, 2H), 7.22 (d, J = 7.2 Hz, 2H), 7.04–6.93 (m, 7H), 6.47 (s, 1H), 4.24 (t, J = 7.4 Hz, 2H), 3.85 (s, 2H), 3.85 (s, 3H), 3.14 (t, J = 7.4 Hz, 2H), 2.43 (s, 3H); MS (APCI, Neg, 20V.) m/z 442 (M–H)⁻; HRMS (EI, Pos.) calcd for C₂₇H₂₅ NO₅: 443.1733; found:443.1732; IR (KBr) 2926, 1684, 1604, 1435, 1299, 1255, 756 cm⁻¹.

5.3.3. (1-{4-[2-(3-Methoxyphenyl)ethoxy]benzoyl}-2methyl-1*H*-indol-4-yl)acetic acid (5b). 50% yield; TLC $R_f = 0.35$ (EtOAc); ¹H NMR (300 MHz, CDCl₃) δ 7.72–7.68 (m, 2H), 7.44–7.36 (m, 1H), 7.28–7.22 (m, 2H), 7.06–6.88 (m, 6H), 6.48 (s, 1H), 4.24 (t, J = 7.0 Hz, 2H), 3.86 (s, 5H), 3.15 (t, J = 7.0 Hz, 2H), 2.44 (s, 3H); MS (APCI, Neg, 20V.) m/z 442 (M–H)⁻; HRMS (EI, Pos.) calcd for C₂₇H₂₅ NO₅: 443.1733; found: 443.1734; IR (neat) 2936, 1682, 1602, 1494, 1433, 1369, 1253, 1168, 1019, 910, 731, 642, 520 cm⁻¹.

5.3.4. (2-Methyl-1-{4-[2-(3-methylphenyl)ethoxy]benzoyl}-1*H*-indol-4-yl)acetic acid (5e). 42% yield; TLC $R_f = 0.50$ (CH₃Cl/MeOH, 9/1); ¹H NMR (200 MHz, CDCl₃) δ 7.69 (d, J = 8.8 Hz, 2H), 7.19–6.92 (m, 9H), 6.48 (s, 1H), 4.24 (t, J = 7.2 Hz, 2H), 3.86 (s, 2H), 3.10 (t, J = 7.2 Hz, 2H), 2.44 (s, 3H), 2.36 (s, 3H); MS (APCI, Neg, 20V.) m/z 426 (M–H)⁻; HRMS (EI, Pos.) calcd for C₂₇H₂₅NO₄: 427.1784; found: 427.1774; IR (KBr) 2924, 1683, 1604, 1574, 1510, 1434, 1370, 1299, 1256, 1221, 1169, 1025, 912, 779, 760, 701, 642, 542 cm^{-1} .

5.3.5. (2-Methyl-1-{4-[2-(4-methylphenyl)ethoxy]benzoyl}-1*H*-indol-4-yl)acetic acid (5f). 34% yield; TLC $R_f = 0.50$ (CH₃Cl/MeOH, 9/1); ¹H NMR (200 MHz, CDCl₃) δ 7.69 (d, J = 8.8 Hz, 2H), 7.18–6.92 (m, 9H), 6.49 (s, 1H), 4.23 (t, J = 6.6 Hz, 2H), 3.87 (s, 2H), 3.10 (t, J = 6.6 Hz, 2H), 2.44 (s, 3H), 2.34 (s, 3H); MS (APCI, Neg, 20V.) *m*/*z* 426 (M–H)⁻; HRMS (EI, Pos.) calcd for C₂₇H₂₅NO₄: 427.1784; found: 427.1783; IR (KBr) 3419, 2923, 1696, 1680, 1606, 1511, 1435, 1371, 1318, 1255, 1222, 1172, 1021, 912, 811, 761, 639, 613, 554 cm⁻¹.

5.3.6. (1-{4-[2-(2-Fluorophenyl)ethoxy]benzoyl}-2-methyl-1*H*-indol-4-yl)acetic acid (5g). 85% yield; TLC $R_f = 0.45$ (CH₃Cl/MeOH, 9/1); ¹H NMR (200 MHz, CDCl₃) δ 7.68 (d, J = 8.8 Hz, 2H), 7.40–7.08 (m, 4H), 7.05–6.90 (m, 5H), 6.47 (s, 1H), 4.26 (t, J = 6.8 Hz, 2H), 3.84 (s, 2H), 3.18 (t, J = 6.8 Hz, 2H), 2.43 (s, 3H); MS (APCI, Neg, 20V.) *m*/*z* 430 (M–H)⁻; HRMS (EI, Pos.) calcd for C₂₆H₂₂FNO₄: 431.1533; found: 431.1539; IR (KBr) 2927, 1685, 1605, 1494, 1434, 1301, 1256, 1170 cm⁻¹.

5.3.7. (1-{4-[2-(3-Fluorophenyl)ethoxy]benzoyl}-2-methyl-1*H*-indol-4-yl)acetic acid (5h). 86% yield; TLC $R_f = 0.45$ (CH₃Cl/MeOH, 10/1); ¹H NMR (200 MHz, CDCl₃) δ 7.69 (d, J = 8.8 Hz, 2H), 7.35–7.20 (m, 2H), 7.09–6.85 (m, 7H), 6.47 (s, 1H), 4.25 (t, J = 6.6 Hz, 2H), 3.84 (s, 2H), 3.12 (t, J = 6.6 Hz, 2H), 2.42 (s, 3H); MS (APCI, Neg, 20V.) *m*/*z* 430 (M–H)⁻; HRMS (EI, Pos.) calcd for C₂₆H₂₂FNO₄: 431.1533; found: 431.1539; IR (KBr) 2928, 1686, 1605, 1510, 1434, 1256, 1170, 1142, 1027 cm⁻¹.

5.3.8. (1-{4-[2-(4-Fluorophenyl)ethoxy]benzoyl}-2-methyl-1*H*-indol-4-yl)acetic acid (5i). 76% yield; TLC $R_f = 0.45$ (CH₃Cl/MeOH, 10/1); ¹H NMR (200 MHz, CDCl₃) δ 7.72–7.65 (m, 2H), 7.23–7.17 (m, 2H), 7.06– 6.84 (m, 7H), 6.47 (s, 1H), 4.21 (t, J = 7.0 Hz, 2H), 3.85 (s, 2H), 3.80 (s, 3H), 3.08 (t, J = 7.0 Hz, 2H), 2.43 (s, 3H); MS (APCI, Neg, 20V.) *m*/*z* 430 (M–H)⁻; HRMS (EI, Pos.) calcd for C₂₆H₂₂FNO₄: 431.1533; found: 431.1532; IR (neat) 2926, 1684, 1605, 1510, 1434, 1370, 1300, 1256, 1222, 1170, 760 cm⁻¹.

5.4. (1-{4-[2-(4-Methoxyphenyl)ethoxy]benzoyl}-2methyl-1*H*-indol-4-yl)acetic acid (5c)

To a stirred solution of the compound **9c** (110 mg, 206 mmol) in EtOAc (1 mL) and MeOH (2 mL) was added 10 wt% Pd–C (10 mg) at room temperature. The resulting suspension was stirred for 30 min at room temperature under hydrogen atmosphere. Insoluble substance was removed by filtration. The filtrate was concentrated in vacuo, to give a crude product, which was purified by column chromatography on silica gel to yield **5c** (25.2 mg, 28%); TLC $R_f = 0.50$ (CHCl₃/CH₃OH, 10/1); ¹H NMR (200 MHz, CDCl₃) δ 7.72–7.65 (m, 2H), 7.23–7.17 (m, 2H), 7.06–6.84 (m, 7H), 6.47 (s, 1H), 4.21 (t, J = 7.0 Hz, 2H), 3.85 (s, 2H), 3.80 (s, 3H), 3.08 (t, J = 7.0 Hz, 2H), 2.43 (s, 3H); MS (APCI,

Neg 20V) m/z 442 (M–H)⁻; HRMS (EI, Pos.) calcd for C₂₇H₂₅NO₅: 443.1733; found: 443.1714; IR (neat) 2931, 1708, 1683, 1604, 1513, 1434, 1370, 1301, 1250, 1169, 1025, 912, 829, 759 cm⁻¹.

5.5. Benzyl {1-[4-(acetyloxy)benzoyl]-2-methyl-1*H*-indol-4-yl}acetate (10)

To a stirred solution of 7 (15g, 53.7 mmol) and NaOH (powdered, 10.74g, 269 mmol) in CH₂Cl₂ (400 mL) were added TBACl (746 mg, 2.69 mmol) and *p*-acetoxy benzoyl chloride (20.4g, 102 mmol) at room temperature. After stirring for 30 min at room temperature, the reaction mixture was filtered through a pad of Celite, and the filtrate was concentrated in vacuo. The residue was purified by column chromatography on silica gel to yield **10** (12.2g, 51%); TLC R_f = 0.34 (*n*-hexane/EtOAc, 7/3); ¹H NMR (300 MHz, CDCl₃) δ 7.76 (d, J = 8.7 Hz, 2H), 7.40–7.20 (m, 7H), 7.08–6.92 (m, 3H), 6.47 (s, 1H), 5.15 (s, 2H), 3.88 (s, 2H), 2.40 (s, 3H), 2.35 (s, 3H).

5.6. {1-[4-(Acetyloxy)benzoyl]-2-methyl-1*H*-indol-4yl}acetic acid (11)

To a stirred solution of **10** (12.2 g, 27.6 mmol) in EtOAc (250 mL) was added Pd(OH)₂ (1.2 g) at room temperature. The resulting suspension was stirred for 2h at room temperature under hydrogen atmosphere. Insoluble substance was removed by filtration. The filtrate was concentrated in vacuo to give a crude product, which was purified by recrystallization from EtOAc to yield **11** (7.39 g, 80%); TLC R_f = 0.52 (CHCl₃/CH₃OH, 9/1); ¹H NMR (300 MHz, CDCl₃) δ 7.77 (d, J = 8.7 Hz, 2H), 7.24 (d, J = 8.7 Hz, 2H), 7.10–6.94 (m, 3H), 6.51 (s, 1H), 3.87 (s, 2H), 2.43 (s, 3H), 2.35 (s, 3H).

5.7. Polymer supported 2-chlorotriphenylmethyl{1-[4-(acetyloxy)benzoyl]-2-methyl-1*H*-indol-4-yl}acetate (12)

To an agitated solution of **11** (7.77 g, 23.2 mmol) and DIPEA (16.0 mL, 92.7 mmol) in CH_2Cl_2 (200 mL) were added polymer supported 2-chlorotriphenylmethyl chloride (1.2 mmol/g, 100–200 mesh, 1% DVB) (19.3 g, 23.2 mmol) at room temperature. After agitating for 2.5 h at room temperature, the reaction mixture was filtered to collect a insoluble substance, which was washed with CH_2Cl_2 (×5).

To a suspension of this insoluble substance in CH_2Cl_2 (150 mL) were added a solution of AcOH (13.4 mL, 232 mmol), DIPEA (160 mL, 927 mmol). After agitating for 1 h at room temperature, the reaction mixture was filtered, washed with CH_2Cl_2 (×5) to afford the **12** (26.1 g, 100%); IR (KBr) 3569, 3026, 2923, 1736, 1686, 1601, 1492, 1432, 1367, 1304, 1191, 1042, 908, 826, 740, 697, 457 cm⁻¹.

5.8. Polymer supported 2-chlorotriphenylmethyl [1-(4-hydroxybenzoyl)-2-methyl-1*H*-indol-4-yl]acetate (13)

To an agitated mixture of **12** (26.1 g, 23.2 mmol) in CH_2Cl_2 (240 mL) was added piperidine (12.5 mL, 127 mmol) at room temperature. After agitating for

30 min at room temperature, the reaction mixture was filtered, washed with CH_2Cl_2 (×5), dried in vacuo to afford **13** (24.7 g, 100%); IR (KBr) 3410, 3059, 3025, 2923, 2849, 1738, 1684, 1604, 1492, 1432, 1367, 1285, 1219, 1163, 1040, 981, 957, 909, 826, 754, 735, 698, 634, 607, 589, 461 cm⁻¹.

5.9. General procedure for the preparation of *N*-(*p*-(alkyloxy)benzoyl)-2-methylindole-4acetic acids (2a–q)

5.9.1. {1-[4-(2,3-Dihydro-1-benzofuran-2-ylmethoxy)benzoyl]-2-methyl-1*H*-indol-4-yl}acetic acid (2a). To an agitated mixture of 13 (500 mg, 0.470 mmol) in CH₂Cl₂ (5 mL) were added a solution of 15a (423 mg, 2.82 mmol) in CH₂Cl₂ (1 mL), Ph₃P (740 mg, 2.82 mmol) and DEAD (40% in toluene) (1.29 mL, 2.82 mmol) at room temperature. After agitating for 2h at room temperature, the reaction mixture was filtered to collect insoluble substance, which was washed with CH₂Cl₂ and dried in vacuo to afford 14a.

To a stirred suspension of 14a described above in CH₂Cl₂ (2mL) and CF₃CH₂OH (0.6mL) was added acetic acid (0.3 mL) at room temperature. After agitating for 2h at room temperature, insoluble substance was removed by filtration. The filtrate was concentrated in vacuo to give a crude product, which was purified by column chromatography on silica gel to yield 2a (91.4 mg, 44%); TLC $R_f = 0.34$ (CHCl₃/CH₃OH, 10/1); ¹H NMR (300 MHz, CDCl₃) δ 7.73–7.69 (m, 2H), 7.23-7.12 (m, 2H), 7.06-6.82 (m, 7H), 6.49 (d, J = 1.2 Hz, 1H), 5.20 (m, 1H), 4.29 (dd, J = 9.9, 6.3 Hz, 1H), 4.20 (dd, J = 9.9, 4.2 Hz, 1H), 3.86 (s, 2H), 3.42 (dd, J = 15.9, 9.6 Hz, 1H), 3.17 (dd, J = 15.9, 8.4 Hz,1H), 2.44 (d, J = 1.2 Hz, 3H); MS (EI, Pos) m/z 441 (M^+) ; HRMS (EI, Pos.) calcd for $C_{27}H_{23}NO_5$: 441.1576; found: 441.1573; IR (KBr) 2925, 1684, 1604, 1509, 1481, 1434, 1369, 1257, 1169, 1041, 911, $753 \, \mathrm{cm}^{-1}$.

5.9.2. {**1-[4-(2,3-Dihydro-1-benzofuran-3-ylmethoxy)ben**zoyl]-2-methyl-1*H*-indol-4-yl}acetic acid (2b). 21% yield; TLC $R_f = 0.50$ (CH₃Cl/MeOH, 10/1); ¹H NMR (200 MHz, CDCl₃) δ 7.70 (m, 2H), 7.31 (d, J = 7.4Hz, 1H), 7.21 (m, 1H), 7.10–6.82 (m, 7H), 6.49 (s, 1H), 4.73 (t, J = 9.6Hz, 1H), 4.55 (dd, J = 9.6, 4.6Hz, 1H), 4.29–3.88 (m, 3H), 3.86 (s, 2H), 2.44 (s, 3H); MS (FAB, Pos.) *m*/*z* 442 (M+H)⁺; HRMS (EI, Pos.) calcd for C₂₇H₂₃NO₅: 441.1576; found: 441.1566; IR (neat) 3348, 1708, 1682, 1603, 1574, 1509, 1483, 1461, 1434, 1369, 1300, 1254, 1221, 1169, 1097, 1021, 960, 911, 837, 753, 614 cm⁻¹.

5.9.3. {**1-[4-(1,3-Benzodioxol-2-ylmethoxy)benzoyl]-2**methyl-1*H*-indol-4-yl}acetic acid (2c). 43% yield; TLC $R_f = 0.33$ (CH₃Cl/MeOH, 10/1); ¹H NMR (300 MHz, CDCl₃) δ 7.74–7.69 (m, 2H), 7.06–6.85 (m, 9H), 6.50–6.47 (m, 2H), 4.35 (d, J = 4.2 Hz, 2H), 3.85 (s, 2H), 2.43 (d, J = 0.9 Hz, 3H); MS (FAB, Pos.) *m*/*z* 444 (M+H)⁺; HRMS (EI, Pos.) calcd for C₂₆H₂₁NO₆: 443.1369; found: 443.1360; IR (KBr) 2925, 1685, 1604, 1509, 1484, 1434, 1231, 1043, 911, 743, 612 cm⁻¹. **5.9.4.** {**1-**[4-(3,4-Dihydro-2*H*-chromen-2-ylmethoxy)benzoyl]-2-methyl-1*H*-indol-4-yl}acetic acid (2d). 48% yield; TLC $R_f = 0.49$ (CH₃Cl/MeOH, 10/1); ¹H NMR (200 MHz, CDCl₃) δ 7.74–7.67 (m, 2H), 7.06–6.87 (m, 9H), 6.49 (s, 1H), 4.45 (m, 1H), 4.38–4.15 (m, 2H), 3.86 (s, 2H), 3.00–2.80 (m, 2H), 2.44 (s, 3H), 2.30–1.90 (m, 2H); MS (APCI, Neg. 20V) *m*/*z* 454 (M–H)⁻; HRMS (EI, Pos.) calcd for C₂₈H₂₅NO₅: 455.1733; found: 455.1716; IR (KBr) 2926, 1684, 1604, 1575, 1509, 1434, 1369, 1301, 1257, 1170, 1039 cm⁻¹.

5.9.5. {**1-**[4-(3,4-Dihydro-2*H*-chromen-3-ylmethoxy)benzoyl]-2-methyl-1*H*-indol-4-yl}acetic acid (2e). 41% yield; TLC $R_f = 0.34$ (CH₃Cl/MeOH, 10/1); ¹H NMR (300 MHz, CDCl₃) δ 7.72–7.43 (m, 5H), 7.15–6.82 (m, 6H), 6.49 (s, 1H), 4.36 (m, 1H), 4.17 (m, 1H), 4.08 (d, J = 6.9 Hz, 2H), 3.87 (s, 2H), 3.04 (dd, J = 16.5, 6.0 Hz, 1H), 2.78 (dd, J = 16.5, 7.2 Hz, 1H), 2.63 (m, 1H), 2.44 (d, J = 1.2 Hz, 3H); MS (APCI, Neg. 20V) m/z 454 (M–H)⁻; HRMS (EI, Pos.) calcd for C₂₈H₂₅NO₅: 455.1733; found: 455.1740; IR (KBr) 2924, 1683, 1604, 1509, 1490, 1435, 1369, 1255, 1169, 911, 837, 757, 723, 694, 614, 542 cm⁻¹.

5.9.6. (1-{4-[2-(2,3-Dihydro-1,4-benzodioxin-2-yl)ethoxy]benzoyl}-2-methyl-1*H*-indol-4-yl)acetic acid (2f). 12% yield; TLC $R_f = 0.44$ (CH₃Cl/MeOH, 10/1); ¹H NMR (300 MHz, CDCl₃) δ 7.71 (d, J = 8.7Hz, 2H), 7.10–6.80 (m, 9H), 6.49 (s, 1H), 4.50–4.40 (m, 1H), 4.38–4.17 (m, 3H), 4.01 (dd, J = 11.4, 7.2Hz, 1H), 3.86 (s, 2H), 2.44 (s, 3H), 2.17 (q, J = 6.0Hz, 2H); MS (APCI, Neg. 20V) *m*/*z* 470 (M–H)⁻; HRMS (EI, Pos.) calcd for C₂₈H₂₅NO₆: 471.1682; found: 471.1669; IR (neat) 2926, 1709, 1683, 1604, 1509, 1494, 1434, 1369, 1303, 1253, 1221, 1169, 1044, 910, 837, 749, 641 cm⁻¹.

5.9.7. {**1-**[4-(**2**,**3**-Dihydro-1,**4**-benzodioxin-2-ylmethoxy)benzoyl]-2-methyl-1*H*-indol-4-yl}acetic acid (2g). 35% yield; TLC $R_f = 0.34$ (CH₃Cl/MeOH, 10/1); ¹H NMR (200 MHz, CDCl₃) δ 7.71 (d, J = 8.8 Hz, 2H), 7.09– 6.82 (m, 9H), 6.48 (s, 1H), 4.61 (m, 2H), 4.42 (dd, J = 11.8, 2.6 Hz, 1H), 4.38–4.18 (m, 3H), 3.84 (s, 2H), 2.43 (s, 3H); MS (APCI, Neg. 20V) *m*/*z* 456 (M–H)⁻; HRMS (MALDI-TOF, Pos.) calcd for C₂₇H₂₃NO₆+H⁺: 458.1604; found: 458.1064; IR (KBr) 3046, 2925, 1734, 1708, 1684, 1603, 1574, 1509, 1494, 1433, 1369, 1302, 1246, 1220, 1170, 1044, 958, 911, 842, 780, 751, 637, 614 cm⁻¹.

5.9.8. (1-{4-[(2*R*)-2,3-Dihydro-1,4-benzodioxin-2-ylmethoxy]benzoyl}-2-methyl-1*H*-indol-4-yl)acetic acid (2h). 38% yield; 98.6% ee; TLC $R_f = 0.34$ (CH₃Cl/MeOH, 10/1); ¹H NMR (300 MHz, CDCl₃) δ 7.75–7.70 (m, 2H), 7.07–6.86 (m, 9H), 6.49 (m, 1H), 4.61 (m, 1H), 4.42 (dd, J = 11.4, 2.1 Hz, 1H), 4.33 (dd, J = 10.2, 5.1 Hz, 1H), 4.26 (dd, J = 11.4, 6.3 Hz, 1H), 4.25 (dd, J = 10.2, 6.0 Hz, 1H), 3.87 (s, 2H), 2.44 (d, J = 1.2 Hz, 3H); MS (APCI, Neg. 20V) *m*/*z* 456 (M–H)⁻; HRMS (EI, Pos.) calcd for C₂₇H₂₃NO₆: 457.1525; found: 457.1523; IR (KBr) 2927, 1685, 1604, 1494, 1434, 1369, 1248, 1170, 1044, 910, 751, 542 cm⁻¹. **5.9.9.** (1-{4-[(2*S*)-2,3-Dihydro-1,4-benzodioxin-2-ylmethoxy]benzoyl}-2-methyl-1*H*-indol-4-yl)acetic acid (2i). 24% yield; 98.6% ee; TLC $R_f = 0.30$ (CH₃Cl/MeOH, 10/1); ¹H NMR (300MHz, CDCl₃) δ 7.75–7.70 (m, 2H), 7.07–6.86 (m, 9H), 6.49 (m, 1H), 4.61 (m, 1H), 4.42 (dd, J = 11.4, 2.1Hz, 1H), 4.33 (dd, J = 10.2, 5.1Hz, 1H), 4.26 (dd, J = 11.4, 6.3Hz, 1H), 4.25 (dd, J = 10.2, 6.0Hz, 1H), 3.87 (s, 2H), 2.44 (d, J = 1.2Hz, 3H); MS (FAB, Pos.) *m*/*z* 458 (M+H)⁺; HRMS (EI, Pos.) calcd for C₂₇H₂₃NO₆: 457.1525; found: 457.1540; IR (KBr) 2925, 1685, 1604, 1495, 1434, 1369, 1248, 1171, 1045, 911, 841, 752, 615 cm⁻¹.

5.9.10. {**1-**[**4-**(**3,4-**Dihydro-2*H*-**1**,**4-**benzoxazin-2-ylmethoxy)benzoyl]-2-methyl-1*H*-indol-**4-**yl}acetic acid (2j). 28% yield; TLC $R_f = 0.25$ (CH₃Cl/MeOH, 10/1); ¹H NMR (300 MHz, CDCl₃) δ 7.76–7.40 (m, 3H), 7.10– 6.89 (m, 4H), 6.89–6.60 (m, 4H), 6.49 (s, 1H), 4.60 (m, 1H), 4.31 (dd, J = 9.8, 5.0Hz, 1H), 4.24 (dd, J = 9.8, 6.2Hz, 1H), 3.86 (s, 2H), 3.58 (dd, J = 11.8, 3.0Hz, 1H), 3.42 (dd, J = 11.8, 6.6Hz, 1H), 2.44 (s, 3H); MS (APCI, Neg. 20V) *m*/*z* 455 (M–H)⁻; HRMS (EI, Pos.) calcd for C₂₇H₂₄N₂O₅: 456.1685; found: 456.1687; IR (neat) 3384, 2924, 1681, 1603, 1574, 1502, 1433, 1369, 1301, 1256, 1215, 1169, 1120, 1038, 958, 910, 836, 779, 729, 695, 639, 616, 541 cm⁻¹.

5.9.11. (2-Methyl-1-{4-[(4-methyl-3,4-dihydro-2*H*-1,4benzoxazin-2-yl)methoxy]benzoyl}-1*H*-indol-4-yl)acetic acid (2k). 28% yield; TLC $R_f = 0.26$ (CH₃Cl/MeOH, 10/ 1); ¹H NMR (200 MHz, CDCl₃) δ 7.78–7.40 (m, 3H), 7.10–6.78 (m, 6H), 6.73 (d, J = 8.0Hz, 2H), 6.49 (s, 1H), 4.68 (m, 1H), 4.31 (dd, J = 10.0, 5.2 Hz, 1H), 4.20 (dd, J = 10.0, 6.4 Hz, 1H), 3.86 (s, 2H), 3.41 (dd, J = 11.6, 2.8 Hz, 1H), 3.27 (dd, J = 11.6, 6.6 Hz, 1H), 2.92 (s, 3H), 2.44 (s, 3H); MS (APCI, Neg. 20V) *m*/*z* 469 (M–H)⁻; HRMS (EI, Pos.) calcd for C₂₈H₂₆N₂O₅: 470.1842; found: 470.1836; IR (neat) 2924, 2359, 1683, 1604, 1505, 1434, 1368, 1299, 1254, 1221, 1170, 1041, 959, 911, 837, 727, 542 cm⁻¹.

5.9.12. [2-Methyl-1-(4-{[(2*S*)-4-methyl-3,4-dihydro-2*H*-1,4-benzoxazin-2-yl]methoxy}benzoyl)-1*H*-indol-4-yl]acetic acid (21). 30% yield; TLC $R_f = 0.26$ (CH₃Cl/MeOH, 10/1); ¹H NMR (300 MHz, CDCl₃) δ 7.71 (d, J = 9.0 Hz, 2H), 7.20–6.78 (m, 7H), 6.78–6.64 (m, 2H), 6.49 (s, 1H), 4.68 (m, 1H), 4.30 (dd, J = 9.9, 5.4 Hz, 1H), 4.21 (dd, J = 9.9, 6.0 Hz, 1H), 3.86 (s, 2H), 3.40 (dd, J = 11.4, 2.7 Hz, 1H), 3.27 (dd, J = 11.4, 6.6 Hz, 1H), 2.92 (s, 3H), 2.44 (s, 3H); MS (APCI, Neg. 20V) m/z 469 (M–H)⁻; HRMS (MALDI-TOF, Pos.) calcd for C₂₈H₂₆N₂O₅+H⁺: 471.1920; found: 470.1914; IR (KBr) 2923, 1699, 1604, 1506, 1434, 1368, 1240, 1172, 1043, 962, 844, 745 cm⁻¹.

5.9.13. [2-Methyl-1-(4-{[(2*R*)-4-methyl-3,4-dihydro-2*H*-**1,4-benzoxazin-2-yl]methoxy**benzoyl)-1*H*-indol-4-yl]acetic acid (2m). 48% yield; TLC $R_f = 0.26$ (CH₃Cl/MeOH, 10/1); ¹H NMR (200 MHz, CDCl₃) δ 7.72 (d, J = 8.8 Hz, 2H), 7.12–6.79 (m, 7H), 6.72 (d, J = 7.4 Hz, 2H), 6.49 (s, 1H), 4.68 (m, 1H), 4.31 (dd, J = 9.6, 5.2 Hz, 1H), 4.20 (dd, J = 9.6, 6.2 Hz, 1H), 3.87 (s, 2H), 3.40 (dd, J = 11.6, 2.8 Hz, 1H), 3.28 (dd, J = 11.6, 6.2 Hz, 1H), 2.92 (s, 3H), 2.45 (s, 3H); MS (APCI, Neg. 20V) m/z 469 (M–H)⁻; HRMS (EI, Pos.) calcd for C₂₈H₂₆N₂O₅: 470.1842; found: 470.1846; IR (neat) 2925, 1708, 1682, 1604, 1504, 1433, 1368, 1299, 1255, 1220, 1170, 1136, 1041, 958, 910, 836, 735, 616 cm⁻¹.

5.9.14. (1-{4-[(4-Ethyl-3,4-dihydro-2*H*-1,4-benzoxazin-2-yl)methoxylbenzoyl}-2-methyl-1*H*-indol-4-yl)acetic acid (2n). 35% yield; TLC $R_f = 0.28$ (CH₃Cl/MeOH, 10/1); ¹H NMR (200 MHz, CDCl₃) δ 7.80–7.57 (m, 2H), 7.10–6.79 (m, 7H), 6.79–6.56 (m, 2H), 6.49 (s, 1H), 4.68–4.50 (m, 1H), 4.31 (dd, J = 9.6, 5.2 Hz, 1H), 4.21 (dd, J = 9.6, 6.2 Hz, 1H), 3.86 (s, 2H), 3.57–3.20 (m, 4H), 2.44 (s, 3H), 1.17 (t, J = 7.4 Hz, 3H); MS (APCI, Neg. 20V) *m*/*z* 483 (M–H)⁻; HRMS (EI, Pos.) calcd for C₂₉H₂₈N₂O₅: 484.1998; found: 484.2000; IR (neat) 2970, 2925, 1708, 1684, 1604, 1576, 1503, 1434, 1368, 1300, 1255, 1219, 1169, 1043, 958, 910, 836, 779, 741, 614, 542 cm⁻¹.

5.9.15. (1-{4-[(1,4-Dimethyl-1,2,3,4-tetrahydroquinoxalin-2-yl)methoxy]benzoy]}-2-methyl-1*H*-indol-4-yl)acetic acid (20). 10% yield; TLC $R_f = 0.48$ (CH₃Cl/MeOH, 9/ 1); ¹H NMR (300 MHz, CDCl₃) δ 7.70 (d, J = 9.0 Hz, 2H), 7.08–6.92 (m, 5H), 6.80–6.66 (m, 2H), 6.62–6.48 (m, 3H), 4.27–4.07 (m, 2H), 3.87 (s, 2H), 3.83–3.73 (m, 1H), 3.36–3.20 (m, 2H), 3.05 (s, 3H), 2.88 (s, 3H), 2.45 (s, 3H); MS (APCI, Neg. 20V) *m*/*z* 482 (M–H)⁻; HRMS (EI, Pos.) calcd for C₂₉H₂₉N₃O₄: 483.2158; found: 483.2161; IR (neat) 2925, 1682, 1602, 1508, 1433, 1369, 1298, 1254, 1221, 1169, 1022, 911, 737 cm⁻¹.

5.9.16. (2-Methyl-1-{4-[(1-methyl-2,3-dihydro-1*H*-indol-2-yl)methoxy]benzoyl}-1*H*-indol-4-yl)acetic acid (2p). 45% yield; TLC $R_f = 0.49$ (CH₃Cl/MeOH, 9/1); ¹H NMR (300 MHz, CDCl₃) δ 7.76–7.66 (m, 2H), 7.20–6.46 (m, 10H), 5.00–2.80 (m, 5H), 3.87 (s, 2H), 2.94 and 2.91 (s × 2, total 3H), 2.45 (s, 3H); MS (APCI, Neg. 20V) *m*/*z* 453 (M–H)⁻; HRMS (EI, Pos.) calcd for C₂₈H₂₆N₂O₄: 454.1893; found: 454.1893; IR (neat) 2925, 2360, 1708, 1683, 1603, 1573, 1507, 1433, 1368, 1300, 1254, 1221, 1168, 1036, 958, 910, 837, 779, 733, 668, 614 cm⁻¹.

5.9.17. (2-Methyl-1-{4-[(1-methyl-2,3-dihydro-1*H*-indol-3-yl)methoxy]benzoyl}-1*H*-indol-4-yl)acetic acid (2q). 43% yield; TLC $R_f = 0.47$ (CH₃Cl/MeOH, 9/1); ¹H NMR (300 MHz, CDCl₃) δ 7.74–7.68 (m, 3H), 7.22– 7.10 (m, 2H), 7.08–6.90 (m, 4H), 6.72 (t, J = 6.6Hz, 1H), 6.53 (d, J = 8.1 Hz, 1H), 6.49 (s, 1H), 4.24–4.06 (m, 2H), 3.87 (s, 2H), 3.78–3.70 (m, 1H), 3.49 (t, J = 8.1 Hz, 1H), 3.38 (dd, J = 9.0, 5.1 Hz, 1H), 2.79 (s, 3H), 2.45 (s, 3H); MS (APCI, Neg. 20V) *m*/*z* 453 (M–H)⁻; HRMS (EI, Pos.) calcd for C₂₈H₂₆N₂O₄: 454.1893; found: 454.1896; IR (neat) 3376, 1682, 1604, 1493, 1434, 1369, 1300, 1254, 1168, 1022, 910, 727, 542 cm⁻¹.

5.9.18. [2-Methyl-1-(4-{[(2*S*)-7-fluoro-4-methyl-3,4-dihydro-2*H*-1,4-benzoxazin-2-yl]methoxy}benzoyl)-1*H*-indol-4-yl]acetic acid (2r). 33% yield; TLC $R_f = 0.49$ (CH₃Cl/ MeOH, 9/1); ¹H NMR (MHz, CDCl₃) δ 7.72 (d, J = 8.7 Hz, 2H), 7.08–6.85 (m, 5H), 6.60 (d, J = 8.7 Hz, 3H), 6.49 (s, 1H), 4.73–4.64 (m, 1H), 4.30 (dd, J = 9.9, 5.1 Hz, 1H), 4.21 (dd, J = 9.9, 6.3 Hz, 1H), 3.87 (s, 2H), 3.36 (dd, J = 11.7, 2.7 Hz, 1H), 3.22 (dd, J = 11.7, 6.6 Hz, 1H), 2.88 (s, 3H), 2.45 (s, 3H); MS (APCI,

6.6 Hz, 1H), 2.88 (s, 3H), 2.45 (s, 3H); MS (APCI, Neg. 20V) m/z 487 (M–H)⁻; HRMS (EI, Pos.) calcd for C₂₈H₂₅FN₂O₅: 488.1748; found: 488.1741; IR (KBr) 3438, 2925, 1684, 1603, 1574, 1512, 1434, 1369, 1299, 1254, 1170, 1151, 1039, 984, 959, 911, 846, 780, 760, 703, 615 cm⁻¹.

5.9.19. [2-Methyl-1-(4-{[(2S)-4, 6-dimethyl-3,4-dihydro-2H-1,4-benzoxazin-2-yl|methoxy{benzoyl)-1H-indol-4-yl|acetic acid (2s). 32% yield; TLC $R_f = 0.37$ (CH₃Cl/ MeOH, 10/1); ¹H NMR (300 MHz, CDCl₃) δ 7.74-7.69 (m, 2H), 7.06–6.82 (m, 5H), 6.73 (d, J = 8.1 Hz, 1H), 6.54-6.47 (m, 3H), 4.64 (m, 1H), 4.30 (dd, J = 9.9, 5.1 Hz, 1H), 4.20 (dd, J = 9.9, 6.3 Hz, 1H), 3.86 (s, 2H), 3.39 (dd, J = 11.4, 2.7 Hz, 1H), 3.26 (dd, J = 11.4, 6.6 Hz, 1H), 2.90 (s, 3H), 2.45 (d, J = 0.9 Hz, 3H), 2.28 (s, 3H); MS (EI, Pos.) m/z 484 (M⁺); Anal. Calcd for C₂₉H₂₈N₂O₅: C, 71.88; H, 5.82; N, 5.78. Found: C, 71.95; H, 5.91; N, 5.85; IR (KBr) 3430, 2921, 1699, 1666, 1604, 1576, 1510, 1478, 1435, 1419, 1368, 1338, 1288, 1240, 1189, 1171, 1136, 1065, 1039, 1015, 963, 912, 845, 807, 777, 758, 744, 706, 677, 641, $607, 591, 554, 521, 461 \,\mathrm{cm}^{-1}.$

5.10. Methyl 1,3-benzodioxole-2-carboxylate (17)

To a stirred suspension of sodium hydride (60% oil dispersion, 8.0g, 210 mmol) were added **16** (11.0g, 100 mmol) in DMF (400 mL) and methyl dichloroacetate (52 mL, 500 mmol) at room temperature under argon atmosphere. After stirring for 3 h at 95 °C, the reaction mixture was quenched with 2 M HCl aq and extracted with EtOAc (×2). The combined organic layers were washed with water, then brine, dried over Na₂SO₄ and concentrated in vacuo, to give a crude product, which was purified by column chromatography on silica gel to yield **17** (4.86g, 27%); TLC R_f = 0.43 (*n*-hexane/EtOAc, 3/1; ¹H NMR (300 MHz, CDCl₃) δ 6.90–6.87 (m, 4H), 6.33 (s, 1H), 3.86 (s, 3H).

5.11. 1,3-Benzodioxol-2-ylmethanol (15c)

To a stirred suspension of lithium aluminium hydride (760 mg, 20.0 mmol) in THF (10 mL) was added a solution of **17** (3.0 g, 16.7 mmol) in THF (20 mL) at 0 °C. After stirring for 20 min at room temperature, the reaction mixture was diluted with ether (50 mL) and quenched with saturated aqueous sodium sulfate under cooling. The resulting mixture was stirred for additional 1 h at room temperature. Insoluble substances were removed by filtration and the filtrate was evaporated to give a crude product, which was purified by column chromatography on silica gel to yield **15c** (602 mg, 8% for 2 steps); TLC R_f = 0.39 (*n*-hexane/EtOAc, 2/1); ¹H NMR (300 MHz, CDCl₃) δ 6.83–6.81 (m, 4H), 6.18 (t, J = 3.6Hz, 1H), 3.93 (dd, J = 6.6, 3.6Hz, 2H), 1.88 (t, J = 6.6Hz, 1H).

5.12. (4-Methyl-3,4-dihydro-2*H*-1,4-benzoxazin-2-yl)-methanol (15k)

To a stirred solution of **18** (4.47 g, 21.6 mmol) in acetone (50 mL) were added K_2CO_3 (5.96 g, 43.1 mmol) and methyl iodide (2.7 mL, 43.1 mmol) at room temperature under argon atmosphere, and stirring was continued for 16 h at 40 °C. The reaction mixture was diluted with EtOAc/*n*-hexane. The resulting precipitates were removed by filtration. The filtrate was concentrated in vacuo, to give a residue, which was used for the next reaction without further purification.

To a suspension of lithium aluminium hydride (1.59 g, 42 mmol) in THF (20 mL) was added a solution of above-described ethyl ester (4.78 g, 21.6 mmol) in THF (100 mL) at room temperature. After stirring for 1 h at room temperature, the reaction mixture was diluted with ether and quenched with saturated aqueous sodium sulfate at room temperature. The resulting mixture was stirred for additional 1 h at room temperature. Insoluble substance was removed by filtration and the filtrate was evaporated to give a crude product, which was purified by column chromatography on silica gel to yield **15k** (2.80 g, 75%); TLC R_f = 0.10 (*n*-hexane/EtOAc, 3/1); ¹H NMR (200 MHz, CDCl₃) 7.00–6.60 (m, 4H), 4.35 (m, 1H), 4.00–3.70 (m, 2H), 3.33–3.10 (m, 2H), 2.88 (s, 3H), 2.01 (m, 1H).

5.13. [(2*R*)-4-Methyl-3,4-dihydro-2*H*-1,4-benzoxazin-2yl]methanol (15m)

To a stirred solution of **19** (3.60 g, 14.1 mmol) in acetone (50 mL) were added K_2CO_3 (5.90 g, 42.3 mmol) and methyl iodide (2.7 mL, 42.3 mmol) at room temperature under argon atmosphere, and stirring was continued for 3h at 40 °C. The reaction mixture was diluted with EtOAc/*n*-hexane. The resulting precipitates were removed by filtration. The filtrate was concentrated in vacuo, to give a residue, which was used for the next reaction without further purification.

To a stirred solution of above-described benzyl ether in MeOH (30 mL) were added 10 wt % Pd–C (0.30 g) and 10% HCl–MeOH (10 mL) at room temperature. The resulting suspension was refluxed for 2 h under hydrogen atmosphere. Insoluble substance was removed by filtration. The filtrate was concentrated in vacuo, to give a crude product, which was purified by column chromatography on silica gel to yield **15m** (0.590 g, 23%); TLC $R_f = 0.10$ (*n*-hexane/EtOAc, 3/1); ¹H NMR (200 MHz, CDCl₃) δ 7.00–6.60 (m, 4H), 4.35 (m, 1H), 4.00–3.70 (m, 2H), 3.33–3.10 (m, 2H), 2.88 (s, 3H), 2.01 (m, 1H).

5.14. (4-Ethyl-3,4-dihydro-2*H*-1,4-benzoxazin-2-yl)methanol (15n)

To a stirred solution of **15**j (1.65g, 10mmol) in DMF (10mL) were added K_2CO_3 (2.7 g, 20mmol) and ethyl iodide (1.6mL, 20mmol) at room temperature under argon atmosphere, and stirring was continued for 16h at 50 °C. The reaction mixture was diluted with EtOAc/*n*-

hexane. The resulting precipitates were removed by filtration. The filtrate was concentrated in vacuo, to give a crude product, which was purified by column chromatography on silica gel to yield **15n** (1.32 g, 68%); TLC $R_f = 0.30$ (*n*-hexane/EtOAc); ¹H NMR (200 MHz, CDCl₃) δ 7.00–6.50 (m, 4H), 4.35 (m, 1H), 4.05–3.70 (m, 2H), 3.50–3.00 (m, 4H), 2.20–1.90 (m, 1H), 1.13 (t, J = 7.5 Hz, 3H).

5.15. 1,2,3,4-Tetrahydroquinoxalin-2-ylmethanol (21)

To a stirred solution of **20** (500 mg, 2.47 mmol) in THF (3mL) and MeOH (6mL) were added sodium borohydride (196 mg, 5.19 mmol) portionwise at 0 °C. After stirring for 1 h, the reaction mixture was quenched with saturated aqueous ammonium chloride, and extracted with EtOAc (×2). The combined organic layers were washed with water, brine, dried over Na₂SO₄ and concentrated in vacuo to give a residue, which was purified by column chromatography on silica gel to yield **21** (180 mg, 44%); TLC $R_f = 0.24$ (CHCl₃/MeOH, 9/1); ¹H NMR (300 MHz, CDCl₃) δ 6.66–6.48 (m, 4H), 3.73 (dd, J = 10.5, 4.8 Hz, 1H), 3.68–3.52 (m, 2H), 3.34 (dd, J = 10.5, 3.0 Hz, 1H), 3.24 (dd, J = 10.5, 6.0 Hz, 1H), 3.10–2.60 (br, 2H).

5.16. (1,4-Dimethyl-1,2,3,4-tetrahydroquinoxalin-2-yl)methanol (150)

To a stirred solution of **21** (180 mg, 1.10 mmol) in acetone (10 mL) were added K₂CO₃ (455 mg, 3.29 mmol) and methyl iodide (0.40 mL, 6.58 mmol) at room temperature under argon atmosphere, and stirring was continued for 16 h at 40 °C. The reaction mixture was quenched with water and extracted with EtOAc (×2). The combined organic layers were washed with water, brine, dried over Na₂SO₄ and concentrated in vacuo to give a residue, which was purified by column chromatography on silica gel to yield **150** (60 mg, 28%); TLC $R_f = 0.20$ (*n*-hexane/EtOAc, 7/3); ¹ H NMR (200 MHz, CDCl₃) δ 6.85–6.73 (m, 1H), 6.72–6.53 (m, 3H), 3.86 (dd, J = 10.8, 6.0 Hz, 1H), 3.75 (dd, J = 10.8, 3.9 Hz, 1H), 3.46–3.36 (m, 1H), 3.27–3.18 (m, 1H), 3.16–3.07 (m, 1H), 3.00 (s, 3H), 2.88 (s, 3H).

5.17. Methyl 1-methylindoline-2-carboxylate (23)

To a stirred solution of **22** (2.0 g, 12.26 mmol) in acetone (20 mL) were added K₂CO₃ (6.78 g, 49.0 mmol) and methyl iodide (3.1 mL, 49.0 mmol) at room temperature under argon atmosphere. After stirring for 16 h at room temperature, the reaction mixture was diluted with EtOAc/*n*-hexane. The resulting precipitates were removed by filtration. The filtrate was concentrated in vacuo, to give a residue, which was purified by column chromatography on silica gel to yield **23** (1.70 g, 73%); TLC $R_f = 0.70$ (*n*-hexane/EtOAc, 7/3); ¹H NMR (300 MHz, CDCl₃) δ 7.11 (t, J = 7.5 Hz, 1H), 7.05 (d, J = 7.5 Hz, 1H), 6.70 (t, J = 7.5 Hz, 1H), 6.51 (d, J = 7.5 Hz, 1H), 4.05 (t, J = 9.6 Hz, 1H), 3.80 (s, 3H), 3.34 (dd, J = 15.6, 9.6 Hz, 1H), 3.13 (dd, J = 15.6, 9.6 Hz, 1H), 2.84 (s, 3H).

5.18. (1-Methyl-2,3-dihydro-1*H*-indol-2-yl)methanol (15p)

To a stirred suspension of lithium aluminium hydride (675 mg, 17.8 mmol) in THF (20 mL) was added a solution of 23 (1.70g, 8.89 mmol) in THF (10 mL) at 0°C. After stirring for 1h at room temperature, the reaction mixture was diluted with ether and quenched with saturated aqueous sodium sulfate under cooling. The resulting mixture was stirred for additional 1h at room temperature. Insoluble substance was removed by filtration and the filtrate was evaporated to give a crude product, which was purified by column chromatography on silica gel to yield **15p** (1.30 g, 90%); TLC $R_f = 0.30$ (*n*-hexane/EtOAc, 7/3); ¹H NMR (300 MHz, CDCl₃) δ 7.16–7.05 (m, 2H), 6.73 (t, J = 7.5 Hz, 1H), 6.55 (d, J = 7.5 Hz, 1 H), 3.95 (dd, J = 11.7, 3.6 Hz, 1 H), 3.74– 3.60 (m, 1H), 3.56–3.44 (m, 1H), 3.16–2.96 (m, 2H), 2.77 (s, 3H), 1.94–1.76 (m, 1H).

5.19. (1-Methyl-2,3-dihydro-1*H*-indol-3-yl)methanol (15q)

To a stirred suspension of lithium aluminium hydride (276 mg, 7.20 mmol) in ether (7 mL) was added a solution of 23 (600 mg, 2.40 mmol) in ether (3 mL) at 0 °C. After stirring for 2h at room temperature, the reaction mixture was diluted with ether and quenched with saturated aqueous sodium sulfate under cooling. The resulting mixture was stirred for additional 1h at room temperature. Insoluble substance was removed by filtration and the filtrate was evaporated to give a crude product, which was purified by column chromatography on silica gel to yield 15q (350 mg, 89%); TLC $R_f = 0.23$ (*n*-hexane/EtOAc, 7/3); ¹H NMR (300 MHz, CDCl₃) δ 7.16–7.08 (m, 3H), 6.68 (dt, J = 0.9, 7.5 Hz, 1H), 6.49 (d, J = 7.5 Hz, 1H), 3.85–3.72 (m, 2H), 3.52– 3.34 (m, 2H), 3.32-3.22 (m, 1H), 2.75 (s, 3H); MS (APCI, Pos, 20V.) m/z 164 (M+H)⁺.

5.20. General procedure for the preparation of 26a and 26b

5.20.1. *N*-(2,4-Difluorophenyl)-4-methylbenzenesulfonamide (26a). To a stirred solution of 25a (20.8 g, 160 mmol) and pyridine (15.6 mL, 190 mmol) in CH₂Cl₂ (160 mL) were added *p*-toluenesulfonyl chloride (32.2 g, 170 mmol) at room temperature. After stirring for 16h at room temperature, the reaction mixture was quenched with 1 M HCl aq and extracted with CH₂Cl₂ (x2). The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated in vacuo to give 26a (46.2 g, 100%); TLC R_f = 0.46 (CH₂Cl₂); ¹H NMR (200 MHz, CDCl₃) δ 7.65–7.50 (m, 2H), 7.35–7.15 (m, 3H), 6.92–6.80 (m, 1H), 6.78–6.65 (m, 1H), 6.52–6.42 (m, 1H), 2.39 (s, 3H); MS (APCI, Pos, 20V.) *m*/z 284 (M+H)⁺.

5.20.2. *N*-(2-Fluoro-5-methylphenyl)-4-methylbenzenesulfonamide (26b). The title compound 26b was prepared from 25b according to the same procedure as described for the preparation of 26a from 25a: 88% yield; TLC $R_f = 0.50$ (CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) δ 7.67–7.63 (m, 2H), 7.39 (m, 1H), 7.24–7.20 (m, 2H), 6.86–6.81 (m, 2H), 6.63 (brs, 1H), 2.38 (s, 3H), 2.30 (s, 3H).

5.21. General procedure for the preparation of 27a and 27b

5.21.1. N-(2,4-Difluorophenyl)-N-[(2S)-3-triphenylmethyloxy-2-hydroxypropyl]-4-methylbenzenesulfonamide (27a). To a stirred solution of 26a (46.2g, 160mmol) and (S)-(-)-glycidyl triphenylmethyl ether (55.7g, 180mmol) in 1,4-dioxane (90mL) were added K₂CO₃ (2.21g, benzyltriethylammonium 16 mmol) and chloride (3.64g, 16mmol) at room temperature under argon atmosphere, and stirring was continued for 5h at 120°C. The reaction mixture was diluted with water and extracted with EtOAc (\times 2). The combined organic layers were washed with water, brine, dried over Na₂SO₄ and concentrated in vacuo to give 27a (115.6g, 100%), which was used for the next reaction without further purification; TLC $R_f = 0.29$ (*n*-hexane/EtOAc, 3/1); MS (EI, Pos.) m/z 599 (M⁺).

5.21.2. *N*-[(2*S*)-3-Trityloxy-2-hydroxypropyl]-*N*-(2-fluoro-5-methylphenyl)-4-methylbenzenesulfonamide (27b). The title compound 27b was prepared from 26b according to the same procedure as described for the preparation of 27a from 26a: 100% yield; TLC $R_f = 0.46$ (*n*-hexane/EtOAc, 2/1).

5.22. General procedure for the preparation of 28a and 28b

5.22.1. (2*S*)-2-[(Trityloxy)methyl]-7-fluoro-3,4-dihydro-2*H*-1,4-benzoxazine (28a). To a stirred solution of 27a (109 g, 150 mmol) in THF (150 mL) was added 'BuOK (20.2 g, 180 mmol) at room temperature under argon atmosphere, and then refluxed for 1 h. The reaction mixture was diluted with saturated NH₄Cl aq and extracted with EtOAc (×2). The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated in vacuo to give a crude product, which was used for the next reaction without further purification; TLC $R_f = 0.47$ (*n*-hexane/EtOAc, 3/1); MS (EI, Pos.) *m*/z 579 (M⁺).

To a stirred solution of the above-described crude product in THF (800 mL) was added dropwise a solution of sodium napthalenide at -78 °C, which was prepared from Na (22.2g, 0.96mol) and naphthalene (74.4g, 0.6 mol) in DME (600 mL) at room temperature. After stirring for 3h at -78 °C, the reaction mixture was quenched with saturated NH₄Claq and extracted with EtOAc (\times 2). The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated in vacuo to give a crude product, which was purified by column chromatography on silica gel to yield 28a (44.1 g, 69%) as a pale yellow oil; TLC $R_f = 0.46$ (*n*-hexane/EtOAc, 3/1); ¹H NMR (300 MHz, $CDCl_3$) δ 7.35-7.18 (m, 15H), 6.58-6.42 (m, 3H), 4.38-4.28 (m, 1H), 3.48-3.39 (m, 2H), 3.28-3.18 (m, 2H); MS (EI, Pos.) *m*/*z* 425 (M⁺).

5.22.2. (2*S*)-2-[(Trityloxy)methyl]-6-methyl-3,4-dihydro-2*H*-1,4-benzoxazine (28b). The title compound 28b was prepared from 27b according to the same procedure as described for the preparation of 28a from 27a: 94% yield; TLC $R_f = 0.36$ (*n*-hexane/EtOAc, 3/1); ¹H NMR (300 MHz, CDCl₃) δ 7.48–7.20 (m, 15H), 6.67 (d, J = 8.1 Hz, 1H), 6.45 (dd, J = 8.1, 1.8 Hz, 1H), 6.40 (d, J = 1.8 Hz, 1H), 4.29 (m, 1H), 3.49–3.42 (m, 2H), 3.27–3.20 (m, 2H), 2.19 (s, 3H).

5.23. General procedure for the preparation of 15c and 15s

5.23.1. [(2S)-7-Fluoro-4-methyl-3,4-dihydro-2*H*-1,4-benzoxazin-2-yl]methanol (15c). To a stirred solution of 28a (1.89 g, 4.4 mmol) in acetone (18 mL) were added K_2CO_3 (1.84 g, 13 mmol) and methyl iodide (0.83 mL, 13 mmol) at room temperature under argon atmosphere. After stirring for 9 h at 35 °C, the reaction mixture was quenched with saturated NaHCO₃ aq and extracted with EtOAc (×2). The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated in vacuo to give a crude product, which was used for the next reaction without further purification; TLC $R_f = 0.52$ (*n*-hexane/EtOAc, 3/1); MS (EI, Pos.) *m*/*z* 439 (M⁺).

A solution of the above-described crude product in THF (5 mL), acetic acid (13 mL) and water (2 mL) was heated at 100 °C. After stirring for 40 min at 100 °C, the reaction mixture was concentrated in vacuo to give an oily residue, which was purified by column chromatography on silica gel to yield **15r** (0.368 mg, 42%) as a pale brown oil; TLC $R_f = 0.09$ (*n*-hexane/EtOAc, 3/1); ¹H NMR (300 MHz, CDCl₃) δ 6.62–6.55 (m, 3H), 4.40–4.31 (m, 1H), 3.92–3.78 (m, 2H), 3.22–3.08 (m, 2H), 2.84 (s, 3H), 2.10–1.98 (m, 1H); MS (APCI, Pos. 20V) *m*/*z* 439 (M⁺).

5.23.2. [(2*S*)-4,6-Dimethyl-3,4-dihydro-2*H*-1,4-benzoxazin-2-yl]methanol (15s). The title compound 15s was prepared from **28b** according to the same procedure as described for the preparation of **28a** from **15r**: 45% yield; TLC $R_f = 0.44$ (*n*-hexane/EtOAc, 2/1); ¹H NMR (300 MHz, CDCl₃) δ 6.70 (d, J = 7.8 Hz, 1H), 6.50– 6.46 (m, 2H), 4.30 (m, 1H), 3.90–3.75 (m, 2H), 3.23– 3.13 (m, 2H), 2.87 (s, 3H), 2.26 (s, 3H), 2.03 (brs, 1H).

6. Biological assay method

6.1. Prostanoid mEP, mDP, hDP, and hIP receptor binding assay

Competitive binding studies were conducted using radioligand and membrane fractions prepared from Chinese hamster ovary (CHO) cells stably expressing the respective prostanoid receptors, mEP1, mEP2, mEP3a, mEP4, mDP, hDP, and hIP.

Membranes from CHO cells expressing prostanoid receptors were incubated with radioligand (2.5 nM of [³H]PGE₂ for mEP1-4 or 2.5 nM of [³H]PGD₂ for

mDP and hDP or 5.0nM of [³H]Iloprost for IP) and the test compounds at various concentrations in assay buffer (10mM KH₂PO₄-KOH buffer containing 100 mM NaCl, pH6.0 for mEP1-4, 25 mM HEPES-NaOH buffer containing 1mM EDTA, 5mM MgCl₂ and 10mM MnCl₂, pH7.4 for mDP and hDP, 50mM Tris-HCl buffer containing 1mM EDTA and 10mM MgCl₂, pH7.5, for IP-receptor). Incubation was carried out at room temperature for 60min except for mEP1, mDP, and hDP (20min), IP (30min). The incubation was terminated by filtration through Whatman GF/B filters. The filters were washed with ice-cold buffer (10mM KH₂PO₄-KOH buffer containing 100 mM NaCl, pH 6.0 for mEP1-4, 10 mM Tris-HCl buffer containing 100 mM NaCl and 0.01 w/v% BSA, pH7.4 for mDP and hDP, 10mM Tris-HCl buffer containing 100mM NaCl, pH7.5, for IP receptor), dried for 60min at 60°C and the radioactivity on the filter was measured in 6mL of liquid scintillation (ACSII) mixture with a liquid scintillation counter. Nonspecific binding was achieved by adding excess amounts of unlabeled PGE₂ (for mEP1-4) or unlabeled PGD₂ (for mDP and hDP) or unlabeled Iloprost (for IP) with assay buffer. The concentrations of the test substance required to inhibit the amounts of the specific binding in the vehicle group by 50% (IC₅₀ value) were estimated from the regression curve. The K_i value (M) was calculated according to the following equation:

$$K_{\rm i} = {\rm IC}_{50}/(1+[L]/K_{\rm d})$$

[L]: concentration of radioligand, K_d : dissociation constant of radiolabeled ligand towards the prostanoid receptors.

6.2. Measurement of the mDP and hDP receptor antagonist activity

To confirm that test compounds antagonize the mDP and hDP receptors and to estimate potencies of antagonism for the mDP and hDP receptors, a functional assay was performed by measuring PGD_2 -stimulated changes in intracellular second messenger cAMP (cyclic adenosine 3', 5'-monophosphate) as an indicator of receptor function.

For the assessment of the antagonist activity of test compounds, a suspension of CHO cells expressing mDP or hDP receptor was seeded at a cell density of 1×10^5 cells/well and cultivated for 2 days. The cells in each well were rinsed with minimum essential medium (MEM), and MEM containing 2µM of Diclofenac was added to each well. The cells were incubated for approximately 10min at 37°C and the culture medium was removed. The assay medium (MEM containing 0.1or1%) BSA, 1mM IBMX and 2µM Diclofenac) was added to each well and the cells were incubated for approximately 10min at 37°C. The assay medium containing 100 nM of PGD₂ for mDP or 10 nM of PGD₂ for hDP, or assay medium containing various concentrations of test compounds and 100nM of PGD₂ for mDP or 10nM of PGD₂ for hDP was added to each well zand the cells were further incubated for 10 min at 37°C. The reaction was terminated by the addition of ice-cold trichloroacetic acid (TCA; 10w/v%) and the

incubation mixture was frozen at -80 °C until the assay for cAMP.

The frozen incubation mixture was thawed, and the cells were detached with a cell scraper. After centrifugation of the reaction mixture, TCA was extracted by adding a mixture of 0.5 M tri-*n*-octylamine and chloroform (53/239, v/v) to the resultant supernatant, mixing and recentrifugation. The cAMP level in the resultant aqueous layer (upper layer) was determined by radioimmuno-assay using a cAMP assay kit (Amersham). The relative responsiveness (%) of cAMP production was calculated relative to the maximum increase in cAMP that occurred in the absence of test compound (100%) to estimate the IC₅₀ values.

6.3. Inhibitory effects of selected compounds on PGD2induced vascular permeability in guinea pig conjunctiva

Topical application of PGD_2 to the eye of guinea pigs is known to cause plasma exudation in the conjunctiva via DP receptor. We assessed the PGD_2 receptor antagonism of test compounds in conjunctival vascular permeability induced by PGD₂. For the assessment of the antagonist activity of the test compounds, male Hartley guinea pigs were challenged by instillation of PGD₂ $(0.01\%, 20 \mu L/eye)$ to the eye, and then 5% Evans blue dye (1 mL/kg, iv) was immediately injected as a marker of plasma exudation. All antagonists were orally administered 1h before the challenge. After 30 min, the guinea pigs were exsanguinated, and the eye tissue including conjunctiva were extracted. Isolated conjunctiva were incubated in DMF (1 mL) at 37 °C to extract the extravasated dye, and the incubation mixture was centrifuged. The absorption of the supernatant at 620 nm was determined, and the amount of Evans blue dye leaked into the tissues was quantified by interpolation on the standard curve.

6.4. Inhibitory effects of 2r and 2s on ovalbumin-induced vascular permeability in guinea pig conjunctiva

Male Hartley guinea pigs were sensitized by intraperitoneal injection of a mixture of ovalbumin (OVA) (1 mg) and inactivated *Bordetella pertussis* (5×10^9) . Two weeks later, animals were challenged by topical application of OVA (1%, 20 μ L/eye) to the eye, and then Evans blue dye (20 mg/kg, iv) was immediately injected as a marker of plasma exudation. All antagonists were orally administered 1 h before the antigen challenge. After 30 min, the guinea pigs were exsanguinated, and the eye tissue including conjunctiva were extracted. Isolated conjunctiva was incubated in DMF (1mL) at 37°C to extract the extravasated dye, and the incubation mixture was centrifuged. The absorption of the supernatant at 620 nm was determined, and the amount of Evans blue dye leaked into the tissues was quantified by interpolation on the standard curve.

6.5. Single dose rat pharmacokinetic study of 2s

Single dose pharmacokinetics of **2s** was studied in rats. Formulation for intravenous injection was prepared using 30% HP-β-CD containing 5% DMSO (1mg/ml/ kg). Formulation for oral dosing was prepared using 0.5% MC (10 mg/5 ml/kg). Test compounds (1 mg/kg) were dosed intravenously to the fasted male rats (n = 3). Test compounds (10 mg/kg) were dosed orally to the fasted male rats (n = 3). After dosing, blood samples $(250 \,\mu\text{L})$ were collected from the jugular vein using a heparinized syringe at the selected time points (iv: predosing, 2, 5, 15 and 30 min, 1, 2, 4, 6 and 8h; po: predosing, 5, 15 and 30 min 1, 2, 4, 6 and 8h, respectively). The blood samples were ice-chilled and then centrifuged at 12,000 rpm for 2 min at 4 °C to obtain plasma, which was preserved at -80 °C in a freezer. The AUC, C_{max} , $T_{\rm max}$, $T_{1/2}$, $V_{\rm ss}$ and CL were obtained by measuring the time course of the plasma concentration of the test compounds. Bioavailability (BA) was calculated according to the following equation:

BA (%) =
$$(AUC_{po}/D_{po})/AUC_{iv}/D_{iv}) \times 100$$

 AUC_{po} : AUC after oral dosing; AUC_{iv} : AUC after intravenous dosing; D_{po} : Dosage of oral administration; D_{iv} : Dosage of intravenous administration.

References and notes

- (a) Coleman, R. A. Prostanoids Receptors. In *The IUPHAR Compendium of Receptor Characterization and Classification*; Girdlestne, D., Ed.; Burlington: Cambridge, 1998; pp 229–244; (b) Coleman, R. A.; Smith, W. L.; Narumiya, S. *Pharmacol. Rev.* **1994**, *46*, 205–229.
- (a) Doyle, W. J.; Boehm, S.; Skoner, D. P. J. Allergy Clin. Immunol. 1990, 86, 924–935; (b) Johnston, S. L.; Smith, S.; Harrison, J.; Ritter, W.; Hawarth, P. H. J. Allergy Clin. Immunol. 1993, 91, 903–909; (c) Alving, K.; Matran, R.; Lundberg, J. M. Acta Physiol. Scand. 1991, 143, 93– 103.
- Matsuoka, T.; Hirata, M.; Tanaka, H.; Takahashi, Y.; Murata, T.; Kabashima, K.; Sugimoto, Y.; Kobayashi, T.; Ushikubi, F.; Aze, Y.; Yoshida, N.; Honda, Y.; Nagai, H.; Narumiya, S. Science 2000, 287, 2013–2017.
- (a) Woodward, D. F.; Hawley, S. B.; Williams, L. S.; Ralston, T. R.; Protzman, C. E.; Spada, C. S.; Nieves, A. L. *Invest. Ophthalmol. Vis. Sci.* **1990**, *31*, 138–146; (b) Woodward, D. F.; Nieves, A. L.; Friedlaender, J. *Pharmacol. Exp. Ther.* **1996**, *279*, 137–142.
- (a) Soter, N. A.; Lewis, R. A.; Corey, E. J.; Austen, K. F. J. Invest. Dermatol. 1983, 80, 115–119; (b) Flower, R. J.; Harvey, E. A.; Kingston, W. P. Br. J. Pharmacol. 1976, 56, 229–233.
- (a) Giles, H.; Leff, P.; Bolofo, M. L.; Kelly, M. G.; Robertson, A. D. Br. J. Pharmacol. 1989, 96, 291–300; (b) Tsuri, T.; Honma, T.; Hiramatsu, Y.; Okada, T.; Hashizume, H.; Mitsumori, S.; Inagaki, M.; Arimura, A.; Yasui, K.; Asanuma, F.; Kishino, J.; Ohtani, M. J. Med. Chem. 1997, 40, 3504–3507; (c) Mitsumori, S.; Tsuri, T.; Honma, T.; Hiramatsu, Y.; Okada, T.; Hashizume, H.; Inagaki, M.; Arimura, A.; Yasui, K.; Asanuma, F.; Kishino, J.; Ohtani, M. J. Med. Chem. 2003, 46, 2436–2445; (d) Mitsumori, S.; Tsuri, T.; Honma, T.; Hiramatsu, Y.; Okada, T.; Hashizume, H.; Inagaki, M.; Arimura, A.; Yasui, K.; Asanuma, F.; Kishino, J.; Ohtani, M. J. Med. Chem. 2003, 46, 2446–2455; (e) Sharif, N. A.; Williams, G. W.; Davis, T. L. Br. J. Pharmacol. 2000, 131, 1025–1038.
- (a) Torisu, K.; Kobayashi, K.; Iwahashi, M.; Egashira, H.; Nakai, Y.; Okada, Y.; Nanbu, F.; Ohuchida, S.; Nakai,

H.; Toda, M. Bioorg. Med. Chem. Lett. 2004, 14, 4557–4562; (b) Torisu, K.; Kobayashi, K.; Iwahashi, M.; Nakai, Y.; Onoda, T.; Nagase, T.; Sugimoto, I.; Okada, Y.; Matsumoto, R.; Nanbu, F.; Ohuchida, S.; Nakai, H.; Toda, M. Bioorg. Med. Chem., in press.

- Barlos, K.; Gatos, D.; Kallitsis, J.; Papaphotiu, G.; Sotiriu, P.; Wenqing, Y.; Schafer, W. *Tetrahedron Lett.* 1989, 30(30), 3943.
- 9. Mitsunobu, O. Synthesis 1981, 1.
- Mayer, S.; Arrault, A.; Guillaumet, G.; Merour, J. Y. J. Heterocycl. Chem. 2001, 38(1), 221–225.
- Bourlot, A. S.; Guillaumet, G.; Merour, J. Y. J. Heterocycl. Chem. 1996, 33(1), 191–196.
- 12. Albanese, D.; Landini, D.; Penso, M. Chem. Commun. 1999, 2095–2096.
- Keller-Schierlein, W.; Prelog, V. Helv. Chim. Acta 1957, 40, 205.

- Russell, J. R.; Garner, C. D.; Joule, J. A. J. Chem. Soc. 1992, 1245–1249.
- 15. Nagashima, T.; Curran, D. P. Synlett 1996, 330-332.
- 16. Lattanzi, A.; Scettri, A. Synlett 2002, 942-946.
- 17. Bradsher, C. K.; Reames, D. C. J. Org. Chem. 1978, 43, 3800.
- Czompa, A.; Kovacs, T.; Antus, S. J. Heterocycl. Chem. 2000, 37(4), 991–995.
- Broggini, G.; Folcia, F.; Sardone, N.; Sonzogni, M.; Zecchi, G. *Tetrahedron: Asymmetry* 1996, 7(3), 797– 806.
- 20. Delgado, A.; Leclerc, G.; Lobato, C.; Mauleon, D. *Tetrahedron Lett.* **1988**, *29*(30), 3671.
- Antus, S.; Gottsegen, A.; Kajtar, J.; Kovacs, T.; Toth, T. S.; Wagner, H. *Tetrahedron: Asymmetry* 1993, 4(3), 339–344.
- 22. Kuwabe, S.; Torraca, K. E.; Buchwald, S. L. J. Am. Chem. Soc. 2001, 123(49), 12202–12206.