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a b s t r a c t

A series of 2, 20: 60 , 20 0-terpyridine-based chromophores (L1, L2, L3 and L4) with intramolecular ‘push
epull’ structure have been designed and synthesized. The single crystals of L1, L2 and L4 were
obtained and solved by X-ray diffraction analysis. The photophysical behavior and the connections
between structure and properties of the chromophores were investigated both experimentally and
theoretically. It is revealed that the chromophores exhibit sensitive single-photon-excited fluorescence
emission with high quantum yields, strong two-photon-excited fluorescence and large two-photon
absorption cross sections, especially in DMF solution. It was also found that methylformate units as
a peripheral groups attached to the triphenylamine moiety influence the structures, photophysical
properties of the chromophores obviously.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, organic nonlinear optical materials [1,2] with striking
two-photon absorption (TPA) effect and large TPA cross sections
have attracted growing interest due to their potential applications
in the areas of optical limiting [3e6], two-photon photodynamic
therapy [7], multiphoton fluorescence microscopy [8e10], three-
dimensional (3D) optical data storage [11e13], 3-D micro-
fabrication [14e17]. These applications strongly depend on the large
TPA cross sections of the specifically engineered organic molecules.

Therefore, many research groups have focused on designing and
synthesizing new compounds exhibiting large TPA cross sections
(dTPA) values in the field of functional materials. In recent publica-
tions, well-defined strategies have successfully been used to design
organic molecules with large dTPA and high quantum yield (F). A
variety of dipolar (donor-bridge-acceptor, D-p-A), quadrupolar (D-
p-D, D-p-A-p-D, A-p-D-p-A), and multipolar chromophore
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molecules were reported, and their structure-TPA properties were
investigated [18e20]. However, apart from the high dTPA values, TPA
chromophores have to satisfy various requirements for the specific
purposes, such as excellent photostability, proper water solubility,
and good biocompatibility. In this context, a series of terpyridine-
based chromophores with TPA activity and coordinating abilities
were designed, which is based on the following considerations: (1)
2, 20: 60, 200-terpyridine and their structural analogs with rich
coordination chemistry have been extensively studied for their
high binding affinity toward a variety of transition as well as rare
earth metal ions, giving rise to diverse metallo-supramolecular
architectures, resulting in interest redox and photophysical prop-
erties [21e26]; (2) triphenylamine moiety having a strong electron
donor and efficient p-electron bridge, along with vinyl group, as
a building block has been used to develop TPA chromophores
[27e29]; (3) methylformate group attached to the triphenylamine
moiety is of potential coordinating group after its hydrolysis. So this
design strategy combines those advantages to construct novel
model terpyridine-based TPA chromophores shown in Scheme 1
(L1, L2, L3 and L4). Herein, the synthesis and their photophysical
properties of them were systematically investigated both experi-
mentally and theoretically.
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Scheme 1. Chemical structures of L1, L2, L3 and L4.
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2. Experiments

2.1. Materials and apparatus

All chemicals used were of analytical grade. The solvents were
purified by conventional methods. The 1H NMR and 13C NMR
spectra recorded on at 25 �C using Bruker Avance 400 spectrom-
eter were reported as parts per million (ppm) from TMS. Mass
spectra were determined with a Micromass GCT-MS (EI source). IR
spectra were recorded on NEXUS 870 (Nicolet) spectrophotometer
in the 400e4000 cm�1 region using a powder sample on a KBr
plate.

X-ray diffraction data of single crystals were collected on CCD
diffractometer. The determination of unit cell parameters and data
collections were performed with Mo-Ka radiation (l ¼ 0.71073 Å).
Unit cell dimensionswere obtainedwith least-squares refinements,
and all structures were solved by direct methods using SHELXS-97.
The other non-hydrogen atoms were located in successive differ-
ence Fourier syntheses. The final refinementwas performed by full-
matrix least-squares methods with anisotropic thermal parameters
for non-hydrogen atoms on F2. The hydrogen atoms were added
theoretically and riding on the concerned atoms.

UVevis absorption spectra were recorded on UV-265 spectro-
photometer. Fluorescence measurements were performed using
a Hitachi F-7000 fluorescence spectrophotometer.
2.2. Measurements

2.2.1. The fluorescence quantum yields (F)
The fluorescence quantum yields (F) were determined by using

coumarin 307 as the reference according to the literature method
[30]. Quantum yields were corrected as follows:

Fs ¼ Fr

�
Arh2s Ds

Ash2r Dr

�

Where the s and r indices designate the sample and reference
samples, respectively, A is the absorbance at lexc, h is the average
refractive index of the appropriate solution, and D is the integrated
area under the corrected emission spectrum [31].
2.2.2. TPA cross-section (d)
TPEF spectra were measured using femtosecond laser pulse and

Ti: sapphire system (680e1080 nm, 80 MHz, 140 fs, Chameleon II)
as the light source. All measurements were carried out in air at
room temperature. TPA cross sections were measured using two-
photon-induced fluorescence measurement technique. The TPA
cross sections (d) are determined by comparing their TPEF to that of
fluorescein in different solvents, according to the following equa-
tion [32]:

d ¼ dref
Fref
F

cref
c

nref
n

F
Fref

Here, the subscripts ref stands for the reference molecule. d is
the TPA cross-section value, c is the concentration of solution, n is
the refractive index of the solution, F is the TPEF integral intensities
of the solution emitted at the exciting wavelength, and F is the
fluorescence quantum yield. The dref value of reference was taken
from the literature [33].

2.2.3. Fluorescence lifetime
For time-resolved fluorescence measurements, the fluorescence

signals were collimated and focused onto the entrance slit of
a monochromator with the output plane equipped with a photo-
multiplier tube (HORIBA HuoroMax-4P). The decays were analyzed
by ‘least-squares’. The quality bof the exponential fits was evalu-
ated by the goodness of fit (c2).
2.3. Preparation

2.3.1. 40-(4-(Diphenylamino)phenyl)-2,20:60,20 0-terpyridine (L1)
L1 was synthesized according to literature method [34].

2.3.2. 40 0-(40-(4-(Diphenylamino)phenyl)aldehyde)-2,20:60,20 0-
terpyridine (1)

L1 (1.50 g, 3 mmol) and DMF (1.00 g, 13.7 mmol) were mixed in
an ice bath, and then a solution of POCl3 (2.00 g, 13.0 mmol) was
added into the mixture dropwise in 10 min, and refluxed for 12 h.
After being cooled to room temperature, the mixture was poured
into ice water, adjusted to pH ¼ 8 with sodium hydroxide, and then
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filtered. The solid was purified by silica gel chromatography column
using petroleum/ethylacetate (5:1 v/v) as the eluent. Yellow solid
product 1 was collected. Yield 62.5%. Mp: 80 �C 1H NMR (CDCl3,
400 MHz): 9.83 (s, 1H), 8.72 (m, 6H), 8.01 (m, 4H), 7.80 (d, 2H), 7.52
(m, 4H), 7.29 (m, 5H), 7.05 (m, 2H). MS: m/z (%) ¼ 504.20 (100).
FT-IR (KBr, cm�1): 3427, 3057, 2924, 2726, 1691, 1586, 1508, 1489,
1469, 1439, 1390, 1324, 1281, 1219, 1164, 1117, 1075, 1038, 991, 895,
824, 792, 742, 717, 697, 658, 623, 578, 527.

2.3.3. 40 0 0,40 0-(40-(4-(Diphenylamino)phenyl)aldehyde)-2,20:60,20 0-
Terpyridine (2)

2 was synthesized reference to 1. Brown solid product 2 was
collected (yield 73.3%). 1H NMR (DMSO-d6, 400 MHz): 9.92 (s, 2H),
8.76 (t, 4H), 8.69 (d, 2H), 8.04 (d, 4H), 7.90 (d, 4H), 7.53 (t, 2H), 7.38
(d, 2H), 7.28 (d, 4H). MS: m/z (%) ¼ 504.20 (100). FT-IR (KBr, cm�1):
3464, 3060, 2919, 2850, 1714, 1546, 1508, 1474, 1434, 1365, 1321,
1179, 1111, 1069, 1015, 968, 834, 793, 769, 731, 702, 659, 637, 528.

2.3.4. 40 0 0,40 0-(40-(4-(Diphenylamino)phenyl)dibenzoic acid)-
2,20:60,20 0-terpyridine (3)

2 (1.00 g, 2 mmol) was dissolved in 150 mL of acetone, to which
the aqueous solution 50 mL of KMnO4 (1.26 g, 4 mmol) and K2CO3
(0.28 g, 2 mmol) were added slowly. The mixture was refluxed for
Scheme 2. Synthes
12 h, cooled and filtered. The filtrate was adjusted to pH ¼ 1 with
HCl, then filtered. The crude product was recrystallized from
anhydrous ethanol to give 0.75 g yellow crystals 3with yield 70.8%.
Mp: 25 �C 1H NMR (DMSO-d6, 400 MHz): 8.81 (t, 6H), 8.18(t, 2H),
8.03 (d, 2H), 7.92 (d, 4H), 7.65(t, 2H), 7.33 (d, 2H), 7.18(d, 4H).

2.3.5. 40-(4-2-[dimethyl4,40-(phenylazanediyl)dibenzoate] phenyl)-
2,20:60,20 0-terpyri-dine (L2)

3 (0.75 g 1.32 mmol) was dissolved in 100 mL miscible liquids
(methanol and H2SO4). The mixture was refluxed for 8 h. And then
cooled to room temperature, the most methanol in the mixturewas
removed. The residuewas dispersed in a large amount of water. The
solution was adjusted to pH ¼ 8 with K2CO3 and extracted three
times with CH2Cl2. The organic layer was dried over anhydrous
MgSO4. The crude product was purified by silica gel chromatog-
raphy column using petroleum/ethylacetate (15:1 v/v) as the
eluent. Light yellow solid L2 was collected. Yield 75.6%. Mp: 80 �C
1H NMR: (CDCl3, 400 MHz): 8.85 (s, 2H), 8.77 (d, 4H), 8.01 (q, 8H),
7.50 (t, 2H), 7.42 (d, 2H), 7.27 (d, 4 H), 3.89 (s, 6H). 13C NMR (DMSO-
d6, 100 MHz): 165.6, 155.6, 154.8, 150.2, 149.2, 148.5, 146.7, 137.5,
133.7, 130.9, 128.5, 126.2, 124.5, 124.1, 122.9, 120.9, 117.5, 51.9. Anal.
Calcd. for C37H28N4O4: C, 74.95; H, 4.74; N, 9.39; O,10.76%. Found: C,
74.99; H, 4.76; N, 9.45; O, 10.80%. MS:m/z (%) ¼ 592.22 (100). FT-IR
is route for L2.
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(KBr, cm�1): 3416, 3054, 2947, 1722, 1599, 1508, 1515, 1466, 1431,
1389, 1319, 1264, 1174, 1105, 1037, 1013, 990, 956, 892, 851, 792, 767,
737, 703, 659, 642, 623, 578, 523.

2.3.6. 40-(4-{2-[4-(N,N-Diphenylamino)phenyl]ethenyl}phenyl)-
2,20: 60,20 0-terpyridine (L3)

L3 was synthesized according to literature method [35].

2.3.7. 4,40-(phenylazanediyl)dibenzaldehyde (4)
Triphenylamine (12.20 g, 50 mmol) and DMF (37.00 g,

500 mmol) were mixed in ice bath and then POCl3 (14.50 g,
100 mmol) was added dropwise within 10 min. The mixture was
refluxed for 7 h, monitored by TLC. The mixture was cooled, poured
into ice water, and then neutralized using saturated aqueous NaOH
(adjust the pH > 8). The solution was extracted three times with
Scheme 3. Synthes
CH2Cl2, and then dried using magnesium sulfate over night. The
solvent was removed in vacuo. The residue was purified by flash
column chromatography (petroleum/ethylacetate (20:1 v/v) as the
eluent) to get yellow solid of 4. Yield 73.3%. Mp: 95 �C 1H NMR:
(CDCl3, 400 MHz): 9.88 (s, 2H), 7.84 (d, 4H), 7.47 (t, 2H), 7.31 (t, 1H),
7.28 (m, 6H). FT-IR (KBr, cm�1): 1687, 1582, 1502, 1329, 1293, 1213,
1159, 819, 758, 700, 642, 537, 512.

2.3.8. 4,40-(phenylazanediyl)dibenzoic acid (5)
To a solution of 4 (9.03 g, 30 mmol) in 150 mL of acetone,

a solution of KMnO4 (18.96 g, 120 mmol) and K2CO3 (2.75 g,
20 mmol) in 200 mL H2O was added slowly dropwise. The mixture
was refluxed for 7 h, and filtered. The solution was adjusted to
pH ¼ 1 with HCl, and then filtered. The crude product was
recrystallized from anhydrous ethanol to give 7.32 g yellow crystals
is route for L4.



Table 1
Crystal data collection and structure refinement of L1, L2 and L4.

Compound L1 L2 L4

Chemical formula C32H24N4 C74H56N8O8 C45 H34 N4 O4

Formula weight 486.50 1185.27 694.76
Crystal system Triclinic Triclinic Monoclinic
Space group P�ı P�ı P2/c
a (Å) 9.298(5) 8.145(5) 16.892(8)
b (Å) 11.366(5) 19.587(5) 19.541(7)
c (Å) 12.783(5) 19.968(5) 11.714(8)
a (�) 107.334(5) 105.366(5) 90
b (�) 98.911(5) 94.884(5) 108.830 (7)
g (�) 98.521(5) 93.516(5) 90
V (Å3) 1246.7(10) 3049(2) 3660(3)
Z 2 2 4
R1, wR2 [I � 2s(I)] 0.0428, 0.0980 0.0651, 0.1493 0.0648, 0.1827
R1, wR2 (all data) 0.0676, 0.1159 0.1835, 0.2259 0.2081, 0.3324
GOF 0.970 0.916 0.959

Table 2
Selected bond lengths (Å) and angles (�) for of L1, L2 and L4.

L1
C(4)eN(4) 1.423(2) C(7)eN(4) 1.430(2)
C(13)eN(4) 1.405(2) N(2)eN(24) 1.338(2)
N(2)eC(28) 1.331(2) N(1)eC(22) 1.342(2)
N(1)eC(21) 1.343(2) N(3)eC(29) 1.333(2)
N(3)eC(32) 1.337(2) C(4)eN(4)eC(13) 121.00(14)
C(4)eN(4)eC(7) 118.12(13) C(7)eN(4)eC(13) 120.88(15)
L2
C(6)eN(1) 1.423(5) C(9)eN(1) 1.417(5)
C(17)eN(1) 1.442(4) C(6)eN(1)eC(17) 119.9(3)
C(6)eN(1)eC(9) 121.4(3) C(9)eN(1)eC(17) 118.7(3)
C(32)eN(3)eC(28) 116.2(4) C(26)eN(2)eC(24) 117.2(3)
C(33)eN(4)eC(37) 117.3(4)
L4
C(21)eC(22) 1.481(8) C(22)eC(23) 1.224(9)
C(23)eC(24) 1.493(8) C(29)eN(4) 1.412(6)
C(30)eN(4) 1.430(6) C(36)eN(4) 1.408(6)
N(1)eC(8) 1.336(5) N(1)eC(12) 1.338(5)
N(2)eC(7) 1.341(4) N(2)eC(6) 1.339(4)
N(3)eC(5) 1.328(5) N(3)eN(1) 1.328(6)
C(20)eC(21)eC(22) 122.9(7) C(23)eC(22)eC(21) 129.8(9)
C(29)eN(4)eC(30) 118.3(4) C(29)eN(4)eC(36) 122.9(4)
C(36)eN(4)eC(30) 118.4(4)

B. Liu et al. / Dyes and Pigments 95 (2012) 149e160 153
5. Yield 73.2%. Mp: 25 �C 1H NMR: (CDCl3, 400 MHz): 7.96 (d, 2H),
7.44 (t, 2H), 7.26 (t, 1H), 7.21 (d, 2H), 7.13 (d, 4H). FT-IR (KBr, cm�1):
3425, 3002, 1687, 1593, 1517, 1484, 1419,1318, 1278, 1173, 848, 765,
704 523.

2.3.9. dimethyl 4,40-(phenylazanediyl)dibenzoate (6)
5 (6.66 g, 20 mmol) was dissolved in 200 mL miscible liquids

(methanol and H2SO4). The mixture was refluxed for 8 h. After the
mixturewas cooled to room temperature, themost methanol in the
mixture was removed. The residue was dispersed into 200 mL of
water. The solution was adjusted to pH ¼ 8 with K2CO3 and
extracted three times with CH2Cl2. The solvent was removed in
vacuo. The residue was purified by silica gel chromatography
column using petroleum/ethylacetate (15:1 v/v) as the eluent. Light
yellow solid product 6 was collected. Yield 84.3%. Mp: 80 �C 1H
NMR: (CDCl3, 400 MHz): 7.93 (d, 4H), 7.36 (m, 2H), 7.28 (s, 1H), 7.17
(m, 7H), 3.91 (s, 6H). FT-IR (KBr, cm�1): 2947, 1715, 1601, 1495, 1427,
1313, 1275, 1098, 853, 751, 691, 527.

2.3.10. dimethyl 4,40-(4-formylphenylazanediyl)dibenzoate (7)
6 (3.61 g, 10 mmol) and DMF (5 mL) were mixed cooled in ice

bath, and then a solution of POCl3 (100 mL) was added dropwise for
10 min and refluxed for 7 h. After being cooled to room tempera-
ture, the mixture was poured into 200 mL of water and adjusted to
Fig. 1. Crystal str
the pH ¼ 1 with sodium hydroxide. The solution was extracted
three times with CH2Cl2. The organic layer was dried over anhy-
drous MgSO4, the residuewas purified by silica gel chromatography
column using petroleum/ethylacetate (20:1 v/v) as the eluent.
Yellow solid product 7 was collected. Yield 78.2%. Mp: 95 �C 1H
NMR (CDCl3, 400 MHz): 9.92 (s, 1H), 8.01 (m, 4H), 7.80 (m, 2H), 7.13
(m, 6H), 3.93 (s, 6H). Anal. Calcd. for C23H19NO5: C, 70.98; H, 4.81;
N,10.28; O, 20.62%. Found: C, 70.95; H, 4.88; N, 3.60; O, 20.57%. MS:
m/z (%) ¼ 389.13(100). FT-IR (KBr, cm�1): 1723, 1593, 1499, 1322,
1275, 1170, 1173, 830, 769, 700, 527.

2.3.11. 4-(2,20: 60,20 0-terpyridyl-40)-benzyl triphenyl phosphonium
bromide (9)

9 was synthesized according to literature method [35,36].

2.3.12. 40-(4-{2-[dimethyl4,40-(phenylazanediyl)dibenzoate]
ethenyl}phenyl)-2,20:60,20 0-t erpyridine (L4)

t-BuOK (1.20 g, 10 mmol) was placed into a dry mortar, then 9
(3.40 g, 5 mmol) and 7 (1.00 g, 2.6 mmol) were mixed, and milled
ucture of L1.



Fig. 2. Crystal structure of L2.
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vigorously for about 30 min. After completion of the reaction
(monitored by TLC), the mixture was dispersed in 200 mL of
dichloromethane, the solvent was removed in vacuo, filtered and
the solution was extracted with CH2Cl2. The residue was purified
by silica gel chromatography column using petroleum/ethyl-
acetate (10:1 v/v) as the eluent. Solid product L4 was collected.
Yield 70.2%. 1H NMR (CDCl3, 400 MHz): 8.83 (t, 6H), 8.18 (m, 2H),
8.03 (d, 2H), 7.87 (m, 6H), 7.70 (m, 4H), 7.45e7.41(d, J ¼ 16.00, 1H),
7.37e7.33 (d, J ¼ 16.00, 1H), 7.15 (m, 6H), 3.83 (s, 6H). 13C NMR
(CDCl3, 100 MHz): 166.6, 156.2, 155.9, 150.8, 149.6, 149.1, 145.5,
138.1, 137.4, 136.9, 134.1, 131.1, 128.4, 127.9, 127.6, 127.0, 126.2,
124.4, 123.8, 122.7, 121.4, 118.5, 52.0. Anal. Calcd. for C45H34N4O4:
C, 77.78; H, 4.88; N, 7.91; O, 9.25%. Found: C, 77.81; H, 4.90; N,
8.07; O, 9.22%. MS: m/z (%) ¼ 694.25 (100). FT-IR (KBr, cm�1):
Fig. 3. Crystal str
3444, 3036, 2924, 2854, 1717, 1641, 1596, 1544, 1509, 1489, 1463,
1435, 1395, 1318, 1274, 1177, 1110, 1075, 1031, 994, 968, 911, 832,
791, 756, 739, 695, 610, 531.

3. Results and discussion

The synthesis of the ligands (L2 and L4) was illustrated in
Scheme 2 and 3. L1 and L3were synthesized according to literature
method [34,35]. And through the Solvent-free Wittig or
FriedeleCrafts reactions, L2 and L4were synthesized in high yields,
and purified either using recrystallization or column chromatog-
raphy. The structures of ligands were confirmed by IR, 1H NMR, and
13C NMR spectra. Mass spectra and elemental analyses were used to
further verify the structures of the chromophores. Additionally,
ucture of L4.



Table 4
Single-photon-related photophysical properties of L1, L2, L3 and L4 in several
different solvents.
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their crystal structures were determined by single crystal X-ray
diffraction analysis.
Cmpd Solvents lmax
a ( 3max

b) lmax
c Fd s/nse

L1 C6H6 289(4.47) 359(3.41) 430 0.56 2.37
CH2Cl2 287(4.54) 357(3.43) 465 0.52 3.97
THF 286(4.94) 355(3.81) 449 0.63 3.43
CH3COOC2H5 286(4.68) 354(3.71) 454 0.54 3.27
CH3CN 283(4.67) 353(3.66) 492 0.22 4.89
DMF 286(5.07) 357(3.73) 487 0.40 5.25

L2 C6H6 276(4.18) 353(6.77) 404 0.45 1.45
CH2Cl2 278(3.52) 352(6.94) 427 0.38 1.77
THF 276(3.67) 349(6.75) 421 0.41 1.55
CH3COOC2H5 276(3.43) 348(6.53) 417 0.42 1.56
CH3CN 277(3.47) 349(6.32) 450 0.41 2.61
DMF 277(3.38) 352(5.97) 446 0.48 2.52

L3 C6H6 296(4.55) 386(3.98) 461 0.32 1.38
CH2Cl2 294(4.82) 386(4.19) 510 0.23 2.09
THF 294(4.65) 383(4.22) 494 0.34 1.88
CH3COOC2H5 292(5.01) 381(4.23) 494 0.36 1.79
CH3CN 290(4.96) 381(4.24) 526 0.19 2.61
DMF 294(4.61) 387(4.74) 526 0.17 2.60

L4 C6H6 286(4.37) 360(6.01) 440 0.41 1.08
CH2Cl2 279(5.52) 356(6.29) 426, 443 0.26 1.54
THF 289(4.49) 356(6.61) 468 0.38 1.44
CH3COOC2H5 285(4.70) 355(6.52) 463 0.39 1.38
CH3CN 287(4.50) 355(6.76) 506 0.25 1.95
DMF 290(4.49) 360(6.72) 505 0.29 1.95

a Peak position of the longest absorption band.
b Maximum molar absorbance in 104 mol�1 L cm�1.
c Peak position of SPEF, exited at the absorption maximum.
d Quantum yields determined by using RhB and coumarin as standard.
e The fitted fluorescence lifetime.
3.1. Crystal structures of L1, L2 and L4

The crystal data collection, and refinement parameters are listed
in Table 1. Selected bond lengths and angles are given in Table 2.

The crystal structures of L1 and L2 are shown in Fig. 1 and Fig. 2,
respectively. As shown in Fig. 1, chromophore L1 consists of ter-
pyridyl (acceptor) and triphenylamine (donor) moieties. The
central pyridinyl (labeled P0) is arranged with a phenyl (P3) and
two pyridine planes (P1 and P2) being 4.16� (P0 and P1), 6.79�

(P0 and P2) and 32.50� (P0 and P3). The result indicates that the
terpyridyl group is seldom coplanar. At the diphenylamino donor
end, the central nitrogen and its three bended carbon atoms are
basically coplanar, forming a quasi-equilateral trigonal NC3 plane
(defined as the P6 plane), with the sum of the three CeNeC angles
(360.0�). Around the central nitrogen, three phenyl ring planes
(P3, P4 and P5, respectively) are arranged in a propeller-like fashion
(P3 and P6: 29.47�, P4 and P6: 49.36�, P5 and P6: 64.82�).

Compared with L1, it is difference that the crystal structure of
L2 is shown in Fig. 2, methylformate groups attached to the tri-
phenylamine moiety in the molecule L2 make the whole molec-
ular structure changes: (1) In the terpyridyl acceptor moiety, the
central pyridinyl (labeled P00) is arranged with a phenyl (P30) and
two pyridine planes (P10 and P20) being 9.18� (between P00 and
P10), 8.83� (P00 and P20) and 37.00� (P00 and P30); (2) Around the
central nitrogen N1, three phenyl ring planes (P30, P40 and P50,
respectively) are differently arranged in a propeller-like fashion
with angles: P30 and P6: 45.87�, P40 and P6: 35.04�, P50 and P6:
30.97�.

The crystal structure of L4 is shown in Fig. 3. Compared with
the crystal structure of L3 [35], methylformate groups attached to
the triphenylamine moiety make molecular structure changes: the
parameters are presented in Table 3. The linkage between two
phenyl rings (P2 and P5) is quite conjugated with bond lengths
C(21)eC(22): 1.481(8) Å, C(22)]C(23): 1.224(9) Å and C(23)e
C(24): 1.493(8) Å. It can be seen from Table 2 that all the bond
lengths of CeC are located between the normal C]C double bond
(1.34 Å) and CeC single bond (1.54 Å), which show that there is
a higher delocalized p-electron system in L4 molecule. Because
crystallographic disorder appears in C(22) and C(23), the bond
length of C(22)eC(23) (1.224(9) Å) is shorter than the normal C]C
bond length.

To summarize, the donor-acceptor (D-A) (L1 and L2) and donor-
p-acceptor (D-p-A) types (L3 and L4) from 2, 20: 60, 200-terpyridine-
based organic heterocyclic molecules were crystallographically
confirmed. Methylformate groups attached to the triphenylamine
moiety make the conformation of the molecular structures, bond
angles and bond lengths changes. The structural features suggest
that all nonhydrogen atoms are highly conjugated, leading to the
charge transfer from triphenylamine and ethylformate groups to
terpyridyl moiety.
Table 3
Conformational parameters for L3 and L4.

L3 L4

P0,5 14.1� 27.07�

P0,6 7.0� 7.98�

P0,7 2.3� 5.70�

P1,2 43.2� 42.06�

P1,3 34.4� 24.86�

P1,4 43.7� 55.79�

P0,5 represent the dihedral angles between P0 and P5, and so on.
3.2. Absorption and single-photon exited fluorescence (SPEF)

3.2.1. Linear absorption properties and TD-DFT studies
The photophysical data of the compounds were summarized in

Table 4. The linear absorption, emission and two-photon absorp-
tion spectra of L1 and L2 in six organic solvents are shown in Fig. 4
(Fig. S1), from which one can see that their absorption spectra
exhibit dual bands in the 270e400 nm range in all the solvents. The
low-energy band was tentatively assigned to the p / p* or intra-
ligand charge transfer (ICT) transition, while the high-energy band
was assigned to the p / p* transition of the triphenylamine
moiety. As shown in Fig. S1 and Table 4, weak solvatochromismwas
Fig. 4. Linear absorption (c ¼ 1 � 10�5 mol L�1), SPEF (c ¼ 1 � 10�5 mol L�1) and TPEF
(c ¼ 1 � 10�3 mol L�1) spectra of L1 and L2 in DMF, respectively.
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observed, indicating the L1e4 molecules with fairly small dipole
moments and the difference in dipoles between ground and excited
state [37]. It was also found that the methylformate, as a peripheral
substituting groups attached to the triphenylamine moiety, make
the absorption bands blue-shifted and the intensity of the high-
energy band decrease for the compounds (L2, L4). The results
will be further corroborated by calculations.

TD-DFT computational studies were performed to elucidate the
electronic structures of the ground state of L1-4. The schematic
representation of the molecular orbitals of L1-4 was exhibited in
Figs. 5 and 6, Figs. S2 and S3, and the energies and compositions of
some frontier orbitals are listed in Table 5. The absorption spectra of
the investigated chromphores show similar features, while transi-
tions of the main p / p* character were found at a higher energy.
Fig. 5. Molecular orbital energy
Fig. 5 shows the calculated frontier orbitals of (L1). The band
calculated is at 330 nm, which mainly originates from transitions of
HOMO�1 to LUMO. At shorter wavelengths, a broad band found at
285 nm around may be related to the calculated intense band at
281 nm, corresponding to the HOMO�1 to LUMOþ2. Fig. 6 shows
the calculated frontier orbitals of (L2). The lowest energy band
calculated is at 359 nm. This band mainly originates from transi-
tions of HOMO to LUMOþ2, which can be assigned to a charge
transfer (CT) transition due to the triphenylamine characteristic
HOMO and terpyridyl with triphenylamine characteristic LUMO. At
shorter wavelengths, a band found at 275 nm approximately may
be related to the calculated intense band at 280 nm. The transition
corresponds to the HOMO�1 to LUMOþ1. The experiment and
theoretical calculation are consistent. Overall, these initial DFT and
diagram for L1 (DFT/B3LYP).
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TD-DFT calculations on (L1, L2, L3 and L4) provide reasonable
explanations for their absorption spectra.

3.2.2. Single-photon exited fluorescence (SPEF)
The one-photon fluorescence spectra of the series of chromo-

phores in six different solvents are collected in Table 4, including
fluorescence quantum yields and lifetimes (corresponding figures
are given in Supporting information). Their emission range can be
tuned by changing the nature of the peripheral substituting groups
and of the polarity of the solvents. In addition, all the chromo-
phores exhibit high fluorescence quantum yields in the different
solvents. With increasing polarity of the solvent, their single-
photon excited fluorescence (SPEF) spectra show remarkable
bathochromic shifts. As shown in Fig. 7, for example, lmax (SPEF) of
L1 is located at 430 nm in toluene and red-shifted to 492 nm in
acetonitrile, indicating that this charge separation increases in the
excited state, resulting in a larger dipole moment than that in the
ground state, which explain the sensitivity of the emission spectra
of these dipolar compounds to solvent polarity [38]. Besides, as
shown in Fig. S4, the two peaks phenomenon in theminimumpolar
solvent of benzene and CH2Cl2, has been observed for the fluores-
cence intensity of L4, which may be attributes to the twisted
intramolecular charge transfer (TICT) [39]. Furthermore, with
increasing polarity of the solvent, as shown in Fig. 8 (Fig. S5),
fluorescence lifetime of the chromophores also increased. These
results suggest that the molecular polarity of the fluorescent
excited state must be larger than that of the ground state, as the
enhanced dipoleedipole interactions caused by increasing the
polarity of the solute and/or solvent will lead to a more significant
energy level decrease for the excited state. Compared with those of
L1 and L3, fluorescence lifetime of L2 and L4 decreased, although
Fig. 6. Molecular orbital energy
their same principle part framework, due to the methylformate
group attached to the triphenylamine moiety.

3.3. Two-photon excited fluorescence (TPEF)

Detailed experiments reveal that there is no linear absorption in
the wavelength range 500e900 nm for all the chromophores,
which indicates that there are no molecular energy levels corre-
sponding to an electron transition in the spectral range. Therefore,
upon excitation from 500 to 910 nm, it is impossible to produce
single-photon-excited up-converted fluorescence. The linear
dependence on the square of input laser power suggests a two-
photon excitation mechanism at 720 nm for the chromophores
Fig. 9 (Fig. S6).

As shown in Fig. 10 (Fig. S7), for example, upon excitation at the
optimal wavelengths, the TPEF spectra of L2 in different solvents
are presented. It exhibits positive solvatochromism effect, the same
trend as the one photon fluorescence. One can see that L1, L2, L3
and L4 exhibit two-photon fluorescence and the TPEF peak posi-
tions show a red-shift. This can be explained by the effect of
reabsorption. We can clearly observe the strongest intensity of the
TPEF in high polar solvent DMF, while according to most of the
literature reports, the action has taken place usually in the nonpolar
solvent.

As shown in Fig. S8, two-photon absorption cross sections (d) of
L1, L2, L3 and L4 have been measured using two-photon-induced
fluorescence measurement technique described in the experi-
ments. The maximum two photon absorption cross sections are
434 GM for L1, 179 GM for L2, 2869 GM for L3 and 1019 GM for L4 in
DMF, which is basically the same with theoretical calculation result
trend (Table 6). Fig.11 shows the TPA action spectra of L1, L2, L3 and
diagram for L2 (DFT/B3LYP).



Table 5
Calculated linear absorption properties (nm), excitation energy (ev), oscillator
strengths and major contribution for L1, L2, L3 and L4.

Cmpd l (nm) E (ev) f Composition

L1 330.19 3.75 0.1778 124 / 126 (H-1 / L) (0.62819)
281.68 4.40 0.2084 124 / 128 (H-1 / L þ 2) (0.44483)

L2 359.33 3.45 0.4485 155 / 158 (H / L þ 2) (0.52632)
280.10 4.42 0.1738 155 / 158 (H-1 / L þ 1) (0.50160)

L3 379.65 3.26 0.2773 152 / 154(H / L þ 2) (0.67296)
288.54 4.29 0.1548 150 / 155 (H-2 / L þ 2) (0.65977)

L4 343.58 3.61 0.1785 181 / 183 (H-1 / L) (0.46787)
295.54 4.19 0.1099 180 / 186 (H-2 / L þ 3) (0.48421)

Fig. 7. One-photon fluorescence spectra of L1 in six solvents with a concentration of
1 � 10�5 mol L�1, respectively.

Fig. 9. Output fluorescence (Iout) vs. the square of input laser power (Iin) for L2 exci-
tation carried out at 720 nm, with c ¼ 1.0 � 10�3 mol L�1 in DMF.
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L4 in the 680e910 nm range in DMF. It has been found that two-
photon absorption cross sections of L3 and L4 in the wavelength
range (680e910 nm) are larger than that of L1 and L2. The behavior,
observed here in the TPA cross sections, can be attributed to the
enlarged conjugation of L3 and L4 compared to L1 and L2, a new
D-p-A type chromophore, in which the terpyridyl ring is the
acceptor part and triphenylamine is the donor one. At the same
time, the d values of L4 compared to those of L3, and the d values
of L2 compared to those of L1 in the wavelength range (from 680
Fig. 8. Time-resolved fluorescence curves of L1 in six solvents.
to 910 nm) are always smaller, which can be attributed to the
methylformate groups as a peripheral substituting units attached
to the triphenylamine moiety.

4. Theoretical calculation

The two-photon absorption cross-section that can be directly
compared with the experimental results is defined as:

stp ¼ 4p2a50a
15c0

� u2gðuÞ
Gf

dtp (1)

Here a0 is the Bohr radius, s0 is the speed of light, a is the fine
structure constant, u is the photon frequency of the incident light,
and g(u)denotes the spectral line profile, which is assumed to be
a d function here, Gf is the lifetime broadening of the final state,
which is commonly assumed to be 0.1 eV [40], and stp is orientation
average value of the two-photon absorption probability in gas and
solution, which is written as follows [41],
Fig. 10. The two-photon fluorescence spectra of L2 in different solvents with the same
concentration of 1.0 � 10�3 mol L�1 in lem ¼ 720 nm.



Table 6
The two-photon absorption cross-section dtp (1 GM ¼ 10�50 cm4 s/photon) of the six
lowest exited states with the excitation energy E (eV) and the corresponding
wavelength ltp (nm) in the gas phase.

E ltp dtp E ltp dtp

L1 L2

3.39 729.53 262.77 3.48 710.66 177.51
3.40 727.38 0.04 3.63 681.30 16.90
4.01 616.73 0.19 3.65 677.56 33.19
4.14 597.37 18.33 4.10 603.20 5.49
4.19 590.24 23.54 4.11 601.73 290.93
4.28 577.83 0.00 4.23 584.66 0.03

L3 L4

3.11 795.21 857.71 3.22 768.04 486.32
3.41 725.25 0.04 3.58 690.81 82.56
3.67 673.87 284.29 3.69 670.22 0.00
3.94 627.69 0.75 3.84 644.04 836.45
4.05 610.64 542.15 4.00 618.28 637.90
4.10 603.20 0.49 4.05 610.64 3.43

B. Liu et al. / Dyes and Pigments 95 (2012) 149e160 159
dtp ¼
X
ab

h
F � Saa � S*bb þ G� Sab � S*ab þ H � Sab � S*ba

i
(2)

Where F, G, and H are coefficients dependent on the polarization of
the light .For the linearly polarized light, F, G and H are 2,2,2, for the
circularly case, they are �2,3,3. Sab is the two-photon transition
matrix element. For the absorption of two photons with the same
frequency uf/2 it can be written as [42],

Sab ¼
X
i

"
h0jmajiihijmbjf i

ui � uf =2
þ h0jmbjiihijmajf i

ui � uf =2

#
(3)

Where ui and uf denote the excitation frequency of the interme-
diate state jii and final state jfi respectively, a, b ˛ (x, y, z), and the
summation goes over all the intermediate states including the
ground state j0i and the final state jfi.

We use the GUASSIAN package [43] to optimize the molecule
geometries in gas phase at the HF/6-31G* level. The calculation
two-photon absorption is carried out by the response theory
method [44] at the DFT level implemented in DALTON program
[45].

The nonlinear optical properties of L1, L2, L3 and L4 in gas phase
are listed in Table 5, fromwhich we can observe that the calculated
Fig. 11. Two-photon (from a 140 fs, 76 MHz Ti:sapphire laser) absorption cross sections
of L1, L2, L3 and L4 in DMF vs. excitation wavelengths of identical energy of 0.500 W.
optical properties depend on the different geometries. The largest
two-photon absorption cross-section of the molecules is 486.32 for
L4, 857.71 for L3, 177.51 for L2, and 262.77 GM for L1
(1 GM ¼ 10�50 cm4s/photon). Theoretical calculation is consistent
with the experimental result trend (L3 > L4 > L1 > L2) described
above.

5. Conclusions

Four terpyridine-based chromophores with large two-photon
absorption cross sections were obtained. One-photon absorption
and emission spectra, two-photon excited fluorescence action have
been systematically investigated. The relationships between the
structures and photophysical properties for the series compounds
can be understood based on both the experimental and theoretical
results. It was found that both L2 and L4 possess smaller dmax than
those of L1 and L3, due to the methylformate terminal groups
attached to the triphenylamine moiety leading to a decreased
amount of pushing-electron ability in the molecular L2 and L4, as
well as make the whole molecular structure and properties
changes. It is noteworthy that the four chromophores have the
strongest TPEF intensity in high polar solvent, such as DMF, which
has potential applications in biology. Importantly, the two kinds of
chromophores (L2 and L4) can coordinate with metal ions after
methylformate terminal groups hydrolysis, which has potential
applications in metal ion sensors and fluorescence probe.
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