OI Organic Letters

Progress toward a Convergent, Asymmetric Synthesis of Jervine

Blane P. Zavesky, Pedro De Jesús Cruz, and Jeffrey S. Johnson*

Cite This: https://dx.doi.org/10.1021/acs.orglett.0c00972

ACCESS | III Metrics & More III Article Recommendations III Supporting Information

ABSTRACT: Progress toward a convergent approach for the enantioselective synthesis of the *Veratrum* alkaloid jervine is presented. The two requisite fragments were stereoselectively and efficiently fashioned from economical and readily available reagents. Key reactions include (a) a highly diastereoselective Ireland–Claisen rearrangement to establish the necessary *cis*-relationship between the amine and methyl group on the tetrahydrofuran E-ring; (b) a diastereoselective selenoetherification reaction that enabled the assembly of the D/E oxaspiro[4.5]decene in the needed configuration; and (c) an enzymatic desymmetrization of an abundant achiral diol en route to a key four-carbon building block as a practical alternative to a protected Roche ester reduction.

he Veratrum alkaloids comprise more than 20 unique natural product scaffolds, many of which exhibit biological activity in cardiovascular, neuromuscular, and respiratory actions. These poisonous plants have garnered attention as therapeutics as early as the Middle Ages, finding applications such as fever medications, sedatives, cardiotonics, and emetics.¹ In 1837, it was discovered that the plant Veratrum album contained an alkaloidal base, which was given the name jervine (1, Scheme 1).² The molecule was not isolated as a single compound until 1879, when it was extracted from the same source by Luff and Alder Wright.³ The first report of the deoxygenated relative of jervine, cyclopamine (2, Scheme 1), did not occur until 1957, found as a result of an investigation by the United States Department of Agriculture into sheep in Idaho displaying alobar holoprosencephaly.⁴ In addition to exhibiting teratogenic effects, this class of compounds shows promising biological activity. In 1998, it was shown that cyclopamine interacts with the protein Smoothened, resulting in inhibition of the hedgehog signaling pathway.⁵ Overexpression of this pathway in adults has been implicated in the onset of certain types of cancers such as basal cell carcinoma, medulloblastoma, rhabdomyosarcoma, and prostate, pancreatic, and breast cancers. Though the seminal discovery of a small molecule regulating the hedgehog signaling pathway was only 20 years ago, hedgehog-pathway inhibitors have already shown promise as anticancer therapeutics.⁶

Along with their biological profiles, the complex structural features of these molecules have attracted significant attention from the synthetic community. The *C-nor-D-homo* steroid skeleton found in both alkaloids contains an unusual 6-6-5-6 ABCD core (Scheme 1), compared to the more commonly observed 6-6-6-5 ABCD steroidal structure. Additionally, grafted onto the D ring via spirocyclic linkage exists a densely functionalized tetrahydrofuran fused to a substituted piper-

Received: March 16, 2020

idine, a heterocyclic array underrepresented in the literature. Further complicating synthetic considerations is the tendency of the tetrahydrofuran ring to fragment when exposed to acidic conditions.⁷ Early syntheses of jervine by Masamune (1967)⁸ and Warnock (1975)⁹ were landmark achievements in complex molecule synthesis and showcased the power of utilizing a convergent strategy toward the *Veratrum* alkaloids. In 2009, Giannis and co-workers took a semisynthetic approach, elegantly elaborating the steroid dehydroepiandrosterone to cyclopamine in only 20 steps.¹⁰ Despite these excellent reports,¹¹ we believe that we could access new chemical space with a novel, de novo synthesis of jervine, with the intent of preparing analogues of jervine to analyze the impact of these modifications in structure–activity studies.

With the goal of a convergent synthesis in mind, jervine was first separated into a Wieland–Miescher ketone¹² derived steroidal fragment (3) and alkaloid fragment (4, Scheme 1). Initial focus was placed on constructing alkaloid tricycle 4. Deconstruction of the spiro linkage through a projected electrophilic cyclization onto a trisubstituted olefin led to the secondary alcohol 5. Disconnection of the piperidine ring through deployment of an appropriate synthetic equivalent for the linchpin synthon 6^{13} led to the γ , δ -unsaturated acid 8, which constitutes a retron for a glycine-based Ireland–Claisen rearrangement.

Our first task in testing this hypothesis was the synthesis of alkylidene cyclohexane 14 (Scheme 2). The known nitro-

"Reagents and conditions: (a) D-proline (10 mol %), nitrosobenzene (1 equiv), DMF, 0 °C; (b) CuSO₄:5H₂O (30 mol %), MeOH, 0 °C; (c) TBSCl (2.5 equiv), imidazole (5 equiv), DMF, 0 °C to rt; (d) ethyltriphenylphosphonium bromide (2.3 equiv), "BuLi (2.2 equiv), THF, 0 °C to rt; (e) TBAF·H₂O (3 equiv), THF, 0 °C to rt; (f) Boc-Gly-OH (2 equiv), CDI (2 equiv), DBU (2 equiv), THF, 0 °C to rt; (g) LDA (3 equiv), then TMSCl (3 equiv), THF, -78 °C to reflux; (h) CDI (1.1 equiv), N,O-dimethylhydroxylamine hydrochloride (1.6 equiv), CH₂Cl₂, 0 °C to rt. ^bReported diastereoselectivities and Z/E ratios represent kinetic selectivities of the reaction. Compounds were isolated at slightly less enriched ratios, as some synthetic steps resulted in small degradation of ratios and/or mixtures of isomers that were inseparable. See the Supporting Information for details.

sobenzene-based α -functionalization¹⁴ using ketone **10** delivered α -oxygenated product 11 in excellent enantioselectivity (97:3 enantiomeric ratio (er)). After an aqueous workup, N-O bond cleavage could be achieved using copper(II) sulfate pentahydrate in methanol, an economical alternative to the known N–O bond cleavage using Pd/C and hydrogen gas.¹⁵ Because of the poor stability of the resulting free alcohol, the unpurified product was immediately protected to afford the stable silvl-protected ketol 12 in 43% yield over three steps. The Wittig olefination of ketol 12 proceeded in good selectivity when the alcohol was protected with bulky protecting groups.¹⁶ Subsequent silvl ether deprotection and esterification furnished (\hat{Z}) -allylic glycinate ester 14 in excellent yield. Initial attempts to perform the Claisen rearrangement of 14 were performed by transmetalation of the lithium enolate using strongly chelating metals, but these conditions provided poor yields and diastereoselectivities.¹⁷ In contrast to literature precedent,¹⁷ standard Ireland–Claisen conditions¹⁸ employed on Boc-protected glycinate 14 smoothly delivered rearranged amino acid product 15 in 80% yield and greater than 20:1 diastereomeric ratio (dr). Finally, amidation provided the Weinreb amide 16 in excellent vield (90%).

Our next objective was to develop a scalable synthesis of an appropriate synthetic equivalent to the dipolar synthon 6 necessary for piperidine ring closure. We targeted the alkyl bromide **21** (Scheme 3). While this compound has been

"Reagents and conditions: (a) *Pseudomonas fluorescens* lipase (5 g of catalyst per mole of diol), vinyl acetate (4 equiv), CHCl₃, 30 °C; (b) TsCl (2 equiv), NEt₃ (3 equiv), DMAP (15 mol %), CH₂Cl₂, 0 °C; (c) K₂CO₃ (2 equiv), MeOH, 0 °C; (d) PPTS (10 mol %), **22** (2 equiv), CH₂Cl₂, 0 °C to rt; (e) LiBr (3 equiv), THF, 0 °C to reflux.

described in the literature,¹⁹ we believed that the conventional method of starting from the Roche ester was prohibitively costly. We instead began with the enantioselective enzymatic acylation of 2-methyl-1,3,-propanediol (17), in which a moderately stereoselective desymmetrization is followed by a highly selective kinetic resolution of the intermediate monoacetate.²⁰ Despite the modest yield of enantioenriched acetate **18**, the low price of the reagents was attractive, and the loading of the catalyst was decreased to 5 g of catalyst per mole of diol. The desired direct conversion of alcohol **18** to its corresponding alkyl bromide via the Appel reaction²¹ was not feasible due to a degradation of enantioselectivity in the reaction, presumably arising from formation of an achiral intermediate via an intramolecular substitution reaction. Instead, alcohol **18** was first converted to its derived tosylate

in 85% yield, which was followed by a protecting group exchange from an acetate ester to a *para*-methoxybenzyl (PMB) ether. This sequence resulted in a nearly quantitative yield of PMB ether **20**. Heating tosylate **20** at reflux in the presence of LiBr afforded enantioenriched alkyl bromide **21** in 93% yield. This route proved scalable, and more than 40 g of ether **21** was obtained in a single pass.

After obtaining sufficient quantities of alkyl bromide 21, we were positioned to test the key organometallic addition. The Grignard reagent 23 derived from the bromide 21 added smoothly to the magnesium salt of 16, proceeding in 89% yield (Scheme 4). A chelation-controlled reduction using diisobu-

Scheme 4. Completion of Alkaloid Fragment^{*a,b*} 29 and Xray Crystallography Experiment²³

^aReagents and conditions: (a) EtMgBr (0.95 equiv), then **23** (2.5 equiv), Et₂O, 0 °C to rt; (b) DIBAL-H (3 equiv), PhMe, -78 °C; (c) PhSeBr (1.4 equiv), pyridine (1.7 equiv), CH₂Cl₂, 0 °C; (d) DDQ (1.15 equiv), CH₂Cl₂/H₂O, 0 °C; (e) MsCl (2 equiv), NEt₃ (3.5 equiv), CH₂Cl₂, 0 °C; (f) KO'Bu (1.6 equiv), THF, 0 °C; (g) FeCl₃. 6H₂O (3.5 equiv), CH₂Cl₂, acetone, 0 °C; (h) H₂O₂ (2 equiv), pyridine (3 equiv), CH₂Cl₂, 0 °C. Enone **29** was isolated as an 18:1 mixture of diastereomers. ^bReported diastereoselectivities represent kinetic selectivities of the reaction. Some compounds were isolated as slightly less-enriched ratios, as some synthetic steps resulted in small degradation of the ratio of diastereomers and/or the diastereomers were inseparable. See the Supporting Information for details.

tylaluminium hydride (DIBAL-H) gave amino alcohol stereotetrad **25** (97%, diastereoselection 19:1). The selenoetherification of **25** proceeded in good yield and stereoselectivity,²² and the stereochemical identity was verified via X-ray crystallographic analysis of a downstream intermediate.²³ Closure of the F-ring was accomplished by deprotection of PMB ether **26** and subsequent conversion of the free primary alcohol into a mesylate, which under basic conditions formed piperidine **28** in 75% yield over two steps. At this stage, completion of the alkaloid fragment **29** hinged upon successful manipulation of the cyclohexane ring to the requisite cyclohexenone. Hydrolysis of the dioxolane protecting group needed to be performed under carefully prescribed conditions (Fe(III), $0 \, ^{\circ}C)^{24}$ to avoid cleavage of the acid-sensitive spirocyclic linkage. Finally, selenoxide elimination²⁵ formed eastern fragment **29** (65% over two steps, 1.77 g obtained in one pass). An X-ray crystallography experiment was performed on this compound, which confirmed the molecule's connectivity and stereochemistry.²³

The Wieland-Miescher ketone¹² represents a logical point of embarkation for the western fragment but presented two major challenges: alkene migration and carbon-carbon bond formation at the neopentyl position. We opted to first effect olefin migration by formation of vinyl acetate **31** followed by sodium borohydride reduction,²⁶ which formed diol **32** in 9.1:1.3:1 dr and as a 17:1 mix of alkene isomers, which was separated at a later stage (Scheme 5). Next, diol **32** was

Scheme 5. Synthesis of Western Fragment^a

^aReagents and conditions: (a) Ac₂O (6 equiv), TsOH·H₂O (3 mol %), PhMe, reflux; (b) NaBH₄ (6 equiv), EtOH, 0 °C to rt; (c) TBSCl (1.5 equiv), imidazole (2 equiv), CH₂Cl₂, rt; (d) oxalyl chloride (2.5 equiv), DMSO (5 equiv), NEt₃ (8 equiv), CH₂Cl₂, -78 °C to rt; (e) KHMDS (2 equiv), PhNTf₂ (2.5 equiv), THF, -78 °C to rt; (f) Bu₃SnCH₂OH (2.2 equiv), Pd(PPh₃)₄ (5 mol %), LiCl (3 equiv), THF, reflux; (g) Dess–Martin periodinane (1.2 equiv), sodium bicarbonate (3 equiv), CH₂Cl₂, 0 °C.

selectively protected as a monosilyl ether in 99% yield. Swern oxidation²⁷ and subsequent vinyl triflate synthesis²⁸ provided 35, setting the stage for the key carbon–carbon bond-forming reaction. After vinyl triflate 35 and the corresponding vinyl iodide proved recalcitrant to carbonylation, we identified the Stille coupling of vinyl triflate 35 and Bu₃SnCH₂OH²⁹ as a method to complete the final carbon framework for the western fragment. Oxidation of the resulting alcohol using the Dess-Martin periodinane³⁰ (50% yield over three steps) furnished enal 36 in seven steps from the Wieland-Miescher ketone. The enone functionality in tricycle 29 presents the opportunity for introduction of a methyl cuprate followed by aldol-based fragment coupling with aldehyde 36; however, initial attempts at enolate addition were hampered by the poor electrophilicity of enal 36. Future work will explore various Cring cyclopentannulation strategies that leverage the extant Band D-ring functionality.

The *Veratrum* alkaloids continue to pose a formidable challenge to synthetic chemists due to their size, array of stereogenic centers, and *sui generis* substructures. In this work,

the foundation for a scalable, convergent approach was realized, assembling the carbon skeleton and seven stereocenters of jervine using simple reagents and practical, catalytic sources of chirality (D-proline, L-proline, and *Pseudomonas fluorescens* lipase). This route provides every carbon needed for the target structure except for the D-ring methyl group, and it is highlighted by the use of robust Ireland–Claisen and selenoetherification reactions in order to stereoselectively assemble a fully substituted spiro-tetrahydrofuran ring.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.0c00972.

Experimental procedures, analytical data for new compounds, and NMR spectra (PDF)

Accession Codes

CCDC 1986262 (29) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: + 44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

Jeffrey S. Johnson – Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States; orcid.org/0000-0001-8882-9881; Email: jsj@unc.edu

Authors

- Blane P. Zavesky Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
- Pedro De Jesús Cruz Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.0c00972

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The project described was supported by Award No. R35 GM118055 from the National Institute of General Medical Sciences, and P.D.J.C. acknowledges support through a supplement to this grant. We thank the UNC Dept. of Chemistry Mass Spectrometry Core laboratory, especially Dr. B. Ehrmann, for assistance with mass spectrometry analysis on instrumentation acquired through the NSF MRI program under Award No. CHE-1726291 and a supplement to GM118055. We thank the UNC Dept. of Chemistry NMR Core Laboratory, especially Dr. M. ter Horst, for assistance with NMR analysis on instrumentation acquired through the NSF MRI program under Award No. CHE-1828183. We thank Dr. C.-H. Chen for assistance with X-ray crystallography experiments. We thank Dr. M. Horwitz and J. Robins of these laboratories (UNC) for useful discussions.

REFERENCES

(1) Brown, E.; Ragault, M. Tetrahedron 1979, 35, 911.

(2) Simon, E. Ann. Phys. 1837, 41, 569.

(3) Wright, C. R. A.; Luff, A. P. J. Chem. Soc., Trans. 1879, 35, 405.
(4) (a) Heretsch, P.; Tzagkaroulaki, L.; Giannis, A. Angew. Chem., Int. Ed. 2010, 49, 2. (b) Keeler, R. F. J. Agric. Food Chem. 1969, 17, 473. (c) James, L. F.; Panter, K. E.; Gaffield, W.; Molyneux, R. J. J. Agric. Food Chem. 2004, 52, 3211.

(5) (a) Riddle, R. D.; Johnson, R. L.; Laufer, E.; Tabin, C. Cell 1993, 75, 1401. (b) Porter, J. A.; Young, K. E.; Beachy, P. A. Science 1996, 274, 255. (c) Mann, R. K.; Beachy, P. A. Annu. Rev. Biochem. 2004, 73, 891. (d) Edison, R.; Muenke, M. Congenital Anomalies 2003, 43, 1. (e) Cooper, M. K.; Porter, J. A.; Young, K. E.; Beachy, P. A. Science 1998, 280, 1603. (f) Huang, P.; Kim, Y.; Salic, A.; et al. Cell 2016, 166, 1176. (g) Incardona, J. P.; Gaffield, W.; Kapur, R. P.; Roelink, H. Development 1998, 125, 3553.

(6) (a) Mahindroo, N.; Punchihewa, C.; Fujii, N. J. Med. Chem.
2009, 52, 3829. (b) Yang, L.; Xie, G.; Fan, Q.; Xie, J. Oncogene 2010, 29, 469. (c) Rubin, L. L.; de Sauvage, F. J. Nat. Rev. Drug Discovery 2006, 5, 1026. (d) Taipale, J.; Beachy, P. A. Nature 2001, 411, 349. (e) Eaton, S. Nat. Rev. Mol. Cell Biol. 2008, 9, 437. (f) di Magliano, M. P.; Hebrok, M. Nat. Rev. Cancer 2003, 3, 903. (g) King, P. J.; Guasti, L.; Laufer, J. J. Endocrinol. 2008, 198, 439. (h) Curran, T.; Ng, J. M. Y. Nature 2008, 455, 293.

(7) (a) Borzillo, G. V.; Lippa, B. Curr. Top. Med. Chem. 2005, 5, 147.
(b) Wilson, S. R.; Strand, M. F.; Krapp, A.; Rise, F.; Petersen, D.; Krauss, S. J. Pharm. Biomed. Anal. 2010, 52, 707.

(8) (a) Masamune, T.; Takasugi, M.; Murai, A.; Kobayashi, K. J. Am. Chem. Soc. 1967, 89, 4521. Synthesis of advanced intermediate en route to structurally related veratramine: (b) Johnson, W. S.; DeJongh, H. A. P.; Coverdale, C. E.; Scott, J. W.; Burckhardt, U. J. Am. Chem. Soc. 1967, 89, 4523. Synthesis of advanced intermediate en route to structurally related veratramine: (c) Johnson, W. S.; DeJongh, H. A. P.; Coverdale, C. E.; Scott, J. W.; Burckhardt, U. J. Am. Chem. Soc. 1967, 89, 4523.

(9) (a) Kutney, J. P.; By, A.; Cable, J.; Gladstone, W. A. F.; Inaba, T.; Leong, S. Y.; Roller, P.; Torupka, E. J.; Warnock, W. D. C. *Can. J. Chem.* **1975**, *53*, 1775. (b) Kutney, J. P.; Cable, J.; Gladstone, W. A. F.; Hanssen, H. W.; Nair, G. V.; Torupka, E. J.; Warnock, W. D. C. *Can. J. Chem.* **1975**, *53*, 1796.

(10) Giannis, A.; Heretsch, P.; Sarli, V.; Stößel, A. Angew. Chem., Int. Ed. 2009, 48, 7911.

(11) (a) Huffman, J.W.; Sobti, R.R. Steroids 1970, 16, 755.
(b) Taber, D. F.; DeMatteo, P. W. J. Org. Chem. 2012, 77, 4235.
(c) Pattenden, G.; Stoker, D. A.; Winne, J. M. Tetrahedron 2009, 65, 5767. (d) Oblak, E. Z.; G-Dayanandan, N.; Wright, D. L. Org. Lett. 2011, 13, 2433.

(12) Wieland, P.; Miescher, K. Helv. Chim. Acta 1950, 33, 2215.

(13) For related [3 + 3] disconnections in piperidine synthesis, see:
(a) Huy, P. H.; Koskinen, A. M. P. Org. Lett. 2013, 15, 5178. (b) Huy,
P. H.; Westphal, J.; Koskinen, A. M. P. Beilstein J. Org. Chem. 2014, 10, 369. (c) Chauhan, P. S.; Sacher, J. R.; Weinreb, S. M. Org. Lett. 2015, 17, 806. (d) Takahashi, Y.; Fuwa, H.; Kaneko, A.; Sasaki, M.; Yokoshima, S.; Koizumi, H.; Takebe, T.; Kan, T.; Iwatsubo, T.; Tomita, T.; Natsugari, H.; Fukuyama, T. Bioorg. Med. Chem. Lett. 2006, 16, 3813. (e) Liang, N.; Datta, A. J. Org. Chem. 2005, 70, 10182. (f) Li, G.-l.; Zhao, G. Org. Lett. 2006, 8, 633. (g) Johns, D. M.; Mori, M.; Williams, R. M. Org. Lett. 2006, 8, 4051. (h) Campbell, J. A.; Lee, W. K.; Rapoport, H. J. Org. Chem. 1995, 60, 4602.

(14) Hayashi, Y.; Yamaguchi, J.; Sumiya, T.; Shoji, M. Angew. Chem., Int. Ed. 2004, 43, 1112.

(15) Yamaguchi, J.; Toyoshima, M.; Shoji, M.; Kakeya, H.; Osada, H.; Hayashi, Y. Angew. Chem., Int. Ed. 2006, 45, 789.

(16) Koreeda, M.; Patel, P. D.; Brown, L. J. J. Org. Chem. 1985, 50, 5910.

(17) (a) Bartlett, P. A.; Barstow, J. F. J. Org. Chem. 1982, 47, 3933.
(b) Qu, H.; Gu, X.; Min, B. J.; Liu, Z.; Hruby, V. J. Org. Lett. 2006, 8, 4215 and references cited therein.

(18) Ireland, R. E.; Mueller, R. H. J. Am. Chem. Soc. 1972, 94, 5897.

(19) For a representative example, see: Muri, D.; Carreira, E. M. J. Org. Chem. 2009, 74, 8695.

(20) Grisenti, P.; Ferraboschi, P.; Manzocchi, A.; Santaniello, E. Tetrahedron 1992, 48, 3827.

(21) (a) Downie, I.; Holmes, J.; Lee, J. Chemistry and Industry 1966, 900. (b) Appel, R. Angew. Chem., Int. Ed. Engl. 1975, 14, 801.

(22) (a) Lipshutz, B. H.; Barton, J. C. J. Am. Chem. Soc. **1992**, 114, 1084. Synthesizing oxaspiro[4.n]alkenes by this reaction is unusual. For an example, see: (b) Schultz, A. G.; Napier, J. J.; Sundararaman, P. J. Am. Chem. Soc. **1984**, 106, 3590.

(23) The X-ray crystallography experiment was performed on a crystal of (\pm) -29 prepared by an earlier route that employed racemic building blocks. We were unable to crystallize (-)-29 despite multiple attempts. The ¹H NMR spectrum of (-)-29 matches that for crystallized (\pm) -29, confirming that we can use this X-ray structure to establish the connectivity and relative stereochemistry of the tricycle 29. For proof of the absolute stereochemistry, see refs 14 and 20.

(24) Sen, S. E.; Roach, S. L.; Boggs, J. K.; Ewing, G. J.; Magrath, J. J. Org. Chem. 1997, 62, 6684.

(25) Reich, H. J.; Wollowitz, S. Org. React. 1993, 44, 1 and references cited therein.

(26) (a) Westphal, V. Ber. Dtsch. Chem. Ges. B 1937, 70, 2128.
(b) Birch, A. J. J. Chem. Soc. 1950, 2325. (c) Dauben, W. G.; Eastham, J. F. J. Am. Chem. Soc. 1951, 73, 3260. (d) Dauben, W. G.; Eastham, J. F. J. Am. Chem. Soc. 1951, 73, 4463. (e) Seo, S.; Nagasaki, T.; Katsuyama, Y.; Matsubara, F.; Sakata, T.; Yoshioka, M.; Makisumi, Y. J. Labelled Compd. Radiopharm. 1989, 27, 1383. (f) Frincke, J. M.; Reading, C. L. U.S. Patent 2,008,039,566, April 3, 2008.

(27) (a) Omura, K.; Swern, D. Tetrahedron 1978, 34, 1651.
(b) Mancuso, A. J.; Huang, S.-L.; Swern, D. J. Org. Chem. 1978, 43, 2480.

(28) McMurry, J. E.; Scott, W. J. Tetrahedron Lett. 1983, 24, 979. (29) (a) Scott, W. J.; Stille, J. K. J. Am. Chem. Soc. 1986, 108, 3033. For the original report of the use of Bu₃SnCH₂OH, see: (b) Kosugi, M.; Sumiya, T.; Ohhashi, K.; Sano, H.; Migita, T. Chem. Lett. 1985, 14, 997. (c) Marx, M. A.; Lee, M. R.; Galemmo, R. A.; Bobinski, T. P. U.S. Patent 2,018,265,517, September 20, 2018. (d) Koskelainen, T.; Linnanen, T.; Minkkilä, A.; Mäkelä, M.; Pohjakallio, A. Eur. Patent 2,013,150,173, October 10, 2013. (e) Chan, B.; Drobnick, J.; Gazzard, L.; Heffron, T.; Liang, J.; Malhortra, S.; Mendonca, R.; Rajapaksa, N.; Stivala, C.; Tellis, J.; Wang, W.; Wei, B.; Zhou, A.; Cartwright, M. W.; Lainchbury, M.; Gancia, E.; Seward, E.; Madin, A.; Favor, D.; Fong, K. C.; Hu, Y.; Good, A. U.S. Patent 2,018,282,282, October 4, 2018. (f) Hosoya, T.; Hiramatsu, T.; Ikemoto, T.; Nakanishi, M.; Aoyama, H.; Hosoya, A.; Iwata, T.; Maruyama, K.; Endo, M.; Suzuki, M. Org. Biomol. Chem. 2004, 2, 637. (g) Malova Krizkova, P.; Hammerschmidt, F. Eur. J. Org. Chem. 2013, 2013, 5143. (h) Muthiah, C.; Bhaumik, J.; Lindsey, J. S. J. Org. Chem. 2007, 72, 5839. (i) Chen, B.; Liu, X.; Hu, Y.-J.; Zhang, D.-M.; Deng, L.; Lu, J.; Min, L.; Ye, W.-C.; Li, C.-C. Chem. Sci. 2017, 8, 4961.

(30) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155.