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Metal-free direct C-arylation of 1,3-dicarbonyl compounds and 

ethyl cyanoacetate: A platform to access diverse array of meta-

functionalized phenols  

Neha Taneja, Rama Krishna Peddinti*
a
 

Base mediated, highly convenient strategy for the direct C-

arylation of 1,3-dicarbonyls and cyanoacetate with various phenol 

derivatives as aryl partners is presented. The present work excel in 

forming C–C bond at the meta-position of the phenols which is 

traditionally challenging to functionalize. This protocol further 

leads the way to have scalable, straightforward access to phenol 

assimilated heterocycles which have powerful applications both in 

synthetic chemistry and medicinal research. 

C-arylation has drawn extensive and revolutionized attention 

as one of the significant methods for the C–C bond formation, 

which provides an easy access to complex organic frameworks 

that manifest a wide range of pharmacological activities.
1
 The 

chemistry of 1,3-diones is a cornerstone of organic synthesis 

by virtue of their eloquent reactivity of functional group. The 

enolate arylation of 1,3-dicarbonyl compounds and ethyl 

cyanoacetate were usually carried out by transition metals
2
 

but rarely by organocatalysts.
3
 Particularly, Stoltz

4a
 et al.

 

isolated the small amount of C-arylation product during aryne 

insertion reaction into the C–H σ−bond of 1,3-diones. Wang
4b

 

et al. studied the α-arylation of dicarbonyls with CuBr-

trichloroacetic acid as a catalyst. Owning to the potential 

application
5
 of 2-aryl 1,3-dicarbonyls,

 
a convenient and 

practical and strategy for the direct α-arylation of 1,3-

dicarbonyl compounds and cyanoacetates is still challenging. 

 During our studies on dearomatization of phenols, we 

found that the in situ generated reactive intermediates
6
 

bearing rich functional groups could potentially participate in 

various addition reactions. It occurred to us that the addition 

of 1,3-dicarbonyl compounds and cyanoacetate to 2-methoxy-

phenols-derived ortho-benzoquinone monoketals would 

provide α-arylated products. If this is realised, it would pave a 

way to highly prudent methodology to furnish meta-

functionalized phenols. The synthesis of meta-substituted 

phenols possesses a significant challenge of bypassing the 

normal ortho/para directing group effect of hydroxyl 

functionality. Recent reported methods for meta-

functionalization are mainly based on transition metal catalysis 

and template-based strategies.
7
 Although efficient, these 

methods often require lengthy synthetic routes, high 

temperature and prolonged reaction time.  

 Herein, we disclose our results on base-mediated C-

arylation of 1,3-diones and cyanoacetate with commercially 

available, innocuous 2-methoxyphenols as aryl partners. These 

phenols can be easily dearomatized to the corresponding 

benzoquinone derivatives, also known as masked o-

benzoquinones (MOBs). Thus in situ generated conjugated 

cyclohexadienones were then subjected to Michael attack by 

C–H activated acids to access meta-selective C–H 

functionalized products under very mild conditions. Further 

remarkability of this approach has been proven by extending it 

for the synthesis of various phenol functionalized N- and O-

heterocyclic scaffolds viz., pyrazole, isoxazole,
 
coumarin, and 

triazolone derivatives by utilizing β-diketones as essential 

building blocks. Some of these heterocyclic compounds that 

are counted among the most potent biologically active 

scaffolds
8–11

 are shown in Figure 1. 
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Fig. 1 Pharmaceutically active agents containing heterocyclic scaffolds. 

 The feasibility of the enolate arylation reaction of 1,3-

diones is investigated by attempting the reaction between 4-

bromo-2-methoxyphenol (1a) and acetylacetone (3). In the 

initial step, the dearomatization of 4-bromoguaiacol was 
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carried out with diacetoxyiodobenzene (DIB, 1.2 equiv) in 

methanol to generate o-benzoquinone monoketal 2a. This 

transformation then facilitated the Michael addition of C–H 

activated acid 3 in the presence of Et3N (1 equiv) to enable the 

synthesis of product 11a with desired substitution in 60% yield 

(Table 1, entry 1). The base additive was found to be crucial for 

the reaction (entry 2). Fortified by above results, other 

reaction parameters such as the choice of base, solvent and 

temperature were screened. It was observed that with most of 

the commonly used bases such as Cs2CO3, K2CO3, NaOH, 

KO
t
Bu, DABCO, the reaction went on to completion 

successfully (entries 3–7). Among these, Et3N was proved to be 

efficient base for this enolate arylation. In order to circumvent 

the nucleophilic attack of MeOH on MOB, after dearomati-

zation event, methanol was first removed from the reaction 

mixture by rotatory evaporator in vacuo and the reaction was 

continued by diluting the residue in another solvent followed 

by the addition of base and dicarbonyl compound (entries 8–

11). To our delight, when the reaction was carried out in 

toluene, the arylated product 11a was obtained in enhanced 

yield of 62% (entry 11). An increment of the product yield was 

observed by increasing the amount of Et3N to 2.0 equiv 

(entries 12 and 13). However, increasing the stoichiometry of 

acetylacetone also showed a positive effect on the yield 

(entries 14 and 15). However, elevating the temperature has 

no substantial effect on the reaction (entry 16). 

Table 1 Screening of reaction conditions
a
 

 

Entry Acetylacetone 

(equiv) 
Solvent Base  

(1 equiv) 

Yield
b
 

(%) 

1 1 MeOH Et3N 60 

2 1 MeOH - nr 

3 1 MeOH KO
t
Bu 61 

4 1 MeOH K2CO3 58 

5 1 MeOH Cs2CO3 63 

6 1 MeOH NaOH nd 

7 1 MeOH DABCO 55 

8 1 DCM Et3N 40 

9 1 CAN Et3N 55 

10 1 THF Et3N 50 

11 1 Toluene Et3N 62 

12
 c 

 1 Toluene Et3N 65 

13
 d

 1 Toluene           Et3N 68 

14
 d

 1.2 Toluene Et3N 72 

15
 d

 2.0 Toluene Et3N 73 

16
d, e

 1.2 Toluene Et3N 61 

a 
Reaction conditions: 1a (0.30 mmol), DIB (0.36 mmol), acetylacetone (3, 0.45 

mmol), base, solvent (3 mL) stirred at rt, in air for 3 h. 
b 

Pure and isolated yields. 

nd: Not determined. nr: No reaction. 
c
 Performed with 1.5 equiv of Et3N at room 

temperature for 24 h. 
d 

 Performed with 2.0 equiv of Et3N at room temperature 

for 24 h. 
e
 Carried out with 1.5 equiv of Et3N at 80 

o
C. 

Table 2 Reactions of substituted guaiacols with various 1,3-dicarbonyl compounds 3–8
a
  

 

Entry 1 1,3-dicarbonyl 

compound 
Time Yield (%)

b
 

Keto form Enol form 

1 1a OO

3  

3 h – 11a/72 

2 1a OO

OEt
4  

3 h 12a/71
c 

3 1a OO

EtO OEt

5  

5 h 13a/68 – 

4 1a OO

Ph OEt

6  

6 h 14a/80 – 

5 1a 

O O

7  

3 h – 15a/82 

6 1a 

O O
8  

4 h 16a/86 – 

7 1c 3 3 h 
d
11c/71 – 

8 1b 5 6 h 13b/65 – 

9 1c 6 5 h 
d
14c/76 – 

10 1b 7 2 h – 15b/80 

11 1b 8 3 h 16b/85 – 

12 1d 3 50 min 11d/78 – 

13 1d 5 2 h 13d/Traces  

14 1d 6 2 h 14d/80
c 

15 1d 7 3 h 15d/85 – 

16 1d 8 4 h – 16d/86 

17
e
 1e 3 4 h 11e/60 – 

18
e
 1e 5 7 h 13e/61 – 

19
e
 1e 6 6 h 14e/62 – 

20
e
 1e 7 5 h – 15e/70 

21
e
 1e 8 5 h – 16e/76 

22 1f 3 4 h 11f/81 – 

23 1f 6 5 h 14f/74 – 

24 1g 5 6 h  13g/52
c
 

a 
Reaction conditions: 1 (0.3 mmol), DIB (0.36 mmol), 1,3-dicarbonyl compound 

(3–6, 0.45 mmol), Et3N (0.67 mmol), solvent (3 mL) stirred at rt. 
b
 Pure and 

isolated yields. 
c 
Combined yield of both keto and enols forms. 

 d 
Michael addition 

took place at C-5 of 4-iodo MOB 2c. 
e 

Reaction was performed at 80 
o
C. 

Having established the optimum reaction conditions, we were 

keen to study the generality of this protocol. A number of 

acyclic and cyclic dicarbonyls were subjected to react with 

variously substituted 2-methoxyphenols under these 

conditions. Thus the reactions of dicarbonyls 3–8 and 2-

methoxyphenols 1a–1e furnished the arylated meta-
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functionalized phenols successfully in good to high yields 

revealing the validity of standard established reaction 

conditions for α-arylation of 1,3-diones (Table 2). As shown, 

the alicyclic 1,3-dicarbonyl compounds afforded the products 

11a-e–14a-e in good to high yields. A minor drop in the yield of 

compounds 13a,b,e arising from less acidic diethyl malonate 

(5) may be noted. A dynamic equilibrium between keto and 

enol forms has been observed in case of compound 12a and 

14d. Furthermore, the cyclohexadienone 2e derived from 2,3-

dimethoxyphenol (1e) is less reactive and hence the Michael 

addition was performed at 80 
o
C (entries 17–21). Enthrallingly, 

cyclic 1,3-diketones 7 and 8 can also be employed in this base 

mediated transformation to furnish the desired products 

15a,b,d,e and 16a,b,d,e, respectively, in good to excellent 

yields of 70–86%. The vanillin-derived acetal 1f worked equally 

good and furnished 11f and 12f (entries 22 and 23). The 

electron-withdrawing phenyl group in 1g resulted in the 

formation of 13g in a reduced yield of 52% (entry 24). The 

current protocol did not work with p-methoxy phenols. 

 It was envisioned that positions 3 and 5 of in situ generated 

MOBs are susceptible for nucleophilic attack. Interestingly, the 

site for Michael attack in this transformation is directed by the 

substituent present on cyclohexadienone system. Unlike the 

reaction of 4-bromo, 4-chloro, 4-methyl and 5-methoxy 

guaiacol derivatives 1a,b,d,e, where the nucleophiles attacked 

on C-3 of the corresponding MOBs, the reaction of 4-

iodoguaiacol (1c) proceeded via Michael attack on C-5 of its 

oxidized species 2c to furnish the products 11c and 14c in good 

yields.  

 As 1,3-diketones are widely known to show commendable 

keto-enol tautomerism, it is worth to mention the effect of 

substituents on phenols and ketones on the tautomerism of 

the corresponding products. Thus, the reaction of 2-methoxy-

4-methylphenol (1d) with 6 and 9 under the optimal conditions 

furnished the products 14d and 17d as a 3:1 mixture of keto 

and enol tautomers. It was observed that pronucleophiles such 

as diethyl malonate (5) provided products predominately in 

keto form, whereas ethyl acetoacetate (4) furnished the 

product dominating enol form.  

 Spurred by the great synthetic medicinal interest of 

substituted coumarin, especially benzopyranocoumarins for 

the treatment of neurodegenerative diseases such as 

Alzheimer’s disease, the versatility of this approach was 

extended to the 4-hydroxycoumarin (9). Thus, we carried out 

the reaction of substituted guaiacols with 9 under previously 

established conditions. Delightfully, all the products 17a,b,d,e 

obtained in excellent yields of 75–88% (Scheme 1). These 

compounds are quite similar to the precursors of 

benzopyranocoumarins, worked as potent anti-Alzeimer 

agents and were prepared through metal catalysis starting 

from pre-functionalized substrates and in multi-step 

processes
12

 (Scheme 1).  

 After this, we stepped ahead to explore the reactivity of 

ethyl cyanoacetate (10). The initial attempts for meta-

substitution with optimized reaction conditions were 

unsuccessful due to its low reactivity. However, when we 

performed the reaction of 1a with 10 in acetonitrile at 80 
o
C, 

the meta-substituted product 18a was obtained in 78% 

isolated yield. All the substrates reacted well under these 

conditions and furnished the substituted ethyl cyanoacetate 

derivatives (Scheme 2) in good yields.  
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Scheme 1 Reactions of 2-methoxyphenol derivatives with 4-hydroxycoumarin. 

It is worth mentioning here that the arylated ethyl cyanoacetates 

worked as excellent starting materials to generate stable 

quaternary stereocenter via C–C bond formation
13

. 

OH

OMeR1 Et3N, ACN

80 oC, 3−6 h

O
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1 2 R1 = Br, 18a/78%

R1 = Cl, 18b/80%

R1 = Me, 18d/88%
R1= Br (a), Cl (b), Me (d)

 
Scheme 2 Reactions of guaiacol derivatives with ethyl cyanoacetate. 

 Having successfully developed an efficient protocol for 

meta-substituted phenols, we turned our focus on the utility of 

these obtained compounds to access phenol functionalized 

novel heterocyclic scaffolds in one-pot manner. Condensation 

of α-arylated diketones with phenylhydrazine and 

hydroxylamine in presence of iodine led to the formation of 

corresponding pyrazoles 19–22 and isoxazole 23, respectively, 

in high yields (Scheme 3).  

OH
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NPh
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(ii) Et3N 
     toluene, rt

(iii) NH2OH

      I2, EtOH 
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R1       R3       R4 

Br      CH3   CH3 (19)     78% 

CH3   CH3   CH3 (20)     80%

Br      CH3   OEt (21)     72%

CH3    Ph    OEt (22)     75%

23 (81%)

OH
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OO

R3 R4
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OH
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N
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N

N
OO

N
N

R R
Ar

PinB PinB
Cross-coupling

N
N

R

HO OMe

Ar

Previous approach

Cycloaddition

160 oC, 24 h XPhosPdG2 (10%)

Na2CO3, 80 oC, 16 h

DME : H2O (1:1)

Ar

Scheme 3 Synthesis of phenol substituted pyrazoles and oxazoles. 
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The synergism of phenol with pyrazole and isoxazole leads to 

some novel analogues of combretastatin A4 (antitumor 

agent)
14

 and dimethylisoxa-zole
15a

 motif that act as BET 

inhibitor (epigenetic target), respectively. 

The reactivity profile of α-arylated ethyl cyanoacetate 18d has 

been further expanded through the manipulation of the cyano 

group, by readily converting it into other functionalities. Thus 

the treatment of 18d with sulfuric acid gave carboxylic amide 

24. Interestingly, carboxylic amides appear in a variety of 

drugs, fabrics, plastics, lubricants and fertilizers.
16

 The cyano 

group can also be transformed to triazolone 25. Of particular 

note, the triazolones have been established as potent 

biological active templates
17

 for antitumor and antihamelogic 

activity (Scheme 4). 

Scheme 4 Transformation of ethyl cyanoacetate substituted products. 

 In summary, we have illustrated a novel approach to access 

meta-substituted phenols via an efficient, metal-free, base 

mediated protocol. The present work involves a simple 

dearomatization strategy of 2-methoxy phenols as readily 

available aryl source for the α-arylation of 1,3-dicarbonyls and 

cyanoacetate through C–C bond formation. Underlining the 

utility of the obtained products, one-pot, straightforward, 

clean, high yielding routes for the synthesis of phenol 

substituted heterocycles such as pyrazoles, isoxazoles, 

coumarins, triazolones and carboxylic amide were 

demonstrated, that leads the way for the endowment of 

important biological scaffolds.  
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