© 1985 The Chemical Society of Japan

CHEMISTRY LETTERS, pp. 1459-1462, 1985.

on the reaction of n-vinyliminophosphoranes. Synthesis and reaction of $1,2-\lambda^5-$ azaphosphorine ring system

Tomoshige KOBAYASHI and Makoto NITTA* Department of Chemistry, School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 160

The reaction of N-vinyliminotrimethoxyphosphorane reacts with electron deficient acetylenes results in the formation of formal [4+2] cycloadducts, $1,2-\lambda^5$ -azaphosphorines <u>4a-c</u>. However, N-vinyliminotriphenylphosphorane reacts with dimethyl acetylenedicarboxylate (DMAD) in a formal [2+2] manner. The product <u>4a</u> or 4b also reacts with DMAD to give λ^5 -phosphorine derivatives.

Synthesis and reactions of λ^3 -phosphorines^{1,2)} and λ^5 -phosphorines,¹⁻⁴⁾ heterocyclic analogue of benzene containing one phosphorus atom in place of the carbon atom, have received considerable attention since G. Märkl accomplished the synthesis of 2,4,6,-triphenyl- λ^3 -phosphorine.⁵⁾ A few examples of 1,2- λ^5 -azaphosphorine⁶⁾ and 1,4- λ^5 -azaphosphorine⁷⁾ both of which contain a phosphorus and a nitrogen instead of two carbons of benzene, have appeared. However, no simple synthesis and reaction of these ring systems have been examined. The 1,2- λ^5 -azaphosphorine ring system is considered to have three resonance structures (<u>A</u>, <u>B</u>, and <u>C</u>), and it would be interested to search the main contributor to the resonance hybrid.

We report hereon a simple synthesis of $1,2-\lambda^5$ -azaphosphorine derivatives, <u>4a-c</u>, and their cycloaddition reaction. Our synthetic strategy was at first to obtain the iminophosphorane bearing a vinyl group on the nitrogen atom. The N-vinyliminophosphorane, <u>1</u> or <u>2</u>,^{8,9)} which was easily hydrolyzed to give acetophenone in the presence of water, was prepared by the Staudinger reaction¹⁰⁾ of α -azidostyrene with trimethyl phosphite or with triphenylphosphine at room temperature in a 83 or

97% yield, respectively. Considering the ¹H-NMR spectra of <u>1</u>,⁹⁾ the olefinic protons appear at relatively higer field than usual, and this tendency is increased in <u>2</u>.⁹⁾ This fact may suggest an enhanced contribution of the ylide structures, <u>1-y</u> and <u>2-y</u>, to the resonance hybrid of N-vinyliminophosphoranes, <u>1</u> and <u>2</u>.

The reaction of 1 (1 mmol) with dimethyl acetylenedicarboxylate (DMAD, 1 mmol) in benzene (2 ml) at room temperature for 24 h followed by separation through TLC afforded 4a in a 58% yield. Similarly, the reaction of 1 with methyl propiolate or dibenzoylacetylene resulted in the formation of 4b or 4c in a 57 or 17% yield. The reaction accompanied intractable tar, and the yields of <u>4a-c</u> were rather low. The formation of 4a-c are explained by the formal [4+2] cycloaddition of <u>1</u> with acetylenes and subsequent elimination of methanol molecule. Regioselective formation of <u>4b</u> bearing a methoxycarbonyl group at 3-position is ascribed to the intervention of ylide character for 1, anionic carbon of which would connect with β -carbon atom of methyl propiolate. Recently, synthetic utilities of iminophos-phoranes, e.g. hydrolysis,¹¹⁾ oxidation leading to nitro compounds,¹²⁾ and intra¹³⁾ or intermolecular¹⁴⁾ aza-Wittig reactions, have been pronounced. Therefore, the present reaction clarified a new aspect of the iminophosphoranes, which serve as a diene unit for the Diels-Alder type reactions. On the other hand, the iminophosphorane 2 reacted with DMAD at room temperature to result in the formation of 6 (62%) and triphenylphosphine oxide (72%). The reaciton is explained by the formal [2+2] cycloaddition¹⁵⁾ of 2 with DMAD and the following ring opening and hydrolysis. This behavior of 2 giving 6 seems to suggest that the diene character of 2 is reduced as compared to that of 1.

The $1,2-\lambda^5$ -azaphosphorines <u>4a-c</u> also have N-vinyliminophosphorane moieties. When <u>4a</u> or <u>4b</u> with DMAD in xylene was heated under reflux for 48 h, the λ^5 -phosphorine derivative <u>8a</u> or <u>8b</u> was obtained in a 58 or 60% yield respectively, along with benzonitrile which was detected by GLC analysis. A remarkable site

selectivity was observed in the [4+2] cycloaddition to give $\underline{7a}, \underline{b}$. The following elimination of benzonitrile would give $\underline{8a}, \underline{b}$.

The structures of <u>4a-c</u> and <u>8a,b</u> were determined on the basis of the ¹H-NMR, ¹³C-NMR, ³¹P-NMR, IR, and UV spectra.^{8,16}) Especially, the ¹³C-NMR spectra (Table 1) were instructive for characteristic in these ring system. The chemical shifts for C3 and C5 carbons in <u>4a-c</u> are considerably shifted to higer field compared with that of C4, and the coupling constant J_{P-C5} is larger than J_{P-C4} in <u>4a-c</u>. Similar trends were observed for <u>8a,b</u>. These features have also been found for other λ^5 phosphorines³ and acyclic ylides.¹⁷) Therefore, the cyclic ylide structure <u>C</u> seems to be an appreciable contributor to the resonance hybrid of the 1,2- λ^5 -azaphosphorine ring system.

	<u>4a</u>	<u>4b</u>	<u>4c</u>	<u>8a</u>	<u>8b</u>	
δ _{C2}				84.9	91.7	
δ _{C3}	78.5	83.1	90.7	150.2	150.4	
δ _{C4}	155.3	151.1	160.2	101.9	101.8	
δ _C 5	99.7	100.4	101.1		146.3	
δ _C 6	138.4	139.1	138.6		85.4	
J _{P-C2}				148.32	146.48	
J _{P-C3}	155.03	153.20	146.49	10.60	9.77	
J _{P-C4}	12.81	10.38	10.98	18.31	18.31	
J _{P-C5}	25.03	24.42	26.24		8.54	
J _{P-C6}	21.97	22.58	21.97		143.43	
J _{С4-н}		157.47		167.85	166.63	
^J C5-н	164.80	162.96	163.57		159.30	
31 _P	38.1	39.4	38.3	57.2	58.5	

Table 1.	Some Selected ¹³ C-NMR	a) and ³¹ P-NMR ^{b)}	Parameters (of 1,2-λ ⁵ -Aza-
	phosphorines 4a-c and	λ^{5} -Phosphorines	$8a,b^{c}$	

a) Recorded in $CDCl_3$ and chemical shifts are given in ppm (δ) relative to internal Me₄Si. b) Recorded in C₆D₆ and chemical shifts are given in ppm (δ) relative to external 85% H₃PO₄ standard. c) All of the coupling constans (J) are given in Hz.

References

- 1) K. Dimroth, Fortschr. Chem. Forsch., 38, 1 (1973).
- 2) A. J. Ashe, III, Acc. Chem. Res., <u>11</u>, 153 (1978).
- 3) K. Dimroth, S. Berger, and H. Kaletsh, Phosphorus and Sulfur, 10, 305 (1981).
- 4) K. Dimroth, Acc. Chem. Res., 15, 58 (1982).
- 5) G. Märkl, Angew. Chem., 78, 907 (1966).
- 6) N. G. Khusainova, Z. A. Bredikhina, A. D. Sinitsa, V. I. Kal'chenko, and A. N. Pudovik, Zh. Obshch. Khim., 52, 789 (1982).
- 7) M. H. Mebazaa and M. Simalty, Tetrahedron Lett., 1972, 4363.
- Elemental analyses and mass spectral data are satisfactory for all new compounds.

- 9) For <u>1</u>: bp 114 °C/ 133 Pa; ¹H-NMR (CCl₄) δ 3.76 (9H, d, J_{P-H}=12.1 Hz), 4.32 (1H, d, J=2.6 Hz), 4.78 (1H, d, J=2.6 Hz), 7.12-7.40 (3H, m), 7.68-7.85 (2H, m). For <u>2</u>: mp 91-94 °C; ¹H-NMR (CDCl₃) δ 3.85 (1H, d, J=2.1 Hz), 4.64 (1H, d, J=2.1 Hz), 7.10-7.95 (20H, m).
- 10) Y. G. Gololobov, I. N. Zhmurova, and L. F. Kasukhin, Tetrahedron, <u>37</u>, 437 (1981); and references cited therein.
- M. Vaultier, N. Knouzi, and R. Carrie, Tetrahedron Lett., <u>24</u>, 763 (1983);
 J. B. Hendrickson, K. W. Bair, and P. M. Keehn, J. Org. Chem., 42, 2935 (1977).
- 12) E. J. Corey, B. Samuelsson, and F. A. Luzzio, J. Am. Chem. Soc., <u>106</u>, 3682 (1984).
- 13) L. J. Leyshon and D. G. Saunders, J. Chem. Soc., Chem. Commun., <u>1971</u>, 1608;
 T. Sasaki, S. Eguchi, and T. Okano, J. Am. Chem. Soc., <u>105</u>, 5912 (1983);
 D. M. B. Hickey, A. R. MacKenzie, C. J. Moody, and C. W. Rees, J. Chem. Soc., Chem. Commun., 1984, 776.
- 14) J. A. Kloek and K. L. Leschinsky, J. Org. Chem., 43, 1460 (1978).
- 15) H. Wamhoff, G. Haffmanns, and H. Schmidt, Chem. Ber., 116, 1691 (1983).
- 16) <u>4a</u>: mp 85-86 °C; ¹H-NMR (CCl₄) δ 3.63 (6H, d, J_{P-H}=12.1 Hz), 3.79 (3H, s), 3.87 (3H, s), 6.37 (1H, d, J_{P-H}=1.4 Hz), 7.30-7.57 (3H, m), 7.85-8.20 (2H, m); ¹³C-NMR δ 51.4, 52.3, 53.5, 78.5, 99.7, 126.9, 127.0, 128.0, 130.3, 138.4, 155.3, 165.6, 169.1; IR (CCl₄) 1733, 1698 cm⁻¹; UV (CH₃CN) λ_{max} (log ε) 265 (3.96), 384 (4.34) nm.

<u>4b</u>: bp 130 °C (bath temp)/ 66 Pa; ¹H-NMR (CCl₄) δ 3.52 (6H, d, J_{P-H}=12.4 Hz), 3.71 (3H, s), 6.35 (1H, dd, J=8.0, 1.7 Hz), 7.20-7.42 (3H, m), 7.75-8.03 (2H, m), 8.09 (1H, dd, J=36.0, 8.0 Hz); ¹³C-NMR δ 51.1, 53.1, 83.1, 100.4, 126.9, 127.0, 127.9, 129.8, 139.1, 151.1, 167.0; IR (CCl₄) 1689 cm⁻¹; UV (CH₃CN) λ_{max} (log ϵ) 259 (4.06), 389 (4.37) nm.

 $\frac{4c}{4c}: mp 141.5-142.5 °C; ^{1}H-NMR (CDC1_3) \delta 3.71 (6H, d, J_{P-H}=13.1 Hz), 6.46 (1H, d, J_{P-H}=1.1 Hz), 7.10-8.05 (15H, m); ^{13}C-NMR \delta 53.7, 90.7, 101.5, 127.1, 127.4, 127.8, 127.9, 128.2, 128.6, 130.5, 131.1, 132.7, 136.0, 136.1, 138.6, 139.9, 160.2, 193.1, 196.0; IR (CHC1_3) 1667 cm⁻¹; UV (CH_3CN) <math>\lambda_{max}$ (log ε) 226 (4.39), 259 (4.24), 414 (4.14) nm.

<u>8a</u>: mp 146-147 °C; ¹H-NMR (CDCl₃) δ 3.65 (3H, d, J_{P-H}=10.5 Hz), 3.75 (6H, s), 3.79 (6H, s), 5.60 (1H, d, J_{P-H}=2.6 Hz); ¹³C-NMR δ 51.8, 52.4, 55.5, 84.9, 101.9, 150.2, 164.8, 168.5; IR (CHCl₃) 1729, 1700 cm⁻¹; UV (CH₃CN) λ_{max} (log ε) 259 (3.73), 399 (4.42) nm.

<u>8b</u>: bp 105 °C (bath temp)/ 133 Pa; ¹H-NMR (CDCl₃) δ 3.68 (6H, d, J_{P-H}=12.5 Hz), 3.80 (3H, s), 3.81 (3H, s), 3.83 (3H, s), 5.71 (1H, dd, J=8.9, 3.2 Hz), 8.10 (1H, dd, J=38.0, 8.9 Hz); ¹³C-NMR δ 51.1, 51.3, 51.9, 60.0, 85.4, 91.7, 101.8, 146.3, 150.4, 164.9, 165.5, 168.9; IR (CHCl₃) 1740, 1681 cm⁻¹; UV (CH₃CN) λ_{max} (log ε) 250 (3.68), 395 (4.15) nm.

17) G. A. Gray, J. Am. Chem. Soc., <u>95</u>, 7736 (1973).

(Received June 25, 1985)