Syntheses of Six-membered Cyclopalladated Complexes of 2-Benzovlpvridine

Yoshio Fuchita, Katsuma Hiraki,* and Yasunori Kage Department of Industrial Chemistry, Faculty of Engineering, Nagasaki University, Bunkyo-machi, Nagasaki 852 (Received July 23, 1981)

Synopsis. 2-Benzoylpyridine reacts with Pd(OAc), to give a new six-membered cyclopalladated complex, $[{Pd(pcph)(OAc)}_2] \cdot 0.25CH_2Cl_2$ [pcph=2-(2-pyridylcarbonyl)phenyl- C^1, N (1). A chloro-bridged analogue, [{Pd-(pcph)Cl₂], prepared by the metathetical reaction of 1 with LiCl, undergoes bridge-splitting reactions with 3,5lutidine and Tl(acac) to yield the corresponding mononuclear cyclopalladated complexes.

© 1982 The Chemical Society of Japan

Many studies have been reported on the five-membered cyclopalladated complexes of aryl-substituted nitrogen bases.^{1,2)} However, as concerns six-membered cyclopalladated complexes having nitrogen donor atoms, only two reports have appeared on N,N'-diarylamidines3) and N,N-diethyl-3-phenylthiomethoxy-4methoxyphenethylamine.4) Recently, it was found in our laboratory that 2-benzylpyridine readily produces a six-membered cyclopalladated complex by the reaction with palladium(II) acetate.5) In continuation of our studies about the six-membered cyclopalladated complexes, we wish to report on the cyclopalladation of 2-benzoylpyridine (bzopy) by palladium(II) acetate resulting in the formation of [{Pd(pcph)(OAc)}₂] (1) [pcph=2-(2-pyridylcarbonyl)phenyl- C^1 , N].

Experimental

All the new complexes synthesized in this study were characterized in the same way as described in an earlier paper.6) Molecular weights were determined in benzene with a Corona Model 114 molecular weight apparatus at 41.7° C.

Preparation of $[\{Pd(pcph)(OAc)\}_2] \cdot 0.25CH_2Cl_2$ (1). An acetic acid suspension (20 ml) containing palladium(II) acetate (3.1 mmol) and bzopy (3.7 mmol) was refluxed for 1.5 h, and then filtered, to give a yellow cake and a yellow solution. The yellow cake was successively washed well with water and a small amount of methanol, and recrystallized from dichloromethane/hexane to give 0.56 g of 1 as yellow crystals. An additional amount (0.28 g) of 1 was obtained as yellow precipitates from the yellow solution after extraction of it with dichloromethane, concentration of the extract, and dilution with hexane. Yield 76%; mp 240-243 °C (dec); MW 705.4 (Calcd 716.6).

A THF-water Preparation of $[\{Pd(pcph)Cl\}_2]$ (2). (120 ml/10 ml) suspension containing 1 (1.2 mmol) and LiCl

(7.5 mmol) was stirred for 12 h. The precipitated yellow solid was filtered, and washed with a methanol/water (20 ml/20 ml) mixture to give 2. Yield 95%; mp>300 °C.

Reaction of 2 with 3,5-Lutidine. A dichloromethane solution (10 ml) containing 2 (0.23 mmol) and 3,5-lutidine (lut) (0.51 mmol) was stirred at room temperature for 5 h. Addition of hexane to the resulting mixture gave [Pd-(pcph)Cl(lut)]·0.1CH₂Cl₂ (3) as pale yellow crystals. Yield 79%; mp>300 °C.

Reaction of 2 with Tl(acac). A dichloromethane suspension (15 ml) of 2 (0.46 mmol) and thallium(I) acetylacetonate (0.95 mmol) was stirred at room temperature for 1 d. After centrifuging the resulting milky suspension, the supernatant solution was passed through a silica-gel column (200 mesh, $20\phi \times 140$ mm) with dichloromethane as an eluent. A pale yellow fraction was collected and concentrated. Addition of hexane gave [Pd(pcph)(acac)] (4) as yellow crystals. Yield 39%; mp 229-230 °C (dec).

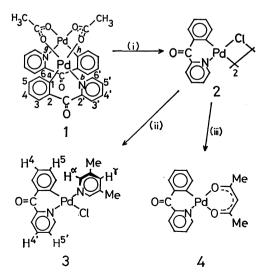
Results and Discussion

2-Benzoylpyridine reacted with palladium(II) chloride in refluxing ethanol to afford only an addition complex, bis(2-benzoylpyridine)dichloropalladium(II), giving no cyclopalladated complex. However, bzopy reacted readily with palladium(II) acetate in refluxing acetic acid to produce a new six-membered cyclopalladated complex 1 in a high yield. It is noteworthy that bzopy, which contains an electron-attracting carbonyl group, undergoes easily cyclopalladation reaction with palladium(II) acetate, in contrast with the results of the earlier studies concerning the electronic effect on the cyclopalladation reaction of substituted azobenzenes.^{7,8)} Complex 1 was treated with LiCl to give 2, which reacted with lut and Tl(acac) to afford the corresponding mononuclear cyclopalladated complexes, 3 and 4, respectively (Scheme 1). All the new complexes prepared in this study show considerably high thermal stability. The IR spectra of 1-4 showed bands at ca. 1670 cm⁻¹ due to a ν (C=O) vibration in pcph moiety. This band did not shift virtually in comparison with that in free bzopy (1670 cm⁻¹).

The IR spectrum of 1 showed two characteristic bridging acetato bands⁹⁾ at 1585 and 1430 cm⁻¹. This

Table 1. Elemental analyses and ¹H NMR data of the palladium(II) complexes

Compd	Found (Calcd) (%)			¹H NMR (δ)			
	$\widehat{\mathbf{c}}$	H	N	6′-H	Me	Others	
1	47.15 (47.35)	3.19(3.16)	3.66(3.91)	8.25 d ^{b)}	2.05 s	$5.28 \mathrm{s}(\mathrm{CH_2Cl_2})$	
2	44.30 (44.47)	2.58(2.49)	4.22 (4.32)	c)	c)	c)	
3	51.75 (52.17)	3.97(3.94)	6.27(6.37)	$9.52~\mathrm{dd^{b,d}}$	2.28 s	$7.39 s(H^{7}) 8.29 s(H^{\alpha})$	$5.28 s (CH_2Cl_2)$
4	52.38 (52.66)	3.91 (3.90)	3.56(3.61)	9.08 dd ^{b,d)}	2.01 s 2.06 s	5.04 s (CH)	


a) In CDCl₃. See the text about the aromatic protons. d=Doublet, dd=double doublet, and s=singlet. b) ³J_{HH}= 7 Hz. c) Not recorded owing to its poor solubility. d) ${}^4J_{\rm HH}=2$ Hz.

complex did not show temperature-dependent ¹H NMR spectra in the range of 57—-50 °C, indicating that the six-membered pcph-palladium ring is virtually planar; if this ring were nonplanar and had a boat conformation, temperature-dependent ¹H NMR spectra attributable to an inversion of the ring would be observed as was seen in the palladated 2-(2-picolyl)phenyl-C¹, N ring.⁵⁾ The ¹H NMR spectrum of **1** exhibited one sharp singlet due to the u-acetato-methyl protons at δ 2.05, indicating that **1** has only one (a- $C^1,b-N$)($g-N,h-C^1$) typed isomer¹⁰) (Scheme 1).

In the ¹³C(¹H) NMR spectrum of 1 in CDCl₃, three aromatic quaternary carbon signals at δ 132.6, 143.2, and 150.5 were ascribed to 2-C, 1-C, and 2'-C, respectively, by comparison with the data of acetophenone (1-C, δ 137.1),¹¹⁾ a cyclopalladated complex (1-C, δ 143.3),⁵⁾ and 2-acetylpyridine (2-C, δ 154.1).12) These data confirm strongly a cyclopalladated structure of the pcph moiety in 1. Other eight aromatic tertiary carbon signals appeared as singlets at δ 124.6, 125.4, 126.6, 128.5, 130.4, 134.0, 138.6, and 151.6. Only the last signal (δ 151.6) was assigned to 6'-C (6-C of 2-acetylpyridine, δ 149.5).¹²⁾ Two lower field singlets at δ 181.3 and 190.3 were ascribed to μ-acetato-carboxylato carbon [Mo₂(μ- $O_2\underline{C}Me)(Ph)_3(PMe_3)_3$, δ 182.7]¹³⁾ and carbonyl one, respectively. The μ-acetato-methyl carbon signal also appeared as a singlet at δ 24.5.

Complex 2 was assigned to a chloro-bridged binuclear complex on the basis of the elemental analysis and the characterization of the derivatives from 2 as stated below.

In the ¹H NMR spectrum of 3, eight aromatic protons of the pcph moiety appeared as two sets of well-separated ABCD pattern (Fig. 1). In consideration of the magnetic anisotropy due to the lutidine ring^{5,6)} and the original chemical shifts of free bzopy,¹⁴⁾ four double doublets at δ 6.69, 7.75, 8.14, and 9.52 were assigned to H6, H3', H3, and H6', respectively, and four double triplets at δ 6.98, 7.12, 7.49, and 7.95 were ascribed to H⁵, H⁴, H^{5'}, and H^{4'}, respectively. The coupling constants were ${}^3J_{\rm HH}{=}7~{\rm Hz}$ and

Scheme 1. (i) LiCl. (ii) 3,5-Lutidine. (iii) Tl(acac).

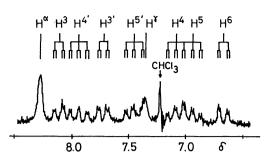


Fig. 1. Low field region of the ¹H NMR spectrum of 3.

 ${}^{4}J_{\rm HH}{=}2~{\rm Hz}.$

The IR spectrum of 4 exhibited two strong bands at 1590 and 1515 cm⁻¹, characteristic of the O,O'chelating acetylacetonato ligand. This complex also showed two sets of relatively clear ABCD pattern, which consisted of two doublets at δ 7.72 and 7.78, two double doublets at δ 8.82 and 9.08 (H⁶) [$^3J_{\rm HH}=$ ca. 7 Hz, ${}^4J_{\rm HH}$ =ca. 2 Hz], two triplets at δ 7.13 and 7.27, and two double triplets at δ 7.51 and 7.98. The mass spectrum exhibited the parent ion peak at m/e387, together with the fragment ion peak at m/e 288 $[(P-acac)^+].$

Styrene reacted with 2 in the presence of tripropylamine in refluxing m-xylene for 30 h to give a brownish black oil. After column chromatographic treatment on alumina, this oil was proved to contain both bzopy and trans-2-(2-pyridylcarbonyl)stilbene (5) in about 68 and 25% yields, respectively. The formation of 5 was confirmed by the ¹H NMR spectrum of the oil in CCl₄ [δ 6.82 d (${}^3J_{\rm HH}$ =16 Hz, 1 $\hat{\rm H}$, olefinic proton)] and its mass spectrum $[m/e 285 (P^+)]$, supporting the cyclopalladated structure in 2. However, the separation of these two compounds has not been achieved even after repeated column chromatographic treatments.

References

- M. I. Bruce, Angew. Chem., Int. Ed. Engl., 16, 73 (1977).
- 2) I. Omae, Chem. Rev., 79, 287 (1979).
- 3) N. D. Cameron and M. Kilner, J. Chem. Soc., Chem. Commun., 1975, 687.
- 4) R. A. Holton and R. V. Nelson, J. Organomet. Chem., 201, C35 (1980).
- 5) K. Hiraki, Y. Fuchita, and K. Takechi, Inorg. Chem., 20, 4316 (1981).
- 6) Y. Fuchita, K. Hiraki, T. Yamaguchi, and T. Maruta,
- J. Chem. Soc., Dalton Trans., 1981, 2405. 7) H. Takahashi and J. Tsuji, J. Organomet. Chem., 10, 511 (1967).
- 8) M. I. Bruce, B. L. Goodall, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1978, 687.

 9) H. Onoue and I. Moritani, J. Organomet. Chem., **43**, 431 (1972).
- 10) K. Hiraki, Y. Fuchita, H. Nakaya, and S. Takakura, Bull. Chem., Soc. Jpn., **52**, 2531 (1979).
- 11) L. F. Johnson and W. C. Jankowski, "Carbon-13 NMR Spectra," John Wiley & Sons, New York (1972).
- 12) G. Miyajima, Y. Sasaki, and M. Suzuki, *Chem. Pharm. Bull.*, **20**, 429 (1972).
- 13) R. A. Jones and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1979, 472.
- 14) S. Castellano and A. A. Bothner-By, J. Chem. Phys., **41,** 3863 (1964).