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ABSTRACT
Nano-CaO with different particle sizes and crystallinity was prepared by sol-gel method.
A tri-component coupling transesterification of rapeseed oil/dimethyl carbonate (DMC)/methanol
was used to determine the viability of prepared nano-CaO as a basic catalyst for biodiesel synthe-
sis. Nano-CaO exhibits better catalytic performance than commercial CaO for biodiesel production
under same reaction condition. At 1:1:8 molar ratio of oil to DMC to methanol, 5wt% nano-CaO
catalyst (calcined at 800 �C), and 65 �C reaction temperature, the reaction gave the best results,
and the fatty acid methyl ester yield exceeded 92% at 4 h which was 2 h shorter than that of
commercial CaO. The catalyst calcined under different temperature has been characterized by BET,
CO2-TPD, TGA, XRD, and SEM. As the results shows that nano-CaO calcined at 800 �C exhibited the
most active which should be contributed to the presence of good dispersivity, large surface area
and pore volume.

An efficient transesterification reaction has been developed over nano-CaO which
possessing good dispersivity, larger surface area and pore volume. Dimethyl carbon-
ate as a green methylating reagent, has been added aiming to turn rapeseed oil to
biodiesel with no glycerol by-product.
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Introduction

Associated with the diminishing fossil fuel supplies and
increasing environmental concerns, researchers have focused
on the renewable energy resources.[1] Biodiesel has been
considered as a renewable fuel derived from triglycerides by
transesterification of triglycerides, typically of chain lengths
with 16, 18 or 20 carbon atoms, or their mono-alkyl esters
with alcohols.[2] The prevailing commercial method of bio-
diesel production is transesterification of glycerol triglyceride
with short-chain alcohols, such as methanol or ethanol, in
the presence of soluble inorganic bases as catalysts, such as

sodium or potassium methoxides.[3] Although the reaction
rates for this process are high, recovery of catalysts is
difficult and treatment of wastes containing catalysts, water,
glycerol and oils presents challenges.[4] Furthermore, these
heterogeneous catalytic process still produces glycerol by-
product, and its separation from the fatty acids and esters
adds to overall cost of biodiesel production. Glycerin, as
a by-product, is not very valuable as that obtained from
biodiesel production simply adds to the over-supply of the
commodity from other sources and thus contribute to
a depression of its price.[5,6] Glycerol production can be
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avoided if rapeseed oil and DMC are reacted to produce gly-
cerol carbonate as a secondary product that is not required to
be separated from the fatty acid esters. Some researchers have
used enzymes as catalyst to produce biodiesel by introducing
DMC as reactant.[7] In our previous research, an indirect
reaction between DMC and triglycerides can be established if
methanol is added as a third reacting component.[8]

The application of calcium oxide as transesterification
catalyst for biodiesel production is restricted due to the
requirement of long reaction time and high molar ratio of
methanol to oil.[9] To solve these problems, we expanded
the specific surface area of CaO to obtain a relatively high
fatty acid methyl ester (FAME) yield.[10] Presented in this
article are results on the application of nano-CaO prepared
by sol-gel method as catalysts for the coupling transesterifi-
cation of rapeseed oil, dimethy carbonate and methanol
to produce biodiesel at moderate condition. The catalytic
activities were investigated and the effect of nano-CaO
preparation condition on the yield of biodiesel was examined.

Experimental

Materials

Refined rapeseed or canola oil was purchased from Xi’an Coal
Co., Ltd. Dimethyl carbonate (DMC), methanol, absolute ethyl
alcohol, cyclohexnae, Ca(NO3)2, citric acid (analytical grade).

Catalyst preparation

The mixture that absolute ethyl alcohol/Ca(NO3)2/citric
acid/water was prepared in a 100mL round-bottomed
flask and was heated to gelatinous by water bath. Then the
production was aging at room temperature for 24 h and was
dried in vacuum oven. Finally, the nano oxide catalyst was
obtained after calcinating for 6 h at 900 �C in muffle stove.

Preparation of biodiesel

The coupling transesterification of rapeseed oil, dimethy
carbonate and methanol to produce biodiesel has been
established based on our previous research work as shown
in Scheme 1. The reaction was performed in a three necked
round bottomed flask equipped with a reflux condenser
and methanol were charged into the flask. After 30 g rape-
seed oil, 6.0 g methanol and 2.8 g DMC adding, the mixture
was heated and maintained at 65 �C temperature with
continuous stirring for hours. Samples were taken out
from the reaction mixture every one hour and quenched
to room temperature, then the catalyst was separated by

centrifugation, and the excess methanol was distilled off
under vacuum. Samples were analyzed for composition on
an HP-7890 gas chromatograph equipped with a flame ion-
ization detector and a fused-silica capillary column (HP-5;
0.32mm � 30m, 0.1 mm film thickness) using methyl hepta-
decanoate as the standard. The nitrogen was the carrier gas
at a flow rate of 20mL/min. The oven temperature was kept
constant at 260 �C. Yield of FAME was defined as a ratio of
the weight of FAME in samples, as determined using the gas
chromatography, to the weight of equivalent FAME that the
oil used in the reaction would have contained.

Catalyst characterizations

Textural characteristics were investigated by means of surface
area determined by BET including mean pore diameter and
pore volume using desorption isotherms on a Micromeritics
ASAP2010. Temperature-programmed desorption patterns of
carbon dioxide (CO2-TPD) for the products were measured
with an automated chemisorption analyzer (AutoChem II
2920, Micromeritics, USA) at the temperature range from 40
to 800 �C with a heating rate of 10 �C min�1. The crystalline
structures of the products of calcination were analyzed using
an X-ray diffraction device (JDX-3530, JEOL, Japan) with an
X-ray tube that has copper Cu as target and released Ka radi-
ation when accelerated at 30mA and 40kV). Thermo gravi-
metric analyses (TGA) of catalyst samples were performed in
the static air condition 20–1000 �C with a heating rate of 5 �C
min�1, using a thermo-gravimetric analyzer/simultaneous dif-
ferential thermal analyzer (TGA/SDTA 851e, Mettler-Toledo,
Switzerland). Scanning Electron Microscopy (SEM) was used
for the investigation of surface morphology of catalyst sam-
ples. Before being submitted to SEM characterization, the
solid sample was coated with gold in order to achieve suffi-
cient conductivity.

Results and discussion

The comparative study

The catalytic performances of 10wt% nano-CaO powder for
biodiesel production have been investigated at refluxing
temperature (65 �C) with a molar oil/DMC/methanol ratio
of 1:1:8. For comparison, FAME yield of commercial CaO
has also been investigated. As indicated in Figure 1, over
90% yield of FAME can be obtained over nano-CaO after
4 h which is better than that of commercial CaO with the
yield of FAME below 80%. Similar result has been proved
by other researchers that commercial CaO catalyst shows a
lower catalytic activity in normal reaction condition for
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Scheme 1. The tri-component coupling transesterification to produce biodiesel.
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biodiesel production.[11] This results indicated that large surface
area of nano powder provided more active sites which gave
great chance for the high transesterification reaction rate.

Effect of catalyst amounts

To explore the influence of the amount of catalyst in the
reaction, catalytic performance in presence of various
concentration nano-CaO catalysts were tested under the same
reaction condition at refluxing temperature (65 �C) with a
molar oil/DMC/methanol ratio of 1:1:8 and the results were
shown in Figure 2. From the results summarized in Figure 2,
it can be seen that the yield of FAME markedly increased at
the beginning with the increase of catalyst dosage from 1 to
5% (weight to oil). The yield of FAME attained the maximum
value of 85.5% when 5% catalyst was introduced at 4 h.
However, with further increase of the catalyst content, the
FAME yields decrease due to the decrease of contact between
the reactants and the catalyst as a result of agglomeration
of nano particle catalyst. Moreover, the higher viscosity of
the reaction system due to the more the dosage of the nano
particle catalyst leads to the influence of the mass transfer
so as to the difficulty of the reaction.[12,13] So the optimum
amount of the catalyst was selected as 5%.

Effect of calcination temperature

To study the influence of the calcination temperature
of nano-CaO in FAME yield, the catalytic performances
of nano-CaO calcinated under various temperatures have
been investigated under the optimal conditions obtained
in the previous section (65 �C refluxing temperature, a
molar oil/DMC/methanol ratio of 1:1:8 and 5wt% nano-
CaO catalysts). From the result as shown in Figure 3, it was
found that the yield of FAME varied from 38.7 to 90.8%
with rising of calcination temperature from 600 to 900 �C
and reaches the optimal value of 92.82% after 4 h at 800 �C.
These results may be due to the high thermal stability of the

formed complex of citric acid and Ca2þ during catalyst
preparation process. The organic matter failed to decompose
completely led to less effective constituent CaO at low
calcination temperature, on the contrary, catalytic surface
was sintered leading to covering active sites at high
calcination temperature.[14,15] By drawing on the results, the
optimum calcination temperature was selected as 800 �C.

Effect of alcohol solvent

Since the amount of alcohol has great effect on the structure
of formed gel so as to the physic-chemical properties
of obtained nano-CaO particles, the influence of alcohol
content on catalytic properties was investigated under the
optimal reaction conditions and shown in Figure 4. From
the results, it was found that biodiesel yield varied from
increase to decrease with the increasing of absolute molar
ratio of ethyl alcohol/Ca(NO3)2/citric acid/water from 0.2/5/
5/50 to 2/5/5/50, and the high ratio of ethanol at 1/5/5/50
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Figure 1. Catalytic performance comparison of different CaO samples.
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Figure 2. Effect of the amount of catalyst on biodiesel yield.

Figure 3. Effect of calcination temperature on biodiesel yield.
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indicating low ratio of Ca(NO3)2/citric acid/water gave the
highest biodiesel yield of 92.4%. It is concluded from this
results that a critical concentration of water should be noted
which affecting the formation of gel probably due to the
excess of water causes a very fast hydrolysis of the alcoxide
by consuming all the disposable alcoxide groups. The near-
complete removal of alcoxide groups from the molecular
structure causes the condensation of the particles in these sys-
tems, because the presence of a small amount of alcoxide
groups is necessary to produce the solubility in alcohol.[16]

However, as the molar ratio of ethanol increases, an occlusion
of ethanol and water inside the pores happened. Hence, the
pores of formed nano-CaO precursor would be blocked which
lead to a decrease in the values of surface area and pore
volume of formed gel so to its catalytic performance.[17,18]

Effect of molar ratio

The influence of the molar ratio in the proposed trans-
esterification of rapeseed oil was investigated at refluxing
temperature (65 �C) using 5wt% nano-CaO and the results
were shown in Figure 5. In general, such a high proportion
of methanol, usually 15:1 molar ratio of methanol to oil,
was used in transesterification between methanol and oil to
promote thigh equilibrium conversion of vegetable oil to
esters. However, in this work, from Figure 5, it showed that
the optimal proportion of the feed reactants, on a molar
basis, is oil: DMC: methanol of 1:1:8 under the refluxing
condition. The results suggested that the proposed method
containing three reactants greatly reduce the amount
of methanol, which gives more potential to the widely
application for biodiesel production.

Characterizations of samples

XRD
The X-ray diffraction patterns for all calcium oxide samples
calcined under different temperature have been shown in
Figure 6. The plots show that the crystal structures of all

nano-CaO particles are similar with major diffraction peaks
for CaO at 2h angles of 32.3�, 37.4�, 53.9�, 64.2�, and
67.4�.[19] Peaks of Ca(OH)2 and CaCO3 were also visible
that obtained nano-CaO is partially hydrated and carbo-
nated. Furthermore, the characteristic diffraction peaks of
CaCO3 were still existed even the calcination temperature
was set at 900 �C, which indicated that the complete decom-
position of CaCO3 required high temperature.

BET
The BET surface, pore size and average volume of different
nano-CaO are characterized and listed in Table 1. As shown,
a reasonable increase of the SBET and the pore volume were
observed over nano-CaO, which benefit the mass transform
between catalysts and reactants in the heterogeneous
reaction. Therefore reasons for the tremendous variation in
the catalytic efficiency of the sample prepared using sol–gel
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Figure 4. Effect of the alcohol solvent on biodiesel yield.
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Figure 6. CO2-TPD curves of different CaO samples.
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method in this experiment. Moreover, pores in both samples
belong to the mesopores class with their dimension of mag-
nitude larger than the triglyceride dimensions,[20] thus any
significant diffusion restriction should not be expected.
According to Figure 7, the hysteresis curve of common CaO
is more similar to Type H1 and put up adsorption limit in
the low relative pressure, while the hysteresis curve of nano-
CaO is corresponding to Type H3 with more obvious hys-
teresis loop, which shows that the pore pattern is vary from
narrow seam pore to ampuliform pore with small caliber
and large lumen.[7,21]

CO2-TPD
For solid basic catalysts, the amount of CO2 irreversibly
adsorbed reflects the population of basic sites on exposed surfa-
ces. The desorption temperature indicates that the strengths of
adhesion at the base site. Results for temperature-programmed
desorption are presented in Figure 8. According to the result,
above 615 �C desorption peak indicated that nano oxides
exhibit stronger base than commercial oxides. With increasing
of calcination temperature, desorption curves of nano-CaO
move to high temperature attributed to the strong basic sites of
O2� anions, which indicated that the low calcination tempera-
ture led to weak effect of O2�, while the effect of O2� was
strengthened with increasing calcination temperature.[22] This is
similar to previously claimed that the required calcination tem-
perature to generate maximum amounts electron donating sites
on CaO surface should be high than 700 �C.[23]

TGA
In order to investigate the influence of temperature of the
catalyst activation on biodiesel yield, the thermal behavior of
the prepared samples were investigated using TGA from
room temperature to 800 �C. Figure 9 exhibits TGA curves
of nano-CaO and commercial CaO. In the thermograph
of both samples two major steps for the mass loss
with changing temperature indicating two endothermal
effects. The first step from 350 to 420 �C is due to loss of
decomposing Ca(OH)2, known to perform less efficiently
in the transesterification reaction in comparison to its
counterpart oxide. The second step occurred in the range of
500–600 �C corresponding to the release of CO2 from
CaCO3 due to the easily react of CaO with carbon dioxide
as it was exposed to the air. Based on these thermogravimet-
ric properties it seems that a much more pronounced
endothemic effect at 400 �C for prepared nano-CaO particles
indicating much more hydration of this sample. The decom-
pose temperature for CaCO3 around 600 �C suggest that
the complete decarbonation of carbonates over nano-CaO
requires higher temperature and the thermal stability of
nano-CaO has been improved.

FT-IR
The Fourier transform infrared spectra of the commercial
CaO and nano-CaO calcinated at different temperatures were
shown in Figure 10. The absence of the band at 1645 cm�1,
usually assigned to the bending of OH-groups of physisorbed
water molecules, on all of nano-CaO samples, indicates that

Table 1. Pore structure property of the CaO samples.

BET surface area Pore volume Pore size
(m2/g) (cm3/g� 10�2) (nm)

CaO 443.3695 0.4414 39.8189
Nano-CaO 659.3303 0.5868 35.5979
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Figure 7. N2 adsorption curves of the catalyst.

Figure 8. CO2-TPD curves of different CaO samples.

Figure 9. TGA plot for different CaO samples.
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the complete dehydration of nano-CaO over calcination tem-
perature of 600 �C. For all the samples, the spectra bands at
850 and 1460 cm�1 correspond to vibration modes of mono
and bidentate carbonates which provide the poisoning of CO2

over their surface. The nano-CaO appeared stronger vibration
a mode indicates that it was eroded more easily by CO2 than
commercial CaO as exposed to the air. Although results of
thermal analysis presented in TGA (Figure 8) suggest that
600 �C should be the temperature high enough for the com-
plete decarbonation, it is obvious that in reality this process
requires higher temperatures. On the other side, the vibration
peaks of mono and bidentate carbonates have diminished with
increasing calcination temperature, which indicate the surface
sintering of nano-CaO under high calcination temperature.

SEM
The SEM images of commercial and nano-CaO samples cal-
cined under different temperature were shown in Figure 11.Figure 10. IR spectra of the commercial and nano-CaO.

Figure 11. SEM photographs of commercial and nano-CaO.
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These images of nano-CaO show a good morphology that par-
ticles are more homogeneous than commercial CaO. However,
nano-CaO particles calcined at 900 �C were column like indi-
cating sintering of the surface so as to its relatively low yield of
biodiesel, while nano-CaO particles calcined at 800 �C which
are concentrated in spheres and the particle size distribution is
more uniform indicating the good dispersivity which have
good relationship with its best catalytic performance.

Conclusion

In this research, nano-CaO obtained by sol-gel method
exhibited high activity in the transesterification of rapeseed
oil with DMC and methanol to produce biodiesel. At 1:1:8
molar ratio of oil to DMC to methanol, addition of 5wt%
nano-CaO catalyst (calcined at 800 �C), gave the best results
with FAME yield exceeded 92% at 4 h under 65 �C reaction
temperature, which shorten 2 h of reaction time than com-
mercial CaO at the same reaction condition. The large sur-
face area and strong basic properties results in a remarkable
high activity of nano-CaO. Based on this highly efficient
and low-cost catalyst, the production of biodiesel could be
greatly enhanced and the production cost could be reduced.
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