Formation of a Specific Co-ordination Cavity for a Chiral Amino Acid by Template Synthesis of a Polymer Schiff Base Cobalt(III) Complex

Yuki Fujii,* Katsuhiro Matsutani, and Katsuhiro Kikuchi

Department of Chemistry, Ibaraki University, Mito, 310, Japan

A template polymer complex, which incorporates N-benzyl-p-valine with almost 100% stereospecificity, was synthesised by copolymerization of Δ - β_2 -[Co $\{(R,R)-N,N'$ -bis[4-(p-vinylbenzyloxy)salicylidene]-1,2-diaminocyclohexane $\{(N$ -benzyl-p-valine)] (3), styrene, and divinylbenzene, followed by dissociation of the co-ordinated amino acid.

Template synthesis of macromolecules is an attractive method for preparing active sites and/or specific cavities in the field of biomimetic and separation chemistry. We have applied the template synthesis method to a Co^{III}—Schiff base complex with N-benzyl-D-valine and succeeded in forming a polymer complex which discriminates between the stereoisomers of

this N-benzyl-amino acid with high stereospecificity.

The preparative method is shown in Scheme 1. 4-(p-Vinylbenzyloxy)salicylaldehyde (1) was prepared from 4-hydroxysalicylaldehyde and p-chloromethylstyrene in about 40% yield,² and treatment with (1R,2R)-1,2-diamino cyclohexane³ gave the Schiff base ligand (2) (90%). The mixed

Table 1. Optical yield of the recovered amino acid (a.a.) N-benzylvaline.

	Optical purity/%		Mol ratio		
Complex	Reacted (D-a.a.)	Unreacted (L-a.a.)	reacted: unreacted a.a.	K ^a	ΔG° kJ mol $^{-1}$
Template polymer complex (5)	99.5	26.2	3.80	682	16.2
Non-template polymer complex ^b	86.5	14.5	5.97	18.5	7.2
trans- $[Co(2)(H_2O)_2]CI$	88.2	21.8	4.05	24.8	8.0

 $^{a}K = \{ [Co(D-a.a.)][L-a.a.H] \} / \{ [Co(L-a.a.)] [D-a.a.H] \}$. b Prepared by copolymerization to Schiff base (2) with styrene and divinyl-benzene (mol fraction 1:20:4) in THF followed by reaction with CoCl₂ under air oxidation conditions.

Scheme 1. Reagents: i, p-chloromethylstyrene, NaOH; ii (1R,2R)-1,2-diaminocyclohexane; iii, Co(OAc)₂, N-benzyl-D-valine, O₂; iv, styrene, divinylbenzene; v, 3 $\,$ M HCl; vi, N-benzyl-D,L-valine.

ligand Co^{III} complex (3) was synthesized from Co(OAc)₂, ligand (2), and N-benzyl-D-valine under air oxidation conditions^{4,5} (90%). The Δ-β₂-structure of the complex was confirmed by its electronic and c.d. spectra.^{5,6} Complex (3) was then copolymerized with styrene and divinylbenzene (mol fraction 1:20:4) in tetrahydrofuran (THF) at about 60 °C for one day using azoisobutyronitrile as initiator. The green polymer complex (4) thus formed (70% yield) is insoluble in tetrahydrofuran (THF), CHCl₃, MeOH, etc., whereas (3) (green) is soluble in organic solvents. Complex (4) was treated with 3 M HCl in MeOH to produce (5) quantitatively. Complex (5) is brown and insoluble in organic solvents. Its reflectance spectrum (300—1000 nm) closely resembled that of the corresponding N, N'-bis(salicylidene)ethylene-diaminediaqua complex.⁷ When (5) (about 200 mesh) was

treated with an excess of racemic N-benzylvaline in MeOH–CHCl₃ (1:1 v/v), it became green within a few hours affording (4), with incorporation of $\sim 1.2 \times 10^{-4}$ mol of amino acid per g of (5). On treatment with 3 M HCl complex (5) and free N-benzylvaline were recovered, with the optical purity given in Table 1.

In order to evaluate the template effect, the chiral recognition of the trans- $[Co(2)(H_2O)_2]Cl^{5,7}$ complex itself and also the non-template polymer Schiff base complex, prepared without N-benzyl-D-valine co-ordination was tested by the method used for (5), as the Co-(2) complex itself can discriminate between the chirality of amino acids to some extent.^{4,5} The results are given in Table 1. The chiral discrimination of the template polymer complex (5) reaches almost 100% and is higher than that of trans- $[Co(2)(H_2O)_2]Cl$

and the non-template polymer complex by at least 8.0 kJ mol⁻¹ in ΔG° value. These results then, clearly indicate that the template effect operates quite effectively in this system.

This study was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan.

Received, 10th December 1984; Com. 1735

References

 K. J. Shea, E. A. Thompson, S. D. Pandy, and P. S. Beauchamp, J. Am. Chem. Soc., 1980, 102, 3149; G. Wulff, A. Sarhan, and K. Zabrochi, Tetrahedron Lett., 1973, 44, 4329; G. Wulff and W.

- Verper, J. Chromatogr., 1978, 167, 171; G. Wulff, R. Kemmerer, J. Vietmeier, and H. G. Poll, Nouv. J. Chim., 1982, 6, 681; S. N. Gupta and D. C. Neckers, J. Polym. Sci., Polym. Chem. Ed., 1982, 20, 1609.
- 2 J. Daly, L. Horner, and B. Witkop, J. Am. Chem. Soc., 1961, 83, 4787.
- 3 R. G. Asperger and C. F. Liu, Inorg. Chem., 1965, 4, 1492.
- 4 Y. Fujii, M. Sano, and Y. Nakano, Bull. Chem. Soc. Jpn., 1977, 50, 2609.
- 5 Y. Fujii, M. Matsufuru, A. Saito, and S. Tsuchiya, Bull. Chem. Soc. Jpn., 1981, 54, 2029.
- 6 Y. Kushi, T. Tada, Y. Fujii, and H. Yoneda, Bull. Chem. Soc. Jpn., 1982, 55, 1834.
- 7 A. Bigotto, G. Costa, G. Mestroni, G. Pellizer, A. Puxeddu, E. Reisenhofer, L. Stefani, and G. Tauzher, *Inorg. Chim. Acta*, 1970, 4, 41.