

Journal of Organometallic Chemistry 533 (1997) 13-23

Unexpected reactions of (cyclooctatetraene) diiron hexacarbonyl with aryllithium reagents: crystal structures of [(CO)₃Fe(1-4-η:5-7-η-C₈H₉)(CO)₂Fe(COC₆H₅)] and [(CO)₃Fe(1-4-η:5-8-η-C₈H₉)(CO)₃FeC(OC₂H₅)C₆H₅]

Yong Yu, Jie Sun, Jiabi Chen *

Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, People's Republic of China

Received 5 June 1996; revised 29 September 1996

Abstract

The reaction of (cyclooctatetraene)diiron hexacarbonyl (1) with aryllithium reagents ArLi (Ar = C_6H_5 , o-, m-, p-CH₃C₆H₄, p-CH₃C₆H₄) in ether at low temperature afforded acylmetalate intermediates. Subsequent alkylation with Ei₃OBF₆ in aqueous solution at 0°C gave the (8,8-dihydro-1-4- η :5-7- η -cyclooctatetraene)thricarbonylirondicarbonyl(arylformacyl)iron complexes [(CO)₃Fe(1-4- η :5-7- η -C₈H₃(CO)₂Fe(COArJ) (2a-e) (2a, Ar = C_6H_5 ; 2b, Ar = o-CH₃C₆H₄; 2c, Ar = m-CH₃C₆H₄; 2d, Ar = p-CH₃C₆H₄; 2e, Ar = p-CH₃C₆H₄) and (1-4- η :5-8- η -cyclooctatetraene)tricarbonylirondicarbonyliethoxy(aryl)carbene]trion complexes [(CO)₃Fe(1-4- η :5-8- η -C₈H₈)(CO)₂FeC(OC₂H₅)Ar] (3a-e) (3a, Ar = C_6H_5 ; 3b, Ar = o-CH₃C₆H₄; 3c, Ar = m-CH₃C₆H₄; 3d, Ar = p-CH₃C₆H₄; 3d, Ar = p-CH₃C₆H₄). The structures of 2a and 3a have been established by X-ray diffraction studies, which indicate that the Fe(CO)₃ unit and h(CO)₂Fe(COC₆H₄) moiety in 2a and the (CO)₂FeC(OC₂H₅)C₆H₅ moiety in 3a are on opposite sides of the cyclooctatetraene ring.

Keywords: (Cyclooctatetraene)diiron hexacarbonyl; Reaction; Crystal structure

1. Introduction

The current interest in the synthesis, structure, and chemistry of alkene-metal carbene complexes stems from the possible involvement of these species in various reactions of metal carbene complexes with alkenes [1-3]. In the previous papers [4-15] we showed that a series of novel olefin-coordinated transition metal carbene complexes and/or their isomerized products have been isolated and several novel isomerizations of olefin ligands have been observed by the reaction of olefin-ligated metalcarbonyls with nucleophiles, followed by alkylation with Et₃OBF₄. We found that the isomerizations and resulting products depend not only on the olefin ligands but also on the central metals [5-10,16,17]. For instance, the reaction of (cycloocta-

tetraene)tricarbonyliron with aryllithium reagents and subsequent alkylation with Et3OBF4 results in the formation of novel isomerized carbene complexes with two types of structure, A and B, or (8.8-dihydro-3-5-ncyclooctatrienyl)tricarbonyliron complexes, depending on the alkylation conditions [5] (Eq. (1)); while pentacarbonyl(cyclooctatetraene)diiron, where the two iron atoms are directly bonded to each other, reacts with aryllithium reagents under the analogous conditions to give dimetal bridging carbene complexes [9] (Eq. (2)). As an extension of our research on the olefin-coordinated metal carbene complexes, we have now studied the reaction of (cyclooctatetraene)diiron hexacarbonyl, $C_xH_x[Fe(CO)_3]$, (1), where the two iron atoms are not directly bonded to each other, for the reaction in order to further investigate the effect of different binuclear central metals on the isomerization of the olefin ligands and reaction products. Several unexpected products, (1-4-n:5-7-n-cyclooctatetrienyl)tricarbonylirondicarbonyl(arylformacyl)iron and (1-4-η:5-8-η-cycloocta-

Corresponding author.

tetraene)tricarbonylirondicarbonylethoxy(aryl)carbene]iron complexes, were obtained by the reactions of compound 1 with aryllithium reagents, in a similar manner as previously described [5-9]. Herein we describe the syntheses and structural characterizations of these new complexes.

Ⅱ, Ⅲ:a,Ar=C₆H₅; b, Ar=p-CH₃C₆H₄; c, Ar=o-CH₃C₆H₄; & Ar=so-CH₃C₆H₄; c, Ar=p-CF₃C₆H₄; ℓ, Ar=C₆O₅

Ar=C₆H₅; b, m, p-CH₃C₆H₄; p-ClC₆H₄; p-CF₃C₆H₄

(1)

2. Experimental section

All procedures were performed under a dry, oxygenfree N₂ atmosphere using standard Schlenk techniques. Solvents were reagent grade and dried by refluxing over appropriate drying agents and stored over 4 Å molecular sieves under N₂ atmosphere. Diethyl ether (Et₂O) was distilled from sodium benzophenone ketyl, while petroleum ether (30-60 °C) was distilled from CaH₂, and CH₂Cl₂ from P₂O₅. The neutral alumina (Al₂O₃) used for chromatography was deoxygenated at room temperature under high vacuum for 16 h, deactivated with 5% w/w N₂-saturated water, and stored under N₂. Compound 1 [18-20], Et₃OBF₄ [21], and aryllithium reagents [22-26] were prepared by literature methods. The IR spectra were measured on a Zeiss Specord-75 spectrophotometer. All ¹H NMR spectra were recorded at ambient temperature in acetone-d₆ solution with TMS as internal reference using a Varian 200 spectrometer. Electron ionization mass spectra (EIMS) were run on a Finnigan 4021 GC/MS/DS spectrometer. Melting points obtained on samples in sealed nitrogen-filled capillaries are uncorrected.

2.1. Reaction of $C_8H_8[Fe(CO)_3]_2$ (1) with C_6H_3 Li to give $[(CO)_3Fe(1.4-\eta:5-7-\eta-C_8H_9)(CO)_2Fe(COC_6H_5)]$ (2a) and $[(CO)_3Fe(1.4-\eta:5-8-\eta-C_8H_8)-(CO)_2FeC(OC_2,H_2)C_6H_5]$ (3a)

To a solution of 0.40 g (1.04 mmol) of 1 dissolved in 50 ml of ether at -65 °C was added dropwise 2.10 mmol of C6H6Li [22] with stirring for 15 min. The reaction mixture was stirred at -60 to -50 °C for 4.5 h, during which time the yellow solution gradually turned dark brown-yellow. The resulting solution then evaporated under high vacuum at -40 to -50°C to dryness. To the dark brown solid residue obtained was added Et₃OBF₄ [21] (ca. 5 g). This solid mixture was dissolved in 50 ml of N2-saturated water at 0°C with vigorous stirring, and the mixture covered with petroleum ether (30-60°C). Immediately afterwards, Et₃OBF₄ (ca. 10 g) was added portionwise to the aqueous solution, with strong stirring, until it became acidic. The aqueous solution was extracted with petroleum ether. The combined extract was dried over anhydrous Na, SO4. After removal of the solvent under vacuum, the residue was chromatographed on an alumina (neutral, 100-200 mesh) column $(1.6 \times 15 \text{ cm}^2)$ at $-25 ^{\circ}\text{C}$ with petroleum ether as eluant. After elution of a small yellow band which contains C₈H₈Fe(CO)₃, the brown-yellow band was eluted and collected and then an orange-yellow band was eluted with petroleum ether/Et₂O (10:1). After vacuum removal of the solvents from the above two eluates, the residues were recrystallized from petroleum ether/CH2Cl2 at -80°C. From the first fraction, 0.21 g (43% based on 1) of dark red crystals of 2a was obtained, m.p. 62-64 °C decomp. IR (ν_{CO}) (hexane): 2002 (s), 1991 (vs), 1979 (vs), 1940 (w), 1625 (s) cm⁻¹. MS: m/e 462 (M⁺), 434 (M⁺ – CO), 406 (M^+ – 2CO), 378 (M^+ – 3CO), 350 (M^+ – 4CO), 322 (M+-5CO), 217 (M+-5CO-COC₆H₅), 104 (C₈H₉-H)⁺. Anal. Found: C, 52.25; H, 3.11. C₂₀H₁₄O₆Fe₂ Calc.: C, 51.99; H, 3.05%. From the second fraction, 0.20 g (39% based on 1) of orange-red crystalline 3a was obtained, m.p. 69-70°C decomp. IR (ν_{CO}) (hexane): 2050 (vs), 1990 (vs), 1980 (sh), 1960 (m), 1944 (s) cm⁻¹. MS: m/e 490 (M⁺), 462 (M⁺-CO), 434 (M^+-2CO) , 406 (M^+-3CO) , 378 $(M^+-$ 4CO), 350 (M^+ – 5CO), 216 (M^+ – 5CO–C(OC₂H₃)– C₆H₅), 104 (C₈H₈)⁺. Anal. Found: C, 54.37; H, 3.64. C₂₂H₁₈O₆Fe₂ Calc.: C, 53.92; H, 3.70%.

2.2. Reaction of 1 with o-CH₃C₆H₄Li to give $[(CO)_3Fe(1-4-\eta:5-7-\eta-C_8H_9)(CO)_2Fe(COC_6H_4CH_3-o)]$ (2b) and $[(CO)_3Fe(1-4-\eta:5-8-\eta-C_8H_8)-(CO)_5FeC(OC_2H_3)C_6H_4CH_3-o]$ (3b)

Similar to the procedures described above in Section 2.1, the reaction of 1 (0.70 g, 1.82 mmol) with 3.70 mmol of o-CH3C6H4Li [23] at -60 to -50°C for 4h, followed by alkylation and further treatment, afforded 0.35 g (40% based on 1) of dark red crystalline 2b and 0.39 g (42% based on 1) of 3b as orange-red crystals. **2b**: m.p. 88-90 °C decomp. IR (ν_{CO}) (hexane): 2004 (s), 1994 (vs), 1982 (vs), 1942 (w), 1620 (s) cm⁻¹. MS: m/e 476 (M⁺), 448 (M⁺ – CO), 420 (M⁺ – 2CO), 392 (M^+-3CO) , 364 (M^+-4CO) , 336 (M^+-5CO) , 217 $(M^+ - 5CO - COC_6H_4CH_3)$, 104 $(C_8H_9 - H)^+$. Anal. Found: C, 52.85; H, 3.02. C₂₁H₁₆O₆Fe₂ Calc.: C, 52.98; H, 3.39%. 3b: m.p. 82-83 °C decomp. IR (ν_{CO}) (hexane): 2030 (vs), 1995 (s), 1978 (s), 1960 (m), 1942 (s) cm⁻¹. MS: m/e 504 (M⁺), 476 (M⁺ – CO), 448 (M^+-2CO) , 420 (M^+-3CO) , 392 (M^+-4CO) , 364 $(M^+ - 5CO)$, 216 $(M^+ - 5CO - C(OC_2H_5)C_6H_4CH_3)$, 104 $(C_3H_8)^+$. Anal. Found: C, 54.85; H, 3.90. $C_{23}H_{20}O_6Fe_2$ Calc.: C, 54.80, H, 4.00%.

2.3. Reaction of 1 with $m-CH_3C_6H_4Li$ to give $\{(CO)_3Fe(1-4-\eta:5-7-\eta-C_8H_6)(CO)_2Fe(COC_6H_4CH_3-m)\}$ (2c) and $\{(CO)_3Fe(1-4-\eta:5-8-\eta-C_8H_8)-(CO)_2Fe(COC_2H_5)C_6H_4CH_3-m\}$ (3c)

The reaction of 0.70 g (1.82 mmol) of 1 with 3.70 mmol of m-CH₃C₆H₄Li [23] was as described above in Section 2.1 at -60 to -50°C for 5h. After evaporation of the solvent in vacuo, further treatment of the resulting residue in a manner similar to that described in Section 2.1 gave 0.36 g (41% based on 1) of dark red crystals of 2c and 0.40 g (43% based on 1) of 3c as orange-red crystals. 2c: m.p. 86-88°C decomp. IR (ν_{CO}) (hexane): 2003 (s), 1990 (vs), 1980 (vs), 1940 (w), 1622 (s) cm⁻¹. MS: m/e 476 (M⁺), 448 (M⁺-CO), 420 (M⁺-2CO), 392 (M⁺-3CO), 364 (M⁺-

Table 1 Crystal data and experimental details for complexes 2a and 3a

•	2a	3a
formula formula weight	C ₂₀ H ₁₄ O ₆ Fe ₂ 462.02	C ₂₂ H ₁₇ O ₆ Fe ₂ 489.07
space group	P2,/n (No. 14)	P1 (No. 2)
a (Å)	8.229(6)	10.997(4)
b (Å)	6.891(4)	14.532(9)
c (Å)	32.949(6)	7.044(4)
a (°)	90	99.78(5)
- β(•)	94.89(4)	93.89(4)
် (ဗိ)	90	112.04(3)
V (ų)	1861(1)	1017(1)
Z	4	2
d _{calc} (gcm ⁻³)	1.648	1.596
rystal size (cm³)	$0.20 \times 0.20 \times 0.30$	0.20 × 0.10 × 0.20
μ (Mo Kα) (cm ⁻¹)	15.91	14.61
radiation (monochromated in incident beam)	Mo Kα ($\lambda = 0.71069 \text{ Å}$)	Mo Kα (λ = 0.71069 Å)
diffractometer	Rigaku AFC7R 20	Rigaku AFC7R 20
temperature (°C)	25: 18.5-21.2	24; 13.5-23.0
orientation reflections: no.; range 20 (°) scan method	23, 16.3-21.2 ω-2θ	ω-2θ
data collection range 2 θ (°)	5-45	5-45
No. of unique data, total	2506	2539
with $l > 3.00\sigma(l)$	1354	1166
No. of parameters refined	253	271
correction factors: max., min. (DIFARS)	1.0000, 0.8426	1.0000, 0.8266
R *	0.038	0.068
 R_ ^b	0.039	0.065
quality-of-fit indicator ^c	1.50	2.40
largest shift/e.s.d. final cycle	0.00	0.01
argest peak (e Å - 3)	0.32	0.78
minimum peak (e Å ⁻³)	-0.31	-0.54

 $^{^{\}circ} R = \Sigma ||F_{0}| - |F_{0}|| / \Sigma |F_{0}|$

^b $R_w = [\Sigma_w(|F_o| - |F_c|)^2 / \Sigma w |F_o|^2]^{1/2}; w = 1/\sigma^2 (|F_o|).$

^c Quality-of-fit $[\Sigma_w(|F_o| - |F_c|)^2/(N_{obs} - N_{param})]^{1/2}$.

4CO), 336 (M⁺ – 5CO), 217 (M⁺ – 5CO–COC₆H₄CH₃), 104 (C₈H₉–H)⁺. Anal. Found: C, 52.51; H, 3.75. C₂₁H₁₆O₆Fe₂ Calc.: C, 52.98; H, 3.39. 3c: m.p. 62–64 °C decomp. IR: ($\nu_{\rm CO}$) (hexane): 2015 (vs), 1988 (vs), 1975 (sh), 1955 (m), 1938 (s) cm⁻¹. MS: m/e 504 (M⁺), 476 (M⁺ – CO), 448 (M⁺ – 2CO), 420 (M⁺ – 3CO), 392 (M⁺ – 4CO), 364 (M⁺ – 5CO), 216 (M⁺ – 5CO–C(OC₂H₅)C₆H₄CH₃), 104 (C₈H₈)⁺. Anal. Found: C, 54.45; H, 3.80. C₂₃H₂₀O₆Fe₂ Calc.: C, 54.80; H, 4.00%.

2.4. Reaction of 1 with $p-CH_3C_6H_4Li$ to give $[(CO)_3Fe(1-4-\eta:5-7-\eta-C_8H_9)(CO)_2Fe(COC_6H_4CH_3-p]$ (2d) and $[(CO)_3Fe(1-4-\eta:5-8-\eta-C_8H_8)-(CO)_2FeC(OC_2H_5)C_6H_4CH_3-p]$ (3d)

Compound 1 (0.70 g, 1.82 mmol) was treated, in a manner similar to that described in Section 2.1, with 3.70 mmol of p-CH₃C₆H₄Li [23] at -60 to -50 °C for 5h, followed by alkylation and further treatment as described above for the preparation of 2a and 3a to yield 0.33 g (38% based on 1) of dark red crystals of 2d

and 0.42 g (46% based on 1) of orange-red crystalline 3d. 2d: m.p. 76-78 °C decomp. IR (ν_{CO}) (hexane): 2002 (s), 1990 (vs), 1979 (vs), 1942 (m), 1624 (s) cm⁻¹. MS: m/e 476 (M⁺), 448 (M⁺- CO), 420 (M⁺- 2CO), 392 (M⁺- 3CO), 364 (M⁺- 4CO), 336 (M⁺- 5CO), 217 (M⁺- 5CO-COC₆H₄CH₃), 194 (C₈H₉-H)⁺. Anal. Found: C, 52.84; H, 3.77. C₂₁H₁₆O₆Fe₂ Calc.: C, 52.98; H, 3.39. 3d: m.p. 54-56 °C decomp. IR (ν_{CO}) (hexane): 2010 (vs), 1981 (vs), 1970 (sh), 1952 (m), 1938 (s) cm⁻¹. MS: nl/e 504 (M⁺), 476 (M⁺- CO), 448 (M⁺- 2CO), 420 (M⁺- 3CO), 392 (M⁺- 4CO), 364 (M⁺- 5CO), 216 (M⁺- 5CO-C(OC₂H₃)C₆H₄CH₃), 104 (C₈H₈)⁺. Anal. Found: C, 55.16; H, 4.06. C₂₃H₂₀O₆Fe₂ Calc.: C, 54.80; H, 4.00%.

2.5. Reaction of 1 with $p-CH_3OC_6H_4Li$ to give $[(CO)_3Fe(1-4-\eta:5-7-\eta-C_8H_9)(CO)_2Fe(COC_6H_4OCH_3-p]$ (2e) and $[(CO)_3Fe(1-4-\eta:5-8-\eta-C_8H_8)-(CO)_2FeC(OC_2H_5)C_6H_4OCH_3-p]$ (3e)

A solution of 0.70 g (3.74 mmol) of $p\text{-CH}_3\text{OC}_6\text{H}_4\text{Br}$ in 20 ml of ether was mixed with 3.74 mmol of n-

Table 2
Positional parameters and their estimated standard deviations * for 2a and 3a

Atom	2a			3a				
	x	у	z	$B_{eq}(\mathring{A}^2)$	x	у	z	B _{eq} (Å ²)
Fe(1)	0.1057(1)	0.3234(2)	0.93467(3)	3.54(3)	0.8196(3)	0.0973(2)	0.3401(5)	2.88(10)
Fe(2)	0.4313(1)	0.1985(2)	0.85274(3)	2.90(3)	0.7132(3)	0.3262(2)	0.1138(4)	2.77(9)
O(1)	0.3365(8)	0.406(1)	1.0048(2)	8.8(2)	0.940(2)	0.256(1)	0.689(3)	6.5(6)
O(2)	-0.0892(8)	0.6772(10)	0.9202(2)	6.3(2)	1.030(2)	0.030(1)	0.282(3)	6.2(6)
O(3)	-0.1552(7)	0.162(10)	0.9787(2)	6.8(2)	0.675(1)	-0.063(1)	0.539(2)	5.1(5)
O(4)	0.3059(8)	-0.1768(9)	0.8235(2)	6.6(2)	0.610(1)	0.165(1)	-0.225(2)	4.2(5)
O(5)	0.3735(6)	0.4244(8)	0.7773(2)	4.4(2)	0.841(2)	0.489(1)	-0.094(3)	6.6(6)
O(6)	0.7005(7)	-0.0342(8)	0.8411(2)	6.1(2)	0.450(1)	0.331(1)	0.126(2)	5.0(5)
C(1)	0.202(1)	0.039(1)	0.9326(2)	4.0(2)	0.882(2)	0.190(2)	0.126(3)	4.4(7)
C(2)	0.1103(9)	0.094(1)	0.8960(2)	3.4(2)	0.776(2)	0.089(2)	0.051(3)	3.0(6)
C(3)	0.1535(8)	0.260(1)	0.8742(2)	2.9(2)	0.661(20	0.062(2)	0.130(3)	3.3(6)
C(4)	0.2695(9)	0.412(1)	0.8890(2)	3.0(2)	0.648(2)	0.126(2)	0.292(4)	3.8(7)
C(5)	0.4500(10)	0.415(1)	0.8982(2)	3.4(2)	0.652(2)	0.234(2)	0.320(3)	2.5(6)
C(6)	0.5517(10)	0.258(1)	0.9091(2)	4.1(2)	0.762(2)	0.333(2)	0.406(3)	4.1(7)
C(7)	0.5015(10)	0.064(1)	0.9099(2)	3.9(2)	0.877(2)	0.361(2)	0.315(3)	3.2(6)
C(8)	0.3775(10)	-0.016(1)	0.9368(2)	4.7(2)	0.887(2)	0.294(2)	0.149(3)	3.2(6)
C(9)	0.245(1)	0.380(1)	0.9770(3)	5.4(3)	0.896(2)	0.197(2)	0.548(4)	4.7(7)
C(10)	-0.012(1)	0.542(3)	0.9346(3)	4.2(2)	0.945(30)	0.061(2)	0.315(4)	5.6(9)
C(11)	-0.535(10)	0.227(1)	0.9613(2)	4.8(3)	0.732(2)	0.000(2)	0.465(4)	4.9(8)
C(12)	0.3574(10)	-0.031(1)	0.8340(2)	3.9(2)	0.652(3)	0.233(2)	-0.085(3)	4.2(8)
C(13)	0.3937(8)	0.343(1)	0.8074(2)	3.2(2)	0.791(2)	0.427(1)	-0.007(3)	2.6(6)
C(14)	0.6476(10)	0.130(1)	0.8350(2)	3.7(2)	0.587(2)	0.381(2)	0.163(3)	3.4(7)
C(15)	0.7541(9)	0.274(1)	0.8149(2)	3.3(2)	0.600(2)	0.485(2)	0.259(3)	3,4(6)
C(16)	0.8559(8)	0.196(1)	0.7865(2)	3.2(2)	0.731(2)	0.551(2)	0.356(3)	4.7(7)
C(17)	0.9635(9)	0.320(1)	0.7695(2)	3.7(2)	0.756(3)	0.648(2)	0.455(4)	5.3(8)
C(18)	0.9754(9)	0.514(1)	0.7800(2)	3.9(2)	0.661(3)	0.685(2)	0.459(4)	5.0(7)
C(19)	0.8738(9)	0.589(1)	0.8076(2)	3.7(2)	0.536(3)	0.624(2)	0.350(4)	5.4(9)
C(20)	0.7618(9)	0.469(1)	0.8247(2)	3.1(2)	0.504(2)	0.523(2)	0.252(3)	3.0(6)
C(21)					0.384(2)	0.226(2)	0.021(3)	4.4(7)
C(22)					0.233(2)	0.206(2)	0.001(4)	6.9(8)

^a Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as $8/3\pi^2[U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}aa^*bb^*\cos\gamma + 2U_{13}aa^*cc^*\cos\beta + 2U_{23}bb^*cc^*\cos\alpha]$.

C₄H₀Li [24]. After 30 min stirring at room temperature, the resulting ether solution of p-CH₃OC₄H₄Li [25] was reacted, as described in Section 2.1, with 0.70 g (1.82 mmol) of 1 at $-60 \text{ to } -50 ^{\circ}\text{C}$ for 5 h, followed by alkylation; further treatment as described for the preparation of 2a and 3a gave 0.37g (41% based on 1) of dark red crystalline 2e and 0.38 g (40% based on 1) of 3e as orange-red crystals. 2e: m.p. 71-73°C decomp. IR (ν_{CO}) (hexane): 2005 (s), 1992 (vs), 1980 (vs), 1938 (m), 1602 (s) cm⁻¹. MS: m/e 492 (M⁺), 464 (M⁺-CO), 436 (M^+ – 2CO), 408 (M^+ – 3CO), 380 (M^+ – 4CO), $352 (M^+ - 5CO)$, $217 (M^+ - 5CO -$ COC₆H₄OCH₃), 104 (C₈H₉-H)⁺. Anal. Found: C, 51.70; H, 3.58. C₂₁H₁₆O₇Fe₂ Calc.: C, 51.26; H, 3.28%. 3e: m.p. 80-82 °C decomp. IR (ν_{CO}) (hexane): 2030 (vs), 1987 (vs), 1976 (sh), 1961 (s), 1945 (s) cm⁻¹. MS: m/e 520 (M⁺), 492 (M⁺ - CO), 464 (M⁺ - 2CO), 436 (M^+-3CO) , 408 (M^+-4CO) , 380 (M^+-5CO) , 216 $(M^+ - 5CO - C(OC_2H_5)C_6H_4OCH_3)$, 104 $(C_8H_8)^+$. Anal. Found: C, 52.92; H, 3.80. C₂₃H₂₀O₇Fe₂ Calc.: C, 53.11; H, 3.88%.

2.6. Reaction of 1 with $p-CF_3C_6H_4Li$ to give $C_8H_8Fe(CO)_3$ (4) and $(p-CF_3C_6H_4)CO(C_2H_5)$ (5)

Compound 1 (0.70 g, 1.82 mmol) was reacted, in a manner similar to that described in Section 2.1, with fresh p-CF₃C₆H₄Li [26] prepared by the reaction of 0.86 g (3.80 mmol) of p-CF₃C₆H₄Br with 3.80 mmol of

 $n-C_4H_0Li$ in ether solution at -60 to -50°C for 4h. Subsequent alkylation took place, similar to that chromatographed on Al2O3 (neutral) with petroleum ether as eluant. A red band which eluted first was collected, and then a light yellow band was eluted with petroleum ether/Et2O (20:1). After vacuum removal of the solvents from the above two cluates, the residues were recrystallized from petroleum ether solution at -80°C. From the first fraction, 0.21 g (48% based on 1) of bright red crystals of 4 [18] was obtained, m.p. 91-92 °C (lit. 93-95°C [18]). IR (v_{CO}) (hexane): 2050 (s), 1995 (vs), 1982 (s) cm⁻¹ (lit. [18] (CS₂): 2058, 1992 cm⁻¹). H NMR (acetone- d_6): δ 5.35 (s) (lit. (CS₂): δ 5.18 (s) [18]). MS: m/e 244 (M+). Anal. Found: C, 54.38; H, 3.24. C₁₁H₈O₃Fe Calc.: C, 54.14; H, 3.30%. From the second fraction, 0.15g (41% based on 1) of white crystals of 5 [27] was obtained, m.p. 29-31°C (lit. 32-33 °C [27]). IR: $(\nu_{C=0})$ (KCl): 1612 cm⁻¹. ¹H NMR (acetone- d_6): δ 8.00 (dd, 4H, CF₃C₆H₄), 3.18 (q, 2H, CH₂CH₃), 1.18 (t, 3H, CH₂CH₃). MS: m/e 202 (M⁺). Anal. Found: C, 59.07; H, 4.36. C₁₀H₉OF₃ Calc.: C, 59.41; H, 4.49%.

2.7. X-ray crystal structure determinations of complexes 2a and 3a

Single crystals of 2a and 3a suitable for X-ray diffraction study were obtained by recrystallization from petroleum ether/CH₂Cl₂ solution at -80°C. Single

Table 3
Bond lengths (Å) * for complexes 2a and 3a

	2a	3a		2a	3a
Fe(1)-C(1)	2.116(9)	2.17(2)	Fe(1)-C(2)	2.033(8)	2.04(2)
Fe(1)-C(3)	2.111(7)	2.05(2)	Fe(1)-C(4)	2.191(7)	2.10(2)
Fe(1)-C(9)	1.771(10)	1.78(3)	Fe(1)-C(10)	1.805(10)	1.66(2)
Fe(1)-C(11)	1.769(9)	1.79(3)	Fe(2)-C(5)	2.100(7)	2.12(2)
Fe(2)-C(6)	2.071(8)	2.06(2)	Fe(2)C(7)	2.135(8)	2.06(2)
Fe(2)-C(8)	***	2.14(2)	Fe(2)-C(12)	1.788(9)	1.67(2)
Fe(2)-C(13)	1.799(9)	1.79(2)	Fe(2)C(14)	1.977(8)	1.87(2)
O(1)-C(9)	1.149(9)	1.14(2)	O(2)-C(10)	1.132(9)	1.20(2)
O(3)-C(11)	1.145(8)	1.13(2)	O(4)-C(12)	1.131(9)	1.20(2)
O(5)-C(13)	1.140(8)	1.15(2)	O(6)-C(14)	1.221(9)	1.39(2)
O(6)-C(21)		1.46(2)	C(1)-C(2)	1.421(10)	1.47(3)
C(1)-C(8)	1.49(1)	1.46(3)	C(2)-C(3)	1.408(10)	1.36(3)
C(3)-C(4)	1.477(10)	1.40(3)	C(4)-C(5)	1.490(10)	1.53(3)
C(5)-C(6)	1.38(1)	1.48(3)	C(6)-C(7)	1.40(1)	1.41(3)
C(7)-C(8)	1.51(1)	1.43(3)	C(14)-C(15)	1.518(10)	1.49(3)
C(15)-C(16)	1.416(9)	1.44(3)	C(15)-C(20)	1.38(1)	1.35(3)
C(16)-C(17)	1.38(1)	1.38(3)	C(17)-C(18)	1.38(1)	1.34(3)
C(18)-C(19)	1.389(10)	1.41(3)	C(19)-C(20)	1.395(10)	1.41(3)
C(21)-C(22)		1.56(3)			

^a Estimated standard deviations in the least significant digit are given in parentheses.

crystals of approximate dimensions $0.20 \times 0.20 \times 0.30 \, \mathrm{mm^3}$ for 2a and $0.20 \times 0.10 \times 0.20 \, \mathrm{mm^3}$ for 3a were sealed in capillaries under an N_2 atmosphere. The X-ray diffraction intensity data for 2506 and 2539 independent reflections, of which 1354 and 1166 with $I > 3.00 \, \sigma(I)$ were observable, were collected with a Rigaku AFC7R diffractometer at $20 \, ^{\circ}\mathrm{C}$ using Mo K α radiation with an $\omega - 2\theta$ scan mode within the ranges $5^{\circ} \leq 2\theta \leq 45^{\circ}$ for 2a and 3a respectively. The intensity data were corrected for Lorentz and polarization factors. An empirical absorption correction based on azimuthal scans of several reflections was applied, which resulted in

transmission factors ranging from 0.84 to 1.00 for 2a and 0.83 to 1.00 for 3a.

The crystal structures of 2a and 3a were solved by direct methods and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included but not refined. For 2a, the final cycle of full-matrix least-squares refinement was based on 1354 observed reflections ($I > 3.00\sigma(I)$) and 253 variable parameters and converged (largest parameter 0.00 times its e.s.d.) with unweighted and weighted agreement factors of R = 0.038 and $R_w = 0.039$. For 3a, the final cycle of full-matrix least-squares

Table 4
Bond angles (°) a for complexes 2a and 3a

9.0(3) 8; 4.3(4) 9.7(3) 3; 8.3(4) 1 4.2(4) 1 9.0(3) 13 6.6(3) 94 9.5(3) 1 1.3(3) 7; 1.5(3) 9; 1.5(3) 9; 2.1(4) 12; 9.9(3) 9.9(3) 1	2.1(8) 90(1) 90(1) 90(1) 10 335(1) 23(1) 33(10) 4.3(9) 64(1) 97(1) 94(1) 2.8(7) 7.1(9) 1.4(8) 1.5(8) 3.9(9) 9.8(8) 5.2(9) 1.1(10)	C(1)-Fe(1)-C(3) C(1)-Fe(1)-C(9) C(1)-Fe(1)-C(9) C(1)-Fe(1)-C(1) C(2)-Fe(1)-C(1) C(2)-Fe(1)-C(1) C(3)-Fe(1)-C(4) C(3)-Fe(1)-C(4) C(4)-Fe(1)-C(9) C(4)-Fe(1)-C(1) C(9)-Fe(1)-C(1) C(9)-Fe(2)-C(6) C(5)-Fe(2)-C(6) C(5)-Fe(2)-C(1) C(6)-Fe(2)-C(1) C(6)-Fe(2)-C(1) C(6)-Fe(2)-C(1) C(7)-Fe(2)-C(12) C(7)-Fe(2)-C(12) C(7)-Fe(2)-C(12) C(7)-Fe(2)-C(12) C(8)-Fe(2)-C(13) C(1)-Fe(2)-C(12) C(1)-Fe(2)-C(12) C(1)-Fe(2)-C(12) C(1)-Fe(2)-C(12) C(1)-Fe(2)-C(13) C(1)-Fe(2)-C(13) C(1)-Fe(2)-C(13) C(1)-Fe(2)-C(13)	71.1(3) 90.5(4) 87.9(4) 75.0(3) 124.8(4) 40.1(3) 98.1(3) 94.8(3) 166.3(3) 98.6(4) 38.7(3) 101.6(3) 39.0(3) 127.5(4) 86.5(3) 88.7(4) 88.5(3)	70.9(8) 96(1) 164.5(10) 70.9(8) 94(1) 39.3(8) 125(1) 96(1) 89.4(9) 97(1) 41.6(8) 83.1(8) 165.4(9) 39.99(8) 135.0(10) 92.5(9) 128(1) 121.5(9) 93.0(9)
4.3(4) 9.7(3) 33 8.3(4) 1 4.2(4) 1 9.0(3) 13 6.6(3) 9.5(3) 1 1.3(3) 77 1.7(3) 9.7(3) 1.5(3) 9.9(4) 1.2.1(4) 1.22 9.9(3) 9.9(3) 9.9(4) 1.5(3) 9.9(4) 1.5(3) 9.9(4) 1.5(3) 9.9(4) 1.5(3) 9.9(4) 1.5(3) 9.9(4) 1.5(3) 9.9(4) 1.5(4) 1.5(5) 9.9(6) 9.9(6)	99(1) 9.0(8) 3.35(1) 2.3(1) 3.3(10) 4.3(9) 6.4(1) 9.7(1) 9.7(1) 9.7(1) 9.8(7) 7.1(9) 1.5(8) 3.9(9) 9.8(8) 5.2(9) 1.1(0)	C(1)=Fe(1)-C(1) C(2)=Fe(1)-C(4) C(2)=Fe(1)-C(4) C(3)=Fe(1)-C(10) C(3)=Fe(1)-C(10) C(4)=Fe(1)-C(1) C(4)=Fe(1)-C(1) C(5)=Fe(2)-C(1) C(5)=Fe(2)-C(8) C(5)=Fe(2)-C(3) C(6)=Fe(2)-C(12) C(6)=Fe(2)-C(12) C(6)=Fe(2)-C(14) C(7)=Fe(2)-C(14) C(8)=Fe(2)-C(14) C(8)=Fe(2)-C(14) C(8)=Fe(2)-C(14)	90.5(4) 87.9(4) 75.0(3) 124.8(4) 40.1(3) 98.1(3) 94.8(3) 166.3(3) 98.6(4) 38.7(3) 101.6(3) 39.0(3) 127.5(4) 86.5(3) 88.7(4) 88.5(3)	96(1) 164.5(10) 70.9(8) 94(1) 39.3(8) 125(1) 96(1) 89.4(9) 97(1) 41.6(8) 83.1(8) 165.4(9) 39.99(8) 135.0(10) 92.5(9) 128(1) 121.5(9)
9.7(3) 35 8.3(4) 1 4.2(4) 1 9.0(3) 13 6.6(3) 94 9.9(3) 1 5.2(4) 9.8(4) 1.3(3) 7; 0.7(3) 9; 1.5(3) 9; 2.1(4) 12; 33 0.9(3) 99	9.0(8) 3.5(1) 2.23(1) 3.(10) 4.3(9) 6.4(1) 9.7(1) 9.4(1) 2.8(7) 7.1(9) 1.4(8) 1.5(8) 3.9(9) 9.8(8) 5.2(9) 1.1(10)	C(2)=Fe(1)=C(4) C(2)=Fe(1)=C(4) C(3)=Fe(1)=C(4) C(3)=Fe(1)=C(4) C(3)=Fe(1)=C(4) C(4)=Fe(1)=C(9) C(4)=Fe(1)=C(11) C(9)=Fe(1)=C(11) C(5)=Fe(2)=C(6) C(5)=Fe(2)=C(8) C(6)=Fe(2)=C(7) C(6)=Fe(2)=C(12) C(6)=Fe(2)=C(14) C(7)=Fe(2)=C(14) C(7)=Fe(2)=C(14) C(8)=Fe(2)=C(14) C(8)=Fe(2)=C(14) C(8)=Fe(2)=C(14) C(8)=Fe(2)=C(14) C(8)=Fe(2)=C(14) C(8)=Fe(2)=C(14) C(8)=Fe(2)=C(14) C(8)=Fe(2)=C(14) C(8)=Fe(2)=C(14)	75.0(3) 124.8(4) 40.1(3) 98.1(3) 98.1(3) 94.8(3) 166.3(3) 98.6(4) 38.7(3) 101.6(3) 39.0(3) 127.5(4) 86.5(3) 88.7(4) 88.5(3)	164.5(10) 70.9(8) 94(1) 39.3(8) 125(1) 96(1) 89.4(9) 97(1) 41.6(8) 83.1(8) 165.4(9) 39.99(8) 135.0(10) 92.5(9) 121.5(9)
8.3(4) 1 4.2(4) 1 9.0(3) 13 6.6(3) 94 9.5(3) 1 5.2(4) 9.8(4) 1.3(3) 7; 0.7(3) 9; 1.5(3) 9; 2.1(4) 12; 0.9(3) 99 16i	35(1) 23(1) 33(10) 4.3(9) 64(1) 97(1) 94(1) 2.8(7) 7.1(9) 1.4(8) 1.5(8) 3.9(9) 9.8(8) 5.2(9) 1.1(10)	C(2)=Fe(1)=C(10) C(3)=Fe(1)=C(4) C(3)=Fe(1)=C(4) C(3)=Fe(1)=C(4) C(4)=Fe(1)=C(1) C(4)=Fe(1)=C(1) C(5)=Fe(2)=C(1) C(5)=Fe(2)=C(8) C(5)=Fe(2)=C(13) C(6)=Fe(2)=C(12) C(6)=Fe(2)=C(12) C(6)=Fe(2)=C(12) C(7)=Fe(2)=C(14) C(7)=Fe(2)=C(14) C(8)=Fe(2)=C(14) C(8)=Fe(2)=C(14) C(8)=Fe(2)=C(14)	75.0(3) 124.8(4) 40.1(3) 98.1(3) 98.1(3) 94.8(3) 166.3(3) 98.6(4) 38.7(3) 101.6(3) 39.0(3) 127.5(4) 86.5(3) 88.7(4) 88.5(3)	70.9(8) 94(1) 39.3(8) 125(1) 96(1) 89.4(9) 97(1) 41.6(8) 83.1(8) 165.4(9) 39.99(8) 135.0(10) 92.5(9) 121.5(9)
4.2(4) 1 9.0(3) 13 6.6(3) 9.9 9.5(3) 1 5.2(4) 9.8(4) 1.3(3) 7; 0.7(3) 9; 7; 2.1(4) 12; 9.0(3) 99 9.0(3) 99	23(1) (3(10) (4, 4)(9) (64(1) (97(1) (994(1) (2, 8(7) (7, 1(9) (1, 44(8) (1, 5(8) (3, 9)(9) (9, 8(8) (5, 2(9) (1, 1(0) (1, 3)(1) (1, 3)(9) (1, 3)(C(3)-Fe(1)-C(4) C(3)-Fe(1)-C(4) C(3)-Fe(1)-C(10) C(4)-Fe(1)-C(9) C(4)-Fe(1)-C(11) C(9)-Fe(1)-C(11) C(5)-Fe(2)-C(6) C(5)-Fe(2)-C(8) C(5)-Fe(2)-C(13) C(6)-Fe(2)-C(17) C(6)-Fe(2)-C(12) C(6)-Fe(2)-C(12) C(7)-Fe(2)-C(14) C(7)-Fe(2)-C(14) C(8)-Fe(2)-C(14) C(8)-Fe(2)-C(14) C(8)-Fe(2)-C(14)	124.8(4) 40.1(3) 98.1(3) 94.8(3) 166.3(3) 98.6(4) 38.7(3) 101.6(3) 39.0(3) 127.5(4) 86.5(3) 88.7(4) 88.5(3)	94(1) 39.3(8) 125(1) 96(1) 89.4(9) 97(1) 41.6(8) 83.1(8) 165.4(9) 39.99(8) 135.0(10) 92.5(9) 128(1) 121.5(9)
4.2(4) 1 9.0(3) 13 6.6(3) 99 9.5(3) 1 5.2(4) 9.8(4) 1.3(3) 7; 0.7(3) 9; 1.5(3) 9; 2.1(4) 12; 0.9(3) 99 90	23(1) (3(10) (4, 4)(9) (64(1) (97(1) (994(1) (2, 8(7) (7, 1(9) (1, 44(8) (1, 5(8) (3, 9)(9) (9, 8(8) (5, 2(9) (1, 1(0) (1, 3)(1) (1, 3)(9) (1, 3)(C(3)-Fe(1)-C(4) C(3)-Fe(1)-C(4) C(3)-Fe(1)-C(10) C(4)-Fe(1)-C(9) C(4)-Fe(1)-C(11) C(9)-Fe(1)-C(11) C(5)-Fe(2)-C(6) C(5)-Fe(2)-C(8) C(5)-Fe(2)-C(13) C(6)-Fe(2)-C(17) C(6)-Fe(2)-C(12) C(6)-Fe(2)-C(12) C(7)-Fe(2)-C(14) C(7)-Fe(2)-C(14) C(8)-Fe(2)-C(14) C(8)-Fe(2)-C(14) C(8)-Fe(2)-C(14)	40.1(3) 98.1(3) 94.8(3) 166.3(3) 98.6(4) 38.7(3) 101.6(3) 39.0(3) 127.5(4) 86.5(3) 88.7(4) 88.5(3)	39.3(8) 125(1) 96(1) 89.4(9) 97(1) 41.6(8) 83.1(8) 165.4(9) 39.99(8) 135.0(10) 92.5(9) 128(1) 121.5(9)
9.0(3) 13 6.6(3) 94 9.5(3) 1 5.2(4) 9.8(4) 1.3(3) 7; 0.7(3) 9; 1.5(3) 9; 2.1(4) 12; 9.9(3) 99 90,001 16	3(10) 4.3(9) 4.3(9) (64(1) 97(1) 94(1) 2.8(7) (7.1(9) 1.4(8) 1.5(8) 3.9(9) 9.8(8) 5.2(9) 1.3(10) 1.3(9)	C(3)=Fe(1)=C(10) C(4)=Fe(1)=C(9) C(4)=Fe(1)=C(11) C(9)=Fe(1)=C(11) C(5)=Fe(2)=C(6) C(5)=Fe(2)=C(8) C(6)=Fe(2)=C(7) C(6)=Fe(2)=C(12) C(6)=Fe(2)=C(14) C(7)=Fe(2)=C(14) C(7)=Fe(2)=C(14) C(8)=Fe(2)=C(14) C(8)=Fe(2)=C(14) C(8)=Fe(2)=C(14)	98.1(3) 94.8(3) 166.3(3) 98.6(4) 38.7(3) 101.6(3) 39.0(3) 127.5(4) 86.5(3) 88.7(4) 88.5(3)	125(1) 96(1) 89.4(9) 97(1) 41.6(8) 83.1(8) 165.4(9) 39.99(8) 135.0(10) 92.5(9) 128(1) 121.5(9)
6.6(3) 94 9.5(3) 1 5.2(4) 9.8(4) 1.3(3) 7; 1.5(3) 9; 1.5(3) 9; 7; 2.1(4) 13; 0.9(3) 99 900 16i	4.3(9) 64(1) 97(1) 94(1) 9.8(7) 7.1(9) 1.4(8) 1.5(8) 9.8(8) 5.2(9) 1.3(9)	C(4)-Fe(1)-C(9) C(4)-Fe(1)-C(11) C(9)-Fe(1)-C(11) C(5)-Fe(2)-C(6) C(5)-Fe(2)-C(8) C(5)-Fe(2)-C(13) C(6)-Fe(2)-C(12) C(6)-Fe(2)-C(12) C(6)-Fe(2)-C(14) C(7)-Fe(2)-C(14) C(7)-Fe(2)-C(14) C(8)-Fe(2)-C(14) C(8)-Fe(2)-C(14)	94.8(3) 166.3(3) 98.6(4) 38.7(3) 101.6(3) 39.0(3) 127.5(4) 86.5(3) 88.7(4) 88.5(3)	96(1) 89.4(9) 97(1) 41.6(8) 83.1(8) 165.4(9) 39.99(8) 135.0(10) 92.5(9) 128(1) 121.5(9)
5.2(4) 9.8(4) 1.3(3) 7; 0.7(3) 9; 1.5(3) 9; 1.5(3) 9; 2.1(4) 12; 9.9(3) 9.9(3)	64(1) 97(1) 94(1) (94(1) (1) 2.8(7) 7.1(9) 1.4(8) 1.5(8) 3.9(9) 9.8(8) 5.2(9) 0.1(10)	C(4)-Fe(1)-C(11) C(9)-Fe(1)-C(11) C(5)-Fe(2)-C(6) C(5)-Fe(2)-C(8) C(5)-Fe(2)-C(13) C(6)-Fe(2)-C(12) C(6)-Fe(2)-C(12) C(6)-Fe(2)-C(12) C(7)-Fe(2)-C(14) C(8)-Fe(2)-C(14) C(7)-Fe(2)-C(14) C(8)-Fe(2)-C(14)	166.3(3) 98.6(4) 38.7(3) 101.6(3) 39.0(3) 127.5(4) 86.5(3) 88.7(4) 88.5(3)	89.4(9) 97(1) 41.6(8) 83.1(8) 165.4(9) 39.99(8) 135.0(10) 92.5(9) 128(1) 121.5(9)
9.8(4) 1.3(3) 7; 0.7(3) 9; 1.5(3) 9; 1.5(3) 7; 2.1(4) 12; 30,0.9(3) 99	97(1) 94(1) 2,8(7) (6) 1,1(9) 1,4(8) 1,5(8) 1,3,9(9) 1,3,9(9) 1,3,9(9) 1,1,1(10) 1,1,1(10) 1,1,1(10)	C(9)=Fe(1)-C(11) C(5)=Fe(2)-C(6) C(5)=Fe(2)-C(8) C(5)=Fe(2)-C(13) C(6)=Fe(2)-C(7) C(6)=Fe(2)-C(12) C(6)=Fe(2)-C(14) C(7)=Fe(2)-C(14) C(7)=Fe(2)-C(14) C(8)=Fe(2)-C(14)	98.5(4) 38.7(3) 101.6(3) 39.0(3) 127.5(4) 86.5(3) 88.7(4) 88.5(3)	97(1) 41.6(8) 83.1(8) 165.4(9) 39.99(8) 135.0(10) 92.5(9) 128(1) 121.5(9)
9.8(4) 1.3(3) 7; 0.7(3) 9; 1.5(3) 9; 1.5(3) 7; 2.1(4) 12; 30,0.9(3) 99	94(1) 2.8(7) 7.1(9) 1.4(8) 1.5(8) 3.9(9) 9.8(8) 5.2(9) 1.1(10) 1.3(9)	C(5)-Fe(2)-C(6) C(5)-Fe(2)-C(8) C(5)-Fe(2)-C(13) C(6)-Fe(2)-C(7) C(6)-Fe(2)-C(12) C(6)-Fe(2)-C(14) C(7)-Fe(2)-C(14) C(7)-Fe(2)-C(14) C(8)-Fe(2)-C(13)	38.7(3) 101.6(3) 39.0(3) 127.5(4) 86.5(3) 88.7(4) 88.5(3)	41.6(8) 83.1(8) 165.4(9) 39.99(8) 135.0(10) 92.5(9) 128(1) 121.5(9)
1.3(3) 7; 0.7(3) 9; 1.5(3) 9; 1.5(3) 7; 2.1(4) 12; 30,9(3) 99 16i	2.8(7) (7.1(9) (1.4(8) (1.5(8)	C(5)-Fe(2)-C(8) C(5)-Fe(2)-C(13) C(6)-Fe(2)-C(7) C(6)-Fe(2)-C(12) C(6)-Fe(2)-C(14) C(7)-Fe(2)-C(14) C(7)-Fe(2)-C(14) C(8)-Fe(2)-C(13)	101.6(3) 39.0(3) 127.5(4) 86.5(3) 88.7(4) 88.5(3)	83.1(8) 165.4(9) 39.99(8) 135.0(10) 92.5(9) 128(1) 121.5(9)
0.7(3) 97 1.5(3) 91 7. 2.1(4) 12: 3. 0.9(3) 92 90 16i	7.1(9) 1.4(8) 1.5(8) 3.9(9) 9.8(8) 5.2(9) 1.1(10) 1.3(9)	C(5)-Fe(2)-C(13) C(6)-Fe(2)-C(7) C(6)-Fe(2)-C(12) C(6)-Fe(2)-C(14) C(7)-Fe(2)-C(12) C(7)-Fe(2)-C(14) C(8)-Fe(2)-C(13)	39.0(3) 127.5(4) 86.5(3) 88.7(4) 88.5(3)	165,4(9) 39,99(8) 135.0(10) 92.5(9) 128(1) 121.5(9)
1.5(3) 91 71 2.1(4) 12: 35 0.9(3) 92 90 16i	1.4(8) (1.5(8) (1.5(8) (1.5(8) (1.5(8) (1.5(8) (1.5(8) (1.5(8) (1.5(1)) (1.5(9	C(6)-Fe(2)-C(7) C(6)-Fe(2)-C(12) C(6)-Fe(2)-C(14) C(7)-Fe(2)-C(12) C(7)-Fe(2)-C(14) C(8)-Fe(2)-C(13)	39.0(3) 127.5(4) 86.5(3) 88.7(4) 88.5(3)	39.99(8) 135.0(10) 92.5(9) 128(1) 121.5(9)
7/ 2.1(4) 12: 39 0.9(3) 99 90	1.5(8) 3.9(9) 9.8(8) 5.2(9) 0.1(10)	C(6)-Fe(2)-C(12) C(6)-Fe(2)-C(14) C(7)-Fe(2)-C(12) C(7)-Fe(2)-C(14) C(8)-Fe(2)-C(13)	127.5(4) 86.5(3) 88.7(4) 88.5(3)	135.0(10) 92.5(9) 128(1) 121.5(9)
2.1(4) 123 39 0.9(3) 92 90 161	3.9(9) 9.8(8) 5.2(9) 0.1(10)	C(6)-Fe(2)-C(14) C(7)-Fe(2)-C(12) C(7)-Fe(2)-C(14) C(8)-Fe(2)-C(13)	86.5(3) 88.7(4) 88.5(3)	92.5(9) 128(1) 121.5(9)
39 0.9(3) 92 90 161	9.8(8) 5.2(9) 0.1(10) 1.3(9)	C(7)-Fe(2)-C(12) C(7)-Fe(2)-C(14) C(8)-Fe(2)-C(13)	88.7(4) 88.5(3)	128(1) 121.5(9)
0.9(3) 9 <u>9</u> 90 161	5.2(9) 0.1(10) 1.3(9)	C(7)-Fe(2)-C(14) C(8)-Fe(2)-C(13)	88.5(3)	121.5(9)
90 161	0.1(10) 1.3(9)	C(8)-Fe(2)-C(13)		
161	1.3(9)			33.0(2)
			100.0(4)	97.0(10)
8.5(3)	C (C	C(13)-Fe(2)-C(14)	89.0(3)	87.9(9)
		Fe(1)-C(1)-C'2)	66.8(5)	64(10)
		C(2)-C(1)-C(8)	126.0(7)	133(10)
		Fe(1)-C(2)-C(3)	73.2(4)	71(1)
		Fe(1)-C(3)-C(2)	67.1(4)	69(1)
		C(2)-C(3)-C(4)	126.3(7)	120(1)
		Fe(1)-C(4)-C(5)	121.6(5)	122(1)
		Fe(2)-C(5)-C(4)	81.0(4)	123(1)
		C(4)-C(5)-C(6)	128.4(8)	130(1)
		Fe(2)-C(6)-C(7)	73.0(5)	69(1)
		Fe(2)-C(7)-C(6)	68.1(5)	70(1)
		C(6)-C(7)-C(8)	125.0(8)	120(1)
			123.0(0)	66(1)
			176(1)	174(2)
				174(2)
				176(1)
				131(1)
				114(1)
				119(2)
				121(2)
				121(2)
			117.7(8)	122(2)
	3.5(6) (6.3(8) (6.9(8) 9.4(6) 7.9(7) (3.5(7) 7.7(8) 9.5(8)	122(1) 3.5(6) 130(1) 6.3(8) 174(2) 6.9(8) 178(1) 9.4(6) 127(1) 7.9(7) 100(1) 3.5(7) 126(2) 7.7(8) 129(2) 9.5(8) 117(2)	122(1) Fe(2)-C(8)-C(7) 130(1) Fe(1)-C(9)-O(1) 16.3(8) 174(2) Fe(1)-C(11)-O(3) 16.9(8) 178(1) Fe(2)-C(13)-O(5) 9.4(6) 127(1) Fe(2)-C(14)-C(15) 7.9(7) 100(1) C(14)-C(15)-C(16) 13.5(7) 126(2) C(16)-C(17)-C(20) 7.7(8) 120(2) C(16)-C(17)-C(18) 120(2	122(1) Fe(2)-C(8)-C(7) 176(1) 130(1) Fe(1)-C(9)-O(1) 176(1) 16.3(8) 174(2) Fe(1)-C(11)-O(3) 179.0(9) 178(1) Fe(2)-C(13)-O(5) 175.6(7) 179.7(6) 179.7(6) 179.7(7) 100(1) C(14)-C(15)-C(16) 115.6(7) 122.7(6) 177.7(8) 120(2) C(16)-C(15)-C(20) 120.7(7) 177.7(8) 120(2) C(16)-C(17)-C(18) 122.1(7) 179.5(8) 117(2) C(18)-C(19)-C(20) 119.9(8) 117(2) C(18)-C(18)-C(19)-C(20) 119.9(8) 117(2) C(18)-

a Estimated standard deviations in the least significant digit are given in parentheses.

refinement was based on 1166 observed reflections $(I > 3.00 \sigma(I))$ and 271 variable parameters and converged (largest parameter 0.01 times its e.s.d.) with unweighted and weighted agreement factors of R = 0.068 and $R_w = 0.065$.

The standard deviations of an observation of unit weight were 1.50 and 2.40 for 2a and 3a respectively. The weighting scheme was based on counting statistics and included a factor (p = 0.020) to downweight the intense reflections. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.32 and $-0.31 \, \mathrm{e} \, \mathrm{\mathring{A}}^{-3}$ for 2a and 0.78 and $-0.54 \, \mathrm{e} \, \mathrm{\mathring{A}}^{-3}$ for 3a respectively. All the calculations were performed using the teXsan crystallographic software package of the Molecular Structure Corporation.

Details of the crystallographic data and the procedures used for data collection and reduction information for 2a and 3a are given in Table 1. The positional parameters and temperature factors of the non-hydrogen atoms for 2a and 3a are presented in Table 2. The bond lengths and bond angles for 2a and 3a are listed in Tables 3 and 4 respectively.

3. Results and discussion

Similar to the reaction of pentacarbonyl(cyclooctatetraene)diiron with aryllithium reagents [9], (cyclooctatetraene)diiron hexacarbonyl C₈H₈[Fe(CO)₃], (1) was treated with two molar equivalents of aryllithium reagents ArLi (Ar = C_6H_5 , o-, m-, p- $CH_3C_6H_4$, p- $CH_3OC_6H_4$) in ether at -60 to -50°C for 4 to 5 h, and the acyimetalate intermediates formed were subsequently alkylated with Et, OBF, in an aqueous solution at 0°C. After removal of the solvents under high vacuum at low temperature, the residues were chromatographed on an alumina column at -20 to -25°C, and the crude products were recrystallized from petroleum ether/CH2Cl2 solution at -80°C to give dark red crystalline complexes 2a-e with compositions [(CO)₁Fe(1-4-η:5-7-η-C₈H₉)(CO)₂Fe(COAr)] and orange-red crystalline complexes 3a-e with compositions [(CO)₃Fe(1-4-\u00c4:5-8-\u00c4-C₈H₈)(CO)₂-FeC(OC, H₅)Ar] (Eq. (3)) in 38-43% and 39-46% vield respectively.

2, 3: a, Ar=C₆H₃; b, Ar=o-CH₃C₆H₄; c, Ar=m-CH₃C₆H₄; d, Ar=p-CH₃C₆H₄; e, Ar=p-CH₃OC₆H₄

When only one, instead of two, equivalents of aryllithium reagents was used for the reaction under the same conditions, the same products $2\mathbf{a} - \mathbf{e}$ (35–40%) and $3\mathbf{a} - \mathbf{e}$ (36–42%) were obtained in somewhat lower yields. However, when p-CF₃C₆H₄Li was used for the reaction with 1 under the same conditions, no analogous

products of 2 or 3 were obtained, but (cycloocta-tetraene)tricarbonyliron, $C_8H_8Fe(CO)_3$ (4), [18] and p-trifluoromethylpropiophenone, ($p\text{-}CF_3C_6H_4$)CO(C_2H_3) (5), [27] were isolated (Eq. (4)) in 48% and 41% yield respectively.

Complexes 2a-e and 3a-e are formulated as (8,8-dihydro-1-4-η:5-7-η-cyclooctatrienyl)tricarbonylirondicarbonyl(arylformacyl)iron and (1-4-η:5-8-η-cyclooctatraene)tricarbonylirondicarbonyliethoxy(aryl)carbeneliron complexes respectively, on the basis of their elementai analyses, and IR, ¹H NMR and mass spectra, as well as the single crystal X-ray diffraction studies of complexes 2a and 3a. Since there are two Fe(CO)₃ units in the starting material 1, there should exist dialkoxycarbeneiron complexes and/or diacyliron complexes in the resulting products when treating 1 with aryllithium reagents. However, no expected dialkoxycarbeneiron and/or diacyliron complexes were obtained from the reactions, even though more than two molar equivalents of the aryllithium reagents were used for the reaction.

A possible mechanism for the formation of complexes 2a-e and 3a-e might involve the acylmetalate intermediates (a) formed by attack of aryllithium nucleophiles on one of the two Fe(CO)₃ units. That the acylmetalate intermediate (a) formed upon subsequent alkylation with Et₃OBF₄ in aqueous solution gave the carbene complexes 3a-e accompanied by acyliron complexes 2a-e having a 16-electron configuration for the

acyliron moiety suggests that an isomerization of hydroxycarbene iron complexes generated from hydrolysis of intermediate (a) in the alkylation step occurred simultaneously to yield products 2a-e and 3a-e, as shown in Eq. (3). Meanwhile, the mechanism of the reaction of compound 1 with $p-CF_3C_6H_4Li$ in Eq. (4) is not clear, but it could proceed via analogous acylmetalate intermediate (a) which was then converted into an unstable alkoxycarbene complex upon subsequent alkylation with Et_3OBF_4 . The latter undergoes decomposition to lose the carbeneiron moiety, leading to the formation of complexes 4 and 5 owing to its extreme lability, caused by the strong electron-withdrawing effect of the $p-CF_3C_6H_4$ group.

Complexes 2a-e and 3a-e are soluble in polar organic solvents, but slightly soluble in non-polar solvents. They are very sensitive to air and temperature in solution, but stable for a short period on exposure to air at room temperature in the crystalline state. The IR spectra, the solution ¹H NMR spectra, and mass spectra are consistent with the proposed structure show in Eq. (3). The IR spectra of 2a-e in hexane solution (Section 2) showed an absorption band at 1630-1602 cm⁻¹,

Table 5

1H NMR spectra of complexes 2a-e and 3a-e in acetone-d₆ at 20 °C a

Complex	δ (Cycloolefin proton)	δ (Aryl proton)	δ (OCH ₂ CH ₃)
2a	5.82 (m, 1H), 5.60 (m, 1H), 5.36 (m, 2H), 5.12 (m, 1H),	7.60-7.20 (m, 5H)	
	3.75 (m, 1H), 3.53 (m, 1H), 3.35 (m, 2H)		
2b	5.77 (m, 1H), 5.52 (m, 1H), 5.38 (m, 2H), 5.25 (m, 1H),	7.38 (m, 2H), 7.30 (m, 1H),	
	3.81 (m, 1H), 3.58 (m, 1H), 3.38 (m, 2H)	7.22 (m, 1H), 2.28 (s, 3H)	
2c	5.76 (m, 1H), 5.62 (m, 1H), 5.39 (m, 2H), 5.02 (m, 1H),	7.38-7.10 (m, 4H), 2.34 (s, 3H)	
	3.74 (m, 1H), 3.56 (m, 1H), 3.30 (m, 2H)		
2d	5.74 (m, 1H), 5.54 (m, 1H), 5.40 (m, 2H), 5.22 (m, 1H),	7.48 (m, 2H), 7.26 (m, 2H),	
	3.54 (m, 1H), 3.40 (m, 1H), 3.22 (m, 2H)	2.38 (s, 3H)	
2e	5.80 (m, 1H), 5.65 (m, 1H), 5.38 (m, 2H), 5.15 (m, 1H),	7.45 (m, 2H), 6.94 (m, 2H),	
	3.68 (m, 1H), 3.36 (m, 1H), 3.24 (m, 2H)	3.82 (s, 3H)	
3a	6.36 (m, 1H), 5.64 (m, 1H), 5.36 (m, 2H), 3.80 (m, 1H),	7.62-7.18 (m, 5H)	1.28 (t, 3H), 4.34 (q, 2H)
	3.60 (m, 2H), 2.88 (m, 1H)		
3b	6.75 (m, 1H), 5.64 (m, 1H), 5.42 (m, 2H), 3.38 (m, 1H),	7.40-7.06 (m, 4H), 2.36 (s, 3H)	1.44 (t, 3H), 4.46 (q, 2H)
	3.20 (m, 2H), 2.86 (m, 1H)		
3c	6.34 (m, 1H), 5.57 (m, 1H), 5.33 (m, 2H),	7.42-7.04 (m, 4H), 2.34 (s, 3H)	1.26 (t, 3H), 4.30 (q, 2H)
	3.72 (m, 1H), 3.30 (m, 2H), 2.87 (m, 1H)		
3d	6.35 (m, 1H), 5.60 (m, 1H), 5.34 (m, 2H), 3.54 (m, 1H),	7.41 (m, 2H), 7.15 (m, 2H),	1.28 (t, 3H), 4.32 (q, 2H)
	3.26 (m, 2H), 2.88 (m, 1H)	2.32 (s, 3H)	
3e	6.38 (m, 1H), 5.70 (m, 1H), 5.30 (m, 2H), 3.84 (m, 1H),	7.44 (m, 2H), 6.90 (m, 2H),	1.49 (t, 3H), 4.50 (q, 2H)
	3.24 (m, 2H), 2.76 (m, 1H)	3.80 (s, 3H)	

a TMS as internal reference.

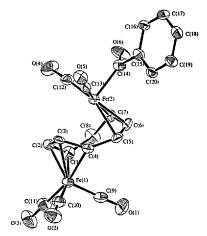


Fig. 1. Molecular structure of 2a showing the atom labeling scheme.

which is characteristic of the acyl ligand, besides the four absorption bands in the $\nu(CO)$ region. In the IR spectra of 3a-e, five CO absorption bands at 2050-1938 cm⁻¹ were observed from each of the complexes, which indicates the presence of five terminal CO ligands in these complexes.

The 'H NMR spectra of complexes 2a-e and 3a-e, given in Table 5, showed complex proton signals attributed to the cycloolefin ligand arising from the destruction of the conjugate system of the cyclooctatetraene ligand in 2a-e or the conversion of a CO ligand into a carbene ligand, leading to a change of the chemical environment of the cyclooctatetraene ring in 3a-e. As a result, the structure of the cycloolefin ligand consists of an \(\eta^3\)-allyl and the addition of a hydrogen abstracted front solvent to the C-8 ring position (see Fig. 1) in 2a-e. Thus, the proton signals of the original cycloolefin ligand shifted accordingly. In the 'H NMR spectra of 3a-e, a triplet (ca. 1.35 ppm) and a quartet (ca. 4.38 ppm) and a set of multiplet (ca. 7.10–7.40 ppm) bands were observed for each of the complexes, which showed characteristically the presence of the ethoxy and aryl groups.

The mass spectra of complexes 2a-e and 3a-e, given in Section 2, show the expected molecular ion peaks and the principal fragments produced by successive loss of CO ligands and the carbene ligand or acyl group, as well as the featured ions bearing useful structural information from the fragments generated by further cleavage of these principal fragments.

The molecular structures of complexes 2a and 3a, established by X-ray diffraction studies, are shown in

Figs. 1 and 2 respectively. Both complexes have approximately the same steric configuration. The Fe(CO)₃ unit and the (CO)₂Fe(COC₆H₃) moiety in 2a and the (CO)₂FeC(OC₂H₃)C₆H₅ moiety in 3a are on opposite sides of the cyclooctatetraene ring, as can be visualized in the ORTEP diagrams of 2a and 3a represented in Figs. 1 and 2.

The X-ray diffraction studies of 2a show that it has a structure (Fig. 1) in which one of the CO groups of an Fe(CO), unit was converted into an acyl group. As in analogous allyl complexes C₂H₀(CO)₃FeC₅H₅ and $C_8H_9(CO)_3FeC_6H_4CF_3-p$ [5], the C_8H_9 moiety in 2a is coordinated to the Fe(2) atom through the three carbon atoms (C(5), C(6), C(7)), which form an η^3 -allyl group. The C(5)-C(6) (1.38(1) Å) and C(6)-C(7) (1.40(1) Å) distances of this group are the same within experimental error. In fact, the bond lengths and angles in the η3-allyl portion of 2a are the same within experimental error as those in $C_8H_9(CO)_3FeC_6H_5$ [5] and $C_8H_9(CO)_2$ -FeC₆H₄CF₃-p [5]. The average distance of the Fe(2) atom to the three n³-allyl carbon atoms (C(5), C(6), C(7)) is 2.102 Å, which is slightly shorter than that of the Fe atom to the corresponding n3-allyl carbon atoms in $C_8H_9(CO)_3FeC_6H_5$ (2.173 Å) [5] and $C_8H_9(CO)_3$ - $FeC_6H_4CF_3-p$ (2.165 Å) [5]. The distance from the Fe(2)atom to the least-squares plane of the η3-allyl portion is 1.5740 Å, while the distance from Fe(1) to the leastsquares plane of the n¹-butadiene residue portion in 2a is 1.5272 Å. The dihedral angle between the η3-allyl C(5)C(6)C(7) and the η^4 -butadiene C(1)C(2)C(3)C(4)planes is 44.67°. The benzene ring plane defined by C(15)-through-C(20) is respectively oriented at an angle

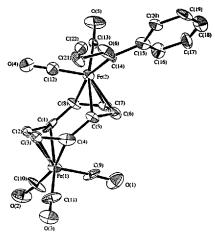


Fig. 2. Molecular structure of 3a showing the atom labeling scheme.

of 120.68 and 77.57° with respect to the C(5)C(6)C(7) plane and the C(1)C(2)C(3)C(4) plane. The Fe(2)-C(14) bond length of 1.977(8) Å, which is the same within experimental error as that in the analogous acyliron complex $Fe(COC_6H_4CF_3-p)(\eta-C_5H_5)(CO)_2(1.972(4) Å)$ [15], is shorter than that of a normal Fe-C bond. This could be attributed to the formation of a conjugated system of Fe(2), C(14), and O(6). However, this system does not involve the benzene ring since the structural data reveal that the atoms Fe(2), C(14), and O(6) are not in the benzene ring plane, which might be ascribed to the intramolecular steric hindrance.

2a is a 16-electron species for the acyliron moiety, in which the 16 electrons participating in the central atom valence configuration consist of the eight electrons of the Fe atom, two pairs of electrons provided by the two carbonyl ligands, and the other four electrons, one of which is a σ-electron, provided by the acyl group ligating the Fe atom in an end-on mode, and three of which are the π-electrons provided by an allyl-type η³-bonding orbital of the cycloolefin ligand, bonded side-on to the Fe atom.

The structure of 3a (Fig. 2) resembles that of C₈H₈[Fe(CO)₃], (1) [28], except that the substituent on the Fe(2) atom is a carbene ligand (C(OC₂H₅)C₆H₅) in 3m but a CO ligand on the Fe atom in 1. The geometries of the cyclooctatetraene C₈H₈ ring in both complexes are the chair form. The dihedral angle between the plane defined by C(1)-through-C(4) and the plane comprised of C(5)-through-C(8) is 2.38°; thus the C(1)C(2)C(3)C(4) and C(5)C(6)C(7)C(8) planes are essentially parallel to each other. While the angles between the C(1)C(4)C(5)C(8) and C(1)C(2)C(3)C(4) planes and the C(1)C(4)C(5)C(8) and C(5)C(6)C(7)C(8)planes are 38.61 and 40.950° respectively. The benzene ring plane is oriented respectively at 132.31, 128.18 and 131.360° with respect to the C(1)C(2)C(3)C(4) plane. the C(1)C(4)C(5)C(8) plane, and the C(5)C(6)C(7)C(8)plane. The average C-C bond length (1.44 Å) of the C. H. ring is the same as that in 1. The Fe(CO), unit is located (1.5998 Å) below the C(1)C(2)C(3)C(4) plane, and the (CO)₂FeC(OC₂H₅)C₆H₅ moiety is located (1.5896 Å) above the C(5)C(6)C(7)C(8) plane. The average distance of the Fe(1) atom to carbon atoms C(1), C(2), C(3) and C(4) is 2.09 Å, which is very close to that of the Fe(2) atom to atoms C(5), C(6), C(7) and C(8) (2.095 Å) and that of the Fe atoms to the carbon atoms of the butadiene-like residues (average 2.10 Å) [28] in 1 but is slightly shorter than the corresponding distance found (2.113 Å) in 2a. The Fe(2)-C(14) distance of 1.87(2) A signifies a high double bond character, and is slightly shorter than that found in analogous carbene complexes C₆H₈(CO)₂FeC(OC₂H₅)- $C_6H_4CH_3-o$ (1.89(2)A) [29] and $(\eta^4-C_{10}H_{16})(CO)_2$ -FeC(OC2H3)C6H4CH3-0 (1.915(15)A) [13]. The sum of the three bond angles around the C(14) atom (O(6)- C(14)–C(15) 117.9(7)°, Fe(2)–C(14)–O(6) 119.4(6)°, Fe(2)–C(14)–C(15) 122.7(6)°) is exactly 360°, which demonstrates that these atoms are coplanar. The C(14)–O(6) bond length of 1.39(2) Å is comparable with that found in $C_6H_8(CO)_2$ FeC(OC_2H_5) $C_6H_4CH_3$ -O(1.34(2)Å) [29], but slightly longer than that in (η^4 - $C_{10}H_{16}$)(CO)₂ FeC(OC_2H_5) $C_6H_4CH_3$ -O(1.324(17)Å) [13], which shows the partial delocalization of the π -electron on the O(6) atom owing to the effect of the Fe(2)–C(14) π bond.

Acknowledgements

Financial support from the National Natural Science Foundation of China and the Science Foundation of the Chinese Academy of Sciences is gratefully acknowledged.

References

- C.P. Casey, N.W. Vollendorf and K.J. Haller, J. Am. Chem. Soc., 106 (1984) 3754.
- [2] A. Parlier, H. Rudler, N. Platzer, M. Fontanniller and A. Soum, J. Organomet Chem., 287 (1985) C8.
- [3] J.-L. Herrison and Y. Chauvin, Makromol. Chem., 141 (1971) 161.
- [4] J.-B. Chen, G.-X. Lei, W.-H. Xu, X.-L. Jin, M.-C. Shao and Y.-Q. Tang, J. Organomet Chem., 286 (1985) 55.
- [5] J.-B. Chen, G.-X. Lei, W.-H. Xu, Z.-H. Pan, S.-W. Zhang, Z.-Y. Zhang, X.-L. Jin, M.-C. Shao and Y.-Q. Tang, Organometallics, 6 (1987) 2461.
- [6] J.-B. Chen, G.-X. Lei, Z.-H. Pan, Z.-Y. Zhang and Y.-Q. Tang, J. Chem. Soc., Chem. Commun., (1987) 1273.
- [7] J.-B. Chen, G.-X. Lei, M.-C. Shao, X.-J. Xu and Z.-Y. Zhang, J. Chem., Soc., Chem. Commun., (1988) 1296.
- [8] J.-B. Chen, J.-G. Yin, Z.-C. Fan and W.-H. Xu, J. Chem. Soc., Dalton Trans., (1988) 2803.
- [9] J.-B. Chen, D.-S. Li, Y. Yu, Z.-S. Jin, Q.-L. Zhou and G.-C. Wei, Organometallics, 12 (1993) 3885.
- [10] Y. Yu, J.-B. Chen, J. Chen and P.-J. Zheng, Organometallics, 12 (1993) 4731.
- [11] J.-B. Chen, J.-G. Yin, W.-H. Xu, L.-H. Lai, Z.-Y. Zhang and M.-C. Shao, Organometallics, 6 (1987) 2607.
- [12] J.-G. Yin, J.-B. Chen, W.-H. Xu, Z.-Y. Zhang and Y.-Q. Tang, Organometallics, 7 (1988) 21.
- [13] J.-B. Chen, G.-X. Lei, Z.-S. Jin, L.-H. Hu and G.-C. Wei, Organometallics, 7 (1988) 1652.
- [14] J.-B. Chen, G.-X. Lei, Z.-Y. Zhang and Y.-Q. Tang, Sci. China, B32 (1989) 129.
- [15] J.-B. Chen, J.-G. Yin, G.-X. Lei, Y.-Y. Wang and G.-D. Lin, J. Chem. Soc., Dalton Trans., (1989) 635.
- [16] J.-B. Chen, J.-G. Yin, G.-X Lei, W.-H. Xu, M.-C. Shao, Z.-Y.
- Zhang and Y.-Q. Tang, J. Organomet. Chem., 329 (1987) 69. [17] J.-B. Chen and B.-H. Wang, J. Organomet. Chem., 440 (1992) 429.
- [18] R.B. King, Organomet. Synth., 1 (1965) 126.
- [19] M.D. Rausch and G.N. Schrauzer, Chem. Ind., (1959) 957.
- [20] T.A. Manuel and F.G.A. Stone, J. Am. Chem. Soc., 82 (1960) 366.
- [21] H. Meerwein, G. Hinze, P. Hofmann, E. Kroniny and E. Pfeil, J. Prakt. Chem., 147 (1937) 257.

- [22] G. Wittig, Angew. Chem., 53 (1940) 243.
- [23] H. Gilman, E.A. Zoellner and W.M. Selby, J. Am. Chem. Soc., 55 (1933) 1252.
- [24] R.G. Jones and H. Gilman, Org. React., 6 (1951) 352.
- [25] E.O. Fischer, C.G. Kreiter, H.J. Kolimeier, J. Muller and R.D. Fischer, J. Organomet. Chem., 28 (1971) 237.
- [26] E.O. Fischer, J.-B. Chen and U. Schubert, Z. Naturforsch., 37b (1982) 1284.
- [27] J. Capillon and J.-P. Gue'tte', Tetrahedron, 35 (1979) 1817.
- [28] B. Dickens and W.N. Lipscomb, J. Chem. Phys., 37 (1962) 2084.
- [29] J.-B. Chen, Y. Yu, L.-H. Hu and Z.-S. Jin, J. Organomet. Chem., 447 (1993) 113.