X-ray analysis and spectral data of β -[N-phenyl,N-(β '-bromocinnamoyl)-amino]-cinnamanilide reveal the course of reaction of benzoylacetanilide with POBr₃

M. Ciechanowicz-Rutkowska,¹ P. Serda,¹ B. Stec,^{*,1} and A. Kolasa²

Received August 13, 1990

The reaction of benzoylacetanilide with the excess of POBr₃ furnished monomolecular products and the bimolecular β -[N-phenyl,N-(β -bromo-cinnamoyl)-amino]-cinnamanilide. Its structure was elucidated by means of elemental analysis, IR, ¹H NMR and mass spectral data as well as X-ray analysis, which proved that the reaction mentioned goes via condensation. C₃₀H₂₃BrN₂O₂ crystallizes with two independent molecules in an asymmetric unit in the orthorhombic space group P2₁2₁2₁ with $a_3 = 9.834(3)$, b = 19.614(2), c = 26.450(6) Å, Z = 8, V = 5101(4) Å³, $D_m =$ 1.34, $D_x = 1.36$ mg m⁻³, F(000) = 2151, $M_r = 523.107$, $\mu = 2.25$ mm⁻¹, λ (Cu K α) = 1.54178 Å, T = 293 K; the final *R* factor was 0.067.

Introduction

The model of reactivity of benzoylacetanilides in the presence of the excess of POX_3 (X = Cl, Br) on heating is a subject of interest since the compound is a parent for the new derivatives of natural truxinic acid. The reaction of benzoylacetanilide with POCl₃, via "head to head" cycloaddition accompanied by substitution of HO group for Cl, leads to 3,4-diphenyl-3,4dichloro-cyclobutanodicarbox-1,2-dianilide in the form of its β -stereoisomer (Ciechanowicz-Rutkowska *et al.*, 1981). This process cannot be treated as a good synthetical method because the yield of this bimolecular products is relatively low since a mixture of HO- and Cl-substituted quinolines is also obtained. However, the product mentioned seemed to be so interesting and its separation from the reaction mixture relatively easy, that we decided to extend the range of this reaction to POBr₃. Surprisingly, the main bimolecular product of the reaction of benzoylacetanilide with the excess of POBr₃ differs analytically from the analogous Cl-substituted

Fig. 1. Course of the reaction of benzoylacetanilide with the excess of POBr₃.

derivatives by HBr. Complexity of its spectroscopic data, showing many nonequivalent functional groups, did not allow to elucidate the structure unambiguously and X-ray method was necessary to prove the cyclobutene or open structure and to distinguish among a wide variety of possible stereoisomers (Fig. 1).

Experimental

The following physicochemical studies were carried out. The melting point was measured but not corrected. The IR spectrum was taken in Nujol (600-2000 cm⁻¹) and hexachlorobutadiene (2000-4000 cm⁻¹) on a Specord IR 75 apparatus. ¹H NMR spectrum was recorded in CDCl₃ with TMS as internal standard on

¹Regional Laboratory of Physicochemical Analysis and Structural Research, Karasia 3, 30-060 Kraków, Poland.

²Faculty of Chemistry, Jagiellonian University, Karasia 3, 30-060 Kraków, Poland.

Jeol 100 MHz apparatus. The mass spectrum was measured at 20 eV on an LKB 9000 S spectrometer in the Regional Laboratory of Physicochemical Analysis and Structural Research in Cracow.

β -[N-phenyl,N-(β' -bromo-cinnamoyl)-amino]cinnamanilide

A mixture of benzoylacetanilide (23.9 g, 0.1 mole)and POBr₃ (239.0 g, 0.8 mole) was heated on a steam bath for 15 min. The solution was then poured into icy water and the crude reaction mixture was filtered off, dried, and dissolved in 200 ccm of cold ethanol. After a few hours the precipitate of the product was filtered off (3.2 g, 12.2% yield) and crystallized from chloroform. Colorless needles, m.p. : 211°C with decomposition.

Analysis for $C_{30}H_{23}BrN_2O_2$: calc.: 68.8% C, 4.4% H, 5.3% N, 15.3% Br, found: 68.3% C, 4.5% H, 5.0% N, 15.4% Br.

Spectral data

The structure was solved in $P2_12_12_1$ space group by direct methods using SHELXS86 (Sheldrick, 1986). All nonhydrogen atoms were revealed in an E-map based on 388 reflections with $E \ge 1.2$ and three nonphenvl hydrogens of the backbone of the molecule were located in a subsequent difference Fourier map and refined. Hydrogens of phenyl rings with calculated coordinates were included in the refinement as fixed contribution because of the large number of atoms (70) and refined parameters (656). The refinement was carried out with SHELX76 (400-atomic version) on the data corrected for absorption, the crystal faces being refined by Miller indices and distances from a common reference point inside the crystal. The structure of one of the two independent molecules (molecule A) is depicted together with the atom labeling scheme in Fig. 2. Tables 2 and 3 list the coordinates and thermal parameters for the heavy atoms. In Table 4 hydrogen coordinates are listed. The total difference Fourier map has revealed peaks in the vicinity of bromine atoms not higher than one electron probably due to the series termination effects.

$$\begin{array}{c} \text{IR [cm}^{-1}]:\\ 3305 \text{ m}\\ 3250 \text{ m}\\ 3180 \text{ w}\\ 3120 \text{ w} \end{array} \right\} \quad \begin{array}{c} 1680 \text{ s}\\ \nu \text{ N-H}, 3080 \text{ w} \quad \nu \text{ C-H}, 1640 \text{ s} \end{array} \quad \nu \text{ C=O}, 1600 \text{ s}\\ \nu \text{ C=C}, 1550 \text{ s} \end{array} \right\} \quad \nu \text{ C=C}, 1550 \text{ s}$$

¹H NMR δ [ppm]: 6.62, s, 1 H, -CH= 6.76, s, 1 H, -CH= 7.0 - 7.7, m, 20 H, aromat. (NH signal not identified)

MS [m/z (% intensity)]: 522(40.0) M⁺, 442(49.5) M⁺ – HBr, 402(22.1) M⁺ – PhNHCO, 399(16.8), 350(36.8) M⁺ – HBr, – PhNH, 323(66.3) M⁺ – PhNHCO, – HBr, 294(28.4), 169(32.6), 234(32.6), 222(100.0) PhNHCOCH=CHPh⁺, 209(23.2) PhCBr= CH $-C\equiv O^+$, 193(24.2) PhC(NPh)=CH⁺, 180(45.3) PhC \equiv N⁺-Ph, 129(15.8) PhC \equiv =C $-C\equiv O^+$, 119(49.5) PhNCO⁺, 105(18.9), 93(32.6), 91(24.2), 80(28.4) HBr⁺, 64(11.6) C₂H₂⁺.

A crystal suitable for single crystal X-ray diffraction was obtained by crystallization from acetic acid. The details of data collection and structure refinement are given in Table 1.

Discussion

X-ray analysis has shown that there are two independent β -[N-phenyl,N-(β' -bromo-cinnamoyl)-amino]cinnamanilide molecules in the unit cell. They are illustrated in Fig. 3 together with the phenyl ring numbering scheme. Despite poor quality of the crystal and, in consequence, high *R* factor we have obtained a relatively good structure with well defined features. Bond lengths and selected bond angles and torsion angles listed in Tables 5, 6, 7 have the commonly accepted values, and in particular the C—Br bond length is comparable with that found in bromo-dioxane derivative (Żmudzinski *et* Table 1. Crystal data and summary of data collection and structure refinement

Molecular formula	$C_{30}H_{23}BrN_2O_2$
Molecular weight	523.107
Crystal system	orthorhombic
Space group, Z	P2 ₁ 2 ₁ 2 ₁ , 8
<i>a</i> , <i>b</i> , <i>c</i> /Å	9.834(3), 19.614(2), 26.450(6)
$D_{\rm m}, D_{\rm x}/{\rm gm}~{\rm cm}^{-3}$	1.34(2), 1.362(1)
Radiation	$CuK\alpha$, $\lambda = 1.54178$ Å
$\mu(Cu K\alpha)$	2.25 mm^{-1}
Crystal shape and size (mm)	Colorless prisms (011)
	$0.20 \times 0.11 \times 0.14$
Measuring $D_{\rm m}$	Flotation in KJ aq. solution
Diffractometer	Enraf-Nonius CAD-4 (graphite-
	monochromated Cu $K\alpha$ radiation)
Lattice-parameter measurement	
θ range, number of relections	$8 \le \theta \le 18^\circ, 25$
Intensity measurement:	
θ range	$1 \le \theta \le 71^{\circ}$
Indices range	$12 \le h \le 0, -24 \le k \le 24, 0 \le l \le 32$
Scan width (°) and mode	$0.50 + 0.15 \tan \theta$, $\omega/2\theta$
Intensity control reflections	213,222 measured every hour
Changes in intensity	<3%
Number of reflections measured	6695
Criterion for observed refl.	$ F_o \ge 3\sigma(F)$
Number of observed unique refl.	6249
Corrections applied	Lorentz, polarization, absorption
Transmission factors	0.64, 0.77
Extinction reflections omitted	110, 012
Refinement method	Full-matrix LSQ on $ F_o $
Parameters refined	656
Non-H-atoms	Positional and anis. thermal
H-atoms ^a	Positional and isotr. thermal
Weighting scheme k and g	$w = k[\sigma^{2}(F_{o}) + g(F_{o})^{2}]^{-1}$
converged to	2.538, 0.00073
R, wR, S	0.0671, 0.0876, 2.735
Average, max. Δ/σ	0.05, 0.11
Max., min. height in final	
difference Fourier map ($e\dot{A}^{-3}$)	1.1, -1.34

^a Initial positional H-atom parameters for phenyls in calculated positions; others from the difference Fourier maps.

Fig. 2. Structure of the molecule (A), one of the two independent molecules, with hydrogens and atom labelling scheme. Hydrogen numbers are the same as those of the heavy atoms bonded to them. Thermal ellipsoid vibrations are scaled to enclose 50% probability.

Fig. 3. Asymmetric part of the unit cell shows a dimer with hydrogen bonds N1A-H1A \cdots O2B, N1B-H1B \cdots O2B. Thermal ellipsoids correspond to 10% probability.

Table 2. Coordinates of heavy atoms with esd's in parentheses

Atom	X	у	Z	$U_{ m eq}$	Atom	x	у	z	$U_{ m eq}$
N1A	1.3408(5)	0.4677(3)	0.1857(2)	594(8)	N1B	0.8436(5)	0.5646(2)	0.1796(2)	594(9)
N2A	1.0671(4)	0.3678(2)	0.0820(2)	430(9)	N2B	0.5652(4)	0.6553(2)	0.0785(2)	406(9)
01A	1.1845(5)	0.3818(2)	0.1778(2)	822(8)	O1B	0.6990(5)	0.6516(3)	0.1699(2)	833(9)
O2A	0.9426(4)	0.4519(2)	0.1163(2)	693(9)	O2B	0.4524(4)	0.5708(2)	0.1174(2)	631(9)
C1A	1.1727(5)	0.4161(3)	0.0682(2)	469(9)	C1B	0.6691(5)	0.6075(3)	0.0638(2)	455(9)
C2A	1.2499(6)	0.4462(3)	0.1037(2)	586(10)	C2B	0.7545(6)	0.5858(3)	0.0979(2)	578(9)
C3A	0.9641(6)	0.3904(3)	0.1106(2)	559(9)	C3B	0.4675(5)	0.6324(3)	0.1112(2)	478(8)
C4A	0.7451(6)	0.3347(4)	0.1392(2)	674(9)	C4B	0.2537(6)	0.6892(3)	0.1402(2)	583(9)
C5A	1.2519(6)	0.4280(4)	0.1591(2)	641(10)	C5B	0.7610(6)	0.6033(3)	0.1517(2)	536(9)
C6A	0.8807(6)	0.3376(3)	0.1362(2)	565(10)	C6B	0.3871(5)	0.6831(3)	0.1386(2)	492(9)
BR1A	0.6392(1)	0.4035(1)	0.1057(0)	1174(4)	BR1B	0.1490(1)	0.6302(1)	0.1003(1)	1453(4)
C7A	1.3870(6)	0.4584(3)	0.2350(2)	525(9)	C7B	0.8828(6)	0.5703(3)	0.2301(2)	545(9)
C8A	1.4974(7)	0.4969(3)	0.2500(3)	705(10)	C8B	0.8329(7)	0.6190(4)	0.2615(2)	775(10)
C9A	1.5494(8)	0.4899(4)	0.2970(3)	865(10)	C9B	0.8809(8)	0.6223(4)	0.3115(2)	805(10)
C10A	1.4988(7)	0.4436(4)	0.3293(3)	816(10)	C10B	0.9746(8)	0.5807(4)	0.3288(2)	822(10)
C11A	1.3901(8)	0.4045(4)	0.3157(3)	809(10)	C11B	1.0273(8)	0.5312(4)	0.2965(3)	928(10)
C12A	1.3326(7)	0.4110(4)	0.2676(2)	744(10)	C12B	0.9795(7)	0.5264(3)	0.2478(3)	700(10)
C13A	0.6678(7)	0.2836(3)	0.1666(2)	643(9)	C13B	0.1798(6)	0.7415(3)	0.1702(2)	583(9)
C14A	0.7462(8)	0.2156(4)	0.1814(3)	1089(9)	C14B	0.2463(7)	0.7982(3)	0.1889(3)	664(10)
C15A	0.6604(9)	0.1720(4)	0.2051(3)	1042(9)	C15B	0.1771(8)	0.8457(4)	0.2162(3)	844(10)
C16A	0.5332(8)	0.1842(4)	0.2213(3)	1018(10)	C16B	0.0424(8)	0.8355(4)	0.2288(3)	969(9)
C17A	0.4717(8)	0.2454(5)	0.2129(4)	1273(10)	C17B	-0.0234(8)	0.7816(4)	0.2104(4)	1327(10)
C18A	0.5398(8)	0.2934(4)	0.1853(3)	984(10)	C18B	0.0445(7)	0.7320(4)	0.1818(4)	1050(10)
C19A	1.0897(7)	0.2987(3)	0.0691(2)	650(9)	C19B	0.5811(5)	0.7264(3)	0.0658(2)	446(9)
C24A	1.2125(8)	0.2691(4)	0.0759(3)	799(9)	C20B	0.4714(6)	0.7631(3)	0.0483(2)	598(10)
C23A	1.2304(10)	0.2006(4)	0.0625(3)	1080(10)	C21B	0.4867(7)	0.8314(3)	0.0370(3)	816(9)
C22A	1.1309(12)	0.1666(4)	0.0419(4)	1354(10)	C22B	0.6117(8)	0.8630(4)	0.0416(3)	858(10)
C21A	1.0065(11)	0.1951(4)	0.0334(4)	1209(9)	C23B	0.7186(7)	0.8265(3)	0.0588(3)	708(10)
C20A	0.9859(8)	0.2611(3)	0.0471(3)	804(10)	C24B	0.7047(6)	0.7577(3)	0.0713(2)	619(9)
C25A	1.1886(6)	0.4311(3)	0.0145(2)	485(9)	C25B	0.6705(6)	0.5867(3)	0.0097(2)	471(9)
C30A	1.0892(7)	0.4124(4)	-0.0204(2)	679(9)	C26B	0.6007(6)	0.6234(4)	-0.0265(3)	731(10)
C29A	1.1044(7)	0.4222(4)	-0.0710(3)	796(10)	C27B	0.6070(7)	0.6057(4)	-0.0773(2)	754(10)
C28A	1.2175(8)	0.4556(4)	-0.0873(3)	778(9)	C28B	0.6791(7)	0.5540(4)	-0.0925(2)	735(9)
C27A	1.3170(7)	0.4757(4)	-0.0548(3)	730(10)	C29B	1.2493(7)	0.0158(3)	0.5560(3)	728(10)
C26A	1.3052(6)	0.4635(3)	-0.0054(2)	579(9)	C30B	0.7464(7)	0.5315(3)	-0.0062(2)	605(9)

		2.012	11°K (A*)*(I			
Atom	<i>U</i> 11	U22	<i>U</i> 33	U23	<i>U</i> 13	<i>U</i> 12
NIA	52(2)	76(2)	51(2)	12(1)	8(2)	-10(2)
N2A	47(2)	29(2)	53(2)	-2(1)	8(1)	-5(1)
01A	88(2)	100(2)	59(2)	27(1)	-6(2)	-46(2)
O2A	64(2)	54(2)	90(2)	-13(1)	13(2)	0(2)
C1A	45(2)	39(2)	57(2)	6(2)	13(2)	1(2)
C2A	53(2)	62(2)	62(2)	17(2)	9(2)	-8(2)
C3A	43(2)	62(2)	63(2)	-7(2)	-3(2)	-10(2)
C4A	56(2)	83(2)	63(2)	4(2)	20(2)	-2(2)
C5A	59(2)	91(2)	43(2)	18(2)	2(2)	-18(2)
C6A	47(2)	65(2)	57(2)	2(2)	5(2)	-7(2)
BRIA	62(1)	138(1)	153(1)	71(1)	3(1)	2(1)
C7A	48(2)	58(2)	52(2)	-1(2)	3(2)	-5(2)
C8A	79(2)	73(2)	59(2)	0(2)	-4(2)	-4(2)
C9A	85(2)	84(2)	91(2)	-5(2)	-27(2)	-21(2)
C10A	75(2)	112(2)	59(2)	-11(2)	-20(2)	0(2)
CIIA	89(2)	95(2)	58(2)	15(2)	5(2)	0(2)
C12A	62(2)	103(2)	59(2)	6(2)	-(2)	-13(2)
C13A	62(2)	62(2)	69(2)	-2(2)	6(2)	-7(2)
C14A	136(2)	67(2)	124(2)	-37(2)	95(2)	-60(2)
C15A	107(2)	67(2)	139(2)	4(2)	50(2)	-1(2)
C16A	95(2)	74(2)	137(2)	8(2)	35(2)	-32(2)
C17A	71(2)	104(2)	207(2)	23(2)	67(2)	-7(2)
C18A	66(2)	72(2)	157(2)	17(2)	34(2)	-1(2)
C19A	79(2)	62(2)	54(2)	4(2)	29(2)	2(2)
C24A	103(2)	68(2)	69(2)	10(2)	26(2)	17(2)
C23A	148(2)	74(2)	102(2)	11(2)	34(2)	42(2)
C22A	239(2)	50(2)	116(2)	-8(2)	-13(2)	47(2)
C21A	194(2)	47(2)	123(2)	-13(2)	14(2)	-17(2)
C20A	106(2)	44(2)	91(2)	-16(2)	10(2)	-17(2)
C25A	53(2)	44(2)	49(2)	(2)	15(2)	13(2)
C30A	61(2)	87(2)	56(2)	7(2)	9(2)	-11(2)
C29A	71(2)	106(2)	62(2)	2(2)	-9(2)	6(2)
C28A	92(2)	86(2)	56(2)	16(2)	18(2)	28(2)
C27A	76(2)	80(2)	62(2)	12(2)	32(2)	2(2)
C26A	64(2)	56(2)	55(2)	3(2)	16(2)	-6(2)
N1B	62(2)	58(2)	59(2)	-12(1)	0(2)	21(2)
N2B	35(1)	43(2)	43(2)	1(1)	5(1)	4(1)
O1B	81(2)	110(2)	59(2)	-27(1)	-14(2)	47(2)
O2B	57(2)	57(2)	75(2)	4(1)	25(1)	-6(1)
C1B	37(2)	50(2)	50(2)	-7(1)	8(2)	3(2)
C2B	54(2)	70(2)	49(2)	-4(2)	-10(2)	26(2)
C3B	40(2)	52(2)	51(2)	-2(2)	9(2)	-9(2)
C4B	47(2)	76(2)	51(2)	-9(2)	10(2)	9(2)
C5B	40(2)	63(2)	58(2)	-12(2)	1(2)	19(2)
C6B	44(2)	48(2)	56(2)	-7(2)	15(2)	-7(2)
BRIB	54(1)	189(1)	193(1)	-118(1)	-20(1)	9(1)
C7B	56(2)	55(2)	53(2)	-1(2)	0(2)	4(2)
C8B	71(2)	106(2)	55(2)	-8(2)	-3(2)	22(2)
C9B	87(2)	111(2)	44(2)	-17(2)	10(2)	0(2)
C10B	103(2)	88(2)	56(2)	13(2)	-24(2)	1(2)
C11B	121(2)	84(2)	73(2)	3(2)	-35(2)	25(2)
C12B	80(2)	70(2)	60(2)	-5(2)	-9(2)	27(2)
C13B	45(2)	66(2)	65(2)	10(2)	26(2)	15(2)

Table 3. Thermal parameters $U_{ij} \times 10^{**3}$: Exp (-2*PI**2(U11*H**2*(A*)**2 + · · · + 2*U12*H*K*(A*)*(B*) + · · ·)

Atom	U 11	U22	<i>U</i> 33	U23	<i>U</i> 13	<i>U</i> 12
C14B	60(2)	53(2)	86(2)	-12(2)	25(2)	2(2)
C15B	96(2)	73(2)	84(2)	-7(2)	8(2)	-1(2)
C16B	101(2)	80(2)	110(2)	-9(2)	56(2)	11(2)
C17B	81(2)	90(2)	227(2)	-27(2)	96(2)	5(2)
C18B	54(2)	82(2)	179(2)	-30(2)	48(2)	-7(2)
C19B	43(2)	50(2)	41(2)	-3(2)	3(2)	-10(2)
C20B	47(2)	56(2)	76(2)	6(2)	3(2)	-6(2)
C21B	82(2)	58(2)	105(2)	16(2)	-3(2)	11(2)
C22B	107(2)	63(2)	87(2)	9(2)	22(2)	-10(2)
C23B	63(2)	71(2)	78(2)	-16(2)	11(2)	-28(2)
C24B	45(2)	71(2)	70(2)	-15(2)	7(2)	-4(2)
C25B	42(2)	53(2)	46(2)	-8(2)	7(2)	-11(2)
C26B	47(2)	119(2)	53(2)	-12(2)	-5(2)	9(2)
C27B	67(2)	118(2)	41(2)	-17(2)	-8(2)	14(2)
C28B	80(2)	82(2)	58(2)	-15(2)	14(2)	-21(2)
C29B	90(2)	55(2)	73(2)	15(2)	19(2)	-1(2)
C30B	85(2)	51(2)	46(2)	5(2)	17(2)	3(2)

Table 3. Continued

Table 4. Coordinates of hydrogen atoms [esd's and thermal parameters omitted for hydrogens in calculated positions (not refined)]

	x	у	z	$U \times 10^{**3}$		x	у	z	$U \times 10^{**3}$
HIA	1.401(2)	0.494(2)	0.160(1)	26(2)	H1B	0.866(2)	0.525(1)	0.161(1)	28(2)
H2A	1.304(2)	0.495(2)	0.099(1)	61(2)	H2B	0.814(2)	0.547(1)	0.089(1)	34(2)
H6A	0.934(2)	0.243(2)	0.150(1)	61(2)	H6B	1.447(2)	0.707(1)	0.157(1)	36(2)
H8A	1.5384	0.5284	0.2254		H8B	0.7634	0.6525	0.2495	
H9A	1.6275	0.5197	0.3091		H9B	0.8401	0.6573	0.3346	
H10A	1.5392	0.4384	0.3647		H10B	1.0127	0.5871	0.3635	
H11A	1.3522	0.3700	0.3408		HIIB	1.1009	0.4973	0.3089	
H12A	1.2561	0.3810	0.2567		H12B	1.0137	0.4895	0.2255	
H14A	0.8354	0.2081	0.1684		H14B	0.3460	0.8047	0.1821	
H15A	0.7031	0.1261	0.2139		H15B	0.2235	0.8895	0.2272	
H16A	0.4823	0.1480	0.2386		H16B	-0.0049	0.8677	0.2520	
H17A	0.3807	0.2568	0.2271		H17B	-0.1214	0.7762	0.2208	
H18A	0.4901	0.3394	0.1748		H18B	-0.0062	0.6906	0.1682	
H20A	1.2901	0.2961	0.0912		H20B	0.3819	0.7390	0.0423	
H21A	1.3217	0.1751	0.0697		H21B	0.4024	0.8597	0.0249	
H22A	1.1464	0.1173	0.0315		H22B	0.6198	0.9124	0.0321	
H23A	0.9315	0.1659	0.0171		H23B	0.8093	0.8492	0.0612	
H24A	0.8944	0.2842	0.0407		H24B	0.7854	0.7309	0.0855	
H26A	1.0022	0.3922	-0.0081		H26B	0.5412	0.6623	-0.0149	
H27A	1.0343	0.4047	-0.0954		H27B	0.5592	0.6339	-0.1034	
H28A	1.2285	0.4648	-0.1234		H28B	0.6857	0.5418	-0.1295	
H29A	1.4007	0.5001	-0.0683		H29B	0.8074	0.4744	-0.0664	
H30A	1.3799	0.4783	0.0182		H30B	0.7950	0.5039	0.0191	

NIA-C5A	1.366(8)	N1B-C5B	1.334(7)
N1A-C7A	1.393(7)	N1B-C7B	1.395(8)
N2A-CIA	1.452(7)	N2B-C1B	1.440(7)
N2A-C3A	1.340(7)	N2B-C3B	1.369(7)
N2A-C19A	1.415(7)	N2B-C19B	1.442(7)
O1A-C5A	1.227(8)	O1B-C5B	1.225(8)
O2A-C3A	1.234(7)	O2B-C3B	1.228(7)
C1A-C2A	1.344(8)	C1B-C2B	1.304(8)
C1A-C25A	1.459(8)	C1B-C25B	1.488(8)
C2A-C5A	1.508(8)	C2B-C5B	1.465(8)
C3A-C6A	1.485(8)	C3B-C6B	1.463(8)
C4A-C6A	1.337(8)	C4B-C6B	1.318(8)
C4A-BR1A	1.921(7)	C4B-BR1B	1.874(6)
C4A-C13A	1.452(9)	C4B-C13B	1.487(8)
C7A-C8A	1.381(9)	C7B-C8B	1.358(9)
C7A-C12A	1.376(9)	C7B-C12B	1.366(9)
C8A-C9A	1.351(11)	C8B-C9B	1.406(8)
C9A-C10A	1.343(11)	C9B-C10B	1.313(11)
C10A-C11A	1.364(11)	C10B-C11B	1.393(11)
C11A-C12A	1.398(10)	C11B-C12B	1.374(11)
C13A-C14A	1.589(10)	C13B-C14B	1.382(9)
C13A-C18A	1.366(10)	C13B-C18B	1.378(9)
C14A-C15A	1.355(11)	C14B-C15B	1.361(10)
C15A-C16A	1.344(12)	C15B-C16B	1.381(11)
C16A-C17A	1.362(12)	C16B-C17B	1.332(11)
C17A-C18A	1.367(12)	C17B-C18B	1.402(12)
C19A-C20A	1.352(10)	C19B-C20B	1.377(8)
C19A-C24A	1.387(10)	C19B-C24B	1.370(8)
C20A-C21A	1.401(11)	C20B-C21B	1.381(8)
C21A-C22A	1.304(14)	C21B-C22B	1.382(10)
C22A-C23A	1.364(15)	C22B-C23B	1.351(10)
C23A-C24A	1.360(10)	C23B-C24B	1.396(8)
C25A-C26A	1.394(9)	C25B-C26B	1.381(9)
C25A-C30A	1.413(8)	C25B-C30B	1.381(9)
C26A-C27A	1.360(10)	C26B-C27B	1.389(10)
C27A-C28A	1.361(11)	C27B-C28B	1.301(10)
C28A-C29A	1.361(11)	C28B-C29B	1.411(9)
C29A-C30A	1.333(6)	C29B-C30B	1.353(10)

Table 5. Bond distances Å

al., 1980) equal to 1.865 Å. Both carbonyl groups are *trans* to phenyl rings, whereas bromine is *cis* with respect to the nearest carbonyl group. Inspection of torsion angles shows that the backbone of the two independent molecules as well as their phenyl rings II and III are in a nearly enantiomorphic relation with the greatest discrepancy for the C1-C2-C5-O1 angle equal to 11.91° . Two other phenyl rings I and IV packed against its counterpart from the other molecule show greater deviation from the mirror symmetry because of packing forces. Molecules A and B are connected by

two hydrogen bonds thus forming a dimer. The geometry of the hydrogen bonds is as follows:

$$N1A-O2B = 2.925(7), N1A-H1A-O2B$$

= 156.18(1.62),
 $N1B-O2A = 2.939(6), N1B-H1B-O2A$
= 169.85(1.78).

Besides, there are two further intermolecular contacts within the dimer:

C2A - O2B = 3.173(7), C2B - O2A = 3.249(7).

Table 6. Bond angles/deg^a

	Molecule A		Molect	ule B
	Angle	esd	Angle	esd
C5-N1-C7	128.1	0.5	130.7	0.5
C3-N2-C19	124.9	0.5	122.7	0.5
C1-N2-C19	116.9	0.4	119.3	0.4
C1-N2-C3	117.8	0.4	117.1	0.4
N2-C1-C25	116.9	0.5	116.4	0.5
N2 - C1 - C2	121.0	0.5	118.9	0.5
C2-C1-C25	122.1	0.5	124.7	0.5
C1-C2-C5	125.6	0.6	128.6	0.6
N2-C3-O2	121.5	0.5	119.5	0.5
O2-C3-C6	122.1	0.5	122.5	0.5
N2-C3-C6	116.4	0.5	118.0	0.5
BR1-C4-C13	115.6	0.5	117.3	0.4
C6-C4-C13	125.5	0.6	124.5	0.5
C6-C4-BR1	118.9	0.5	118.2	0.5
O1-C5-C2	124.0	0.6	122.8	0.6
N1-C5-C2	111.9	0.6	115.5	0.5
N1-C5-01	124.0	0.5	121.7	0.5
C3-C6-C4	127.4	0.6	128.0	0.5
N1-C7-C12	123.3	0.6	118.1	0.5
N1-C7-C8	117.0	0.5	122.9	0.5
C4-C13-C18	124.5	0.6	119.8	0.6
C4-C13-C14	116.6	0.6	121.0	0.6
N2-C19-C24	119.7	0.6	120.3	0.5
N2-C19-C20	121.3	0.6	119.9	0.5
C1-C25-C30	122.7	0.5	120.9	0.5
C1-C25-C26	121.1	0.5	121.3	0.5

"esd following Cruickshank, International Tables, II, 1959, p. 331)

Table 7. Torsion angles/deg

	Molecule A		Molecule B	
	Angle	esd	Angle	esd
C5-N1-C7-C8	166.9	0.6	3.3	1.0
C7-N1-C5-O1	10.2	1.0	-3.7	1.0
C7-N1-C5-C2	-168.0	0.6	173.8	0.6
C3-N2-C19-C24	53.3	0.8	126.3	0.6
C1-N2-C19-C24	-134.6	0.6	-42.4	0.7
C1-N2-C3-C6	-162.9	0.5	161.7	0.5
C19-N2-C3-O2	-172.7	0.5	174.3	0.5
C1-N2-C3-O2	15.1	0.8	-16.7	0.8
C3-N2-C1-C25	-116.6	0.6	113.8	0.6
C3-N2-C1-C2	62.3	0.7	-66.4	0.7
C19-N2-C1-C25	70.7	0.6	-76.9	0.6
C19-N2-C1-C2	-110.5	0.6	102.9	0.6
C19-N2-C3-C6	9.2	0.8	-7.3	0.8
N2-C1-C25-C30	-164.5	0.5	-166.7	0.5
N2-C1-C2-C5	8.8	0.9	0.3	0.9
C2-C1-C25-C26	-164.8	0.6	-163.8	0.6
C25-C1-C2-C5	-172.5	0.6	-180.0	0.6
C1-C2-C5-O1	1.9	1.0	-13.8	1.0
C1-C2-C5-N1	-180.0	0.6	168.7	0.6
02-C3-C6-C4	46.9	0.9	-56.6	0.9
N2-C3-C6-C4	-135.0	0.7	125.1	0.6
BR1-C4-C6-C3	2.1	0.9	-3.9	0.8
C13-C4-C6-C3	-177.1	0.6	178.4	0.5
BR1-C4-C13-C14	163.3	0.5	-161.5	0.5
BR1-C4-C13-C18	-24.7	0.9	21.7	0.8

Fig. 4. Packing diagram; the dashed line indicates the hydrogen bond and the dotted line the shortest inter-dimer contact.

It is also interesting to note that each molecule has two intramolecular short distances responsible for rigidity of the structure and probably packing as well: O1A-C12A= 2.844(8), N2A-C26A = 2.855(8), O1B-C8B = 2.831(8), N2B-C26B = 2.868(9). The only contact between different dimers detected by us is O1A-C16B = 3.451(9), where O1A belongs to the molecule related by symmetry operation: -x + 1, y + 1/2, -z + 1/2, see packing diagram Fig. 4.

X-ray determined molecular structure made the

complex spectral image of the investigated molecule clear (see interpretation in spectral section).

Open chain structure of the product of the reaction of benzoylacetanilide with POBr₃ gives an evidence that bimolecular condensation takes place instead of cycloaddition. In that respect POBr₃ differs considerably from POCl₃ in its action towards benzoylacetanilide. The reaction is accompanied by substitution of enolic —OH group by bromine.

Acknowledgment

This study was supported by the Polish Ministry of Education, Research Project R.P.II.10.6.2.13.

References

- Ciechanowicz-Rutkowska, M., Konsur, A., Duraj, S., Kolasa, A., Lebioda, Ł., and Żankowska-Jasińska, W. (1981) *Tetrahedron* 37, 3503.
- Sheldrick, G. M. (1986) SHELX-86-Program for Crystal Structure Solution (Goettingen).
- Żmudziński, L., Jedliński, Z., Lebioda, Ł., and Mitraj, K. (1980) Bull. Acad. Polon. Sci. Ser. Sci. Chim. XXVIII, 2, 103.

Structure factor data have been deposited with the British Library, Boston Spa, Wetherby, West Yorkshire, UK as supplementary publication No. 60728 (36 pages).