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ABSTRACT: An alkene−alkyne−silylene [2 + 2 + 1] cycloaddition
takes place in the rhodium-catalyzed reaction of 1,6-enynes with
borylsilanes bearing an alkoxy group on the silicon atoms, which
react as synthetic equivalents of silylene. The reaction proceeds
efficiently in 1,2-dichloroethane at 80−110 °C in the presence of a
rhodium catalyst bearing bis(diphenylphosphino)methane (DPPM)
as a ligand to afford 1-silacyclopent-2-enes in good to high yields.

Bioisosterism utilizing silicon, a technique used for
improving the medicinal effects of bioactive organic

compounds by replacing the functional group with a silicon-
containing group, has received increasing attention in the drug
discovery field.1,2 Of particular interest in the screening of
silicon-based bioisosteres is silicon-containing carbo- and
heterocyclic skeletons. Examples of the skeletons that have
been investigated in drug discovery are shown in Figure 1. 4-

Silapiperidines have been examined as bioisosteres of the
piperidine and morpholine moieties in haloperidol, loper-
amide, and other compounds.3 Silaproline has been studied as
a surrogate of proline in the development of bioactive
peptides.4 Silacarbocycles have been tested as analogues of
the parent carbocyclic compounds such as venlafaxine and
atipamezole.5 These examples suggest that a variety of silicon-
containing cyclic skeletons may contribute to improving the
medicinal effects of bioactive compounds. Hence, the develop-
ment of efficient methods to construct untouched silicon-
containing cyclic skeletons, including 1-silacyclopent-2-enes
(Figure 1), is highly attractive and could accelerate the
development of silicon-containing drugs.

Transition-metal-catalyzed [2 + 2 + 1] cycloaddition
involving silylene as the one-atom-component is an attractive
method for the construction of silicon-containing five-
membered rings. Alkyne−alkyne−silylene [2 + 2 + 1]
cycloaddition is well established as an efficient route to
silacyclopentadienes (siloles).6 However, to date, limited
success has been achieved with alkene−alkyne−silylene [2 +
2 + 1] cycloaddition to afford 1-silacyclopent-2-enes.7−9 This
is in sharp contrast to the great success of the analogous three-
component cyclization, the Pauson−Khand reaction.10

We have reported on palladium-catalyzed alkyne−alkyne−
silylene [2 + 2 + 1] cycloaddition to afford silacyclopenta-
dienes, where borylsilanes bearing a dialkylamino group on the
silicon atoms react as the synthetic equivalent of silylenes.11a

This palladium catalyst system was applied to 1,3-diene-
silylene [4 + 1] cycloaddition11b and 2-alkenylindole-silylene
[4 + 1] cycloaddition.11c However, all our attempts at
achieving alkene−alkyne−silylene [2 + 2 + 1] cycloaddition
on the basis of palladium catalysis failed. We therefore changed
our strategy to the use of other transition metal catalysts. Here,
we describe a rhodium-catalyzed alkene−alkyne−silylene [2 +
2 + 1] cycloaddition. The new rhodium catalysis using a
borylsilane is applicable to the conversion of a wide range of
1,6- and 1,7-enynes to bicyclic 1-silacyclopent-2-enes.7,8

Diethyl malonate-derived 1,6-enyne 1a was reacted with
(pin)B−Si(NEt2)Me2 (2, 1.0 equiv)

12 in 1,2-dichloroethane at
80 °C in the presence of [RhCl(cod)]2 (2.5 mol %) and a
phosphorus ligand (5.5 mol %) (Table 1). When the reaction
was carried out with DPPB as a ligand, 1-silacyclopent-2-ene
4a and aminoboronate 5 were formed, albeit in low yields (5%
and 20% yields, respectively), indicating that a rhodium
catalyst could promote the [2 + 2 + 1] cycloaddition of 4a with
silylene formed from 2 (entry 1). It is interesting to note that
the catalyst efficiency was significantly improved by the use of
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Figure 1. Examples of silicon-containing cyclic skeletons investigated
in drug discovery.
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bidentate phosphines with smaller bite angles (entries 2−4). In
the reaction with DPPP or DPPE, 5 was formed in high yields
(86−89%) and the yields of 4a were improved to 38−48%
(entries 2 and 3). A rhodium catalyst bearing DPPM showed
the highest catalyst efficiency: 2 was fully converted to 5 and
the reaction afforded 4a in 82% yield (entry 4). The reaction
with PMePh2, or in the absence of phosphorus ligand, resulted
in low catalyst efficiency (entries 5 and 6), indicating that
bidentate coordination of DPPM is essential for high catalyst
efficiency. As mentioned above, the Pd/PMePh2 catalyst
system that we reported previously11 was not effective and
no formation of 4a took place.
It is interesting to note that the Rh/DPPM-catalyzed [2 + 2

+ 1] cycloaddition of 1a took place efficiently with alkoxy-
substituted (pin)B−Si(OR)Me2 (3),

12 which to date have not
been used as silylene sources under the conditions for the
palladium-catalyzed reaction.11 3a (R = Me), 3b (R = Et), 3c
(R = i-Pr), and 3d (R = t-Bu) showed comparable reactivity.
Reactions afforded 4a in 79−83% yields and alkoxyboranes
6a−d were formed (entries 7−10). Since the reactions of 3
were faster than 2 (see Supporting Information for detailed
comparison), we determined 3c to be the preferred silylene
source in the reaction of 1.
The Rh/DPPM-catalyzed [2 + 2 + 1] cycloaddition using 3c

as a silylene source was subjected to various enynes (Scheme
1). Dimethyl and diisopropyl malonate derivatives 1b and 1c
reacted efficiently at 80 °C to afford the corresponding 1-
silacyclopent-2-enes 4b and 4c in 80% and 83% yields,
respectively. Highly efficient ring formation took place to
afford 4d in the reaction of 9H-fluorene-derived 1d, probably
due to the rigid fluorene backbone. Pentane-2,4-dione
derivative 1e afforded 4e in 80% yield, where the electrophilic
carbonyl and the acidic α-hydrogen of the methyl ketone did

not affect the reaction. Cyano and acetal groups were tolerated,
and 4f and 4g were obtained by the [2 + 2 + 1] cycloaddition.
Substrates having more flexible tether moieties were also
acceptable: 1i, 1k, and 1l afforded the corresponding products
4i, 4k, and 4l in 47−64% yields.13 Although allyl propargyl
ether 1j was consumed prior to 3c, and therefore the yield was
low, 4j was also synthesized.

Table 1. Reaction Conditionsa

yield (%)

entry borylsilane ligand time (h) 4ab 5 or 6c

1 2 (X = NEt2) DPPBd 16 5 20 (5)
2 2 DPPPe 16 48 86 (5)
3 2 DPPEf 16 38 89 (5)
4 2 DPPMg 16 82 >99 (5)
5 2 PMePh2

h 16 11 22 (5)
6 2 − 16 10 33 (5)
7 3a (X = OMe) DPPM 6 79 86 (6a)
8 3b (X = OEt) DPPM 6 80 97 (6b)
9 3c (X = Oi-Pr) DPPM 6 83 (83)i 94 (6c)
10 3d (X = Ot-Bu) DPPM 6 83 91 (6d)

a1a (0.10 mmol), 2 (0.10 mmol), [RhCl(cod)]2 (2.5 mol %), ligand
(5.5 mol %), and ClCH2CH2Cl (0.1 mL) were stirred at 80 °C for 6
h. bDetermined by GC. cDetermined by 1H NMR. dPh2P-
(CH2)4PPh2.

ePh2P(CH2)3PPh2.
fPh2P(CH2)2PPh2.

gPh2PCH2PPh2.
h10 mol %. iIsolated yield in the 0.30 mmol scale reaction.

Scheme 1. Synthesis of 1-Silacyclopent-2-enes through
Rhodium-Catalyzed [2 + 2 + 1] Cycloadditiona

a1 (0.30 mmol), 3c (0.30 mmol), [RhCl(cod)]2 (2.5 mol %), ligand
(5.5 mol %), and ClCH2CH2Cl (0.3 mL) were stirred at 80 or 110 °C
for 6 h. bdr 1.5:1. cReaction was carried out for 12 h. dObtained as a
mixture with a structural isomer (3%). edr 2:1. f3c (1.2 equiv) was
used. gReaction was carried out for 18 h with 3c (1.2 equiv). hDPPP
was used instead of DPPM. i(pin)B−Si(NEt2)MePh (7) was used
instead of 3c. jdr 2.4:1. kdr 1:1.
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Substrate 1m bearing a n-butyl group on the alkyne terminus
underwent the [2 + 2 + 1] cycloaddition at 80 °C to afford 4m
in 80% yield. On the other hand, elevation of the reaction
temperature (110 °C) was required for the conversion of
phenyl-, methoxycarbonyl-, and trimethylsilyl-substituted 1n−
p to 4n−p. It should be noted that when DPPP was used as a
ligand, terminal alkyne 1q also underwent the [2 + 2 + 1]
cycloaddition to afford 4q. The [2 + 2 + 1] cycloaddition was
applicable to 1,6-enynes 1r−s bearing substituents on the
double bond and 1u−v bearing methyl groups on the allylic
positions, to afford 4r−s and 4u−v in 57−74% yields.14 In
addition to dimethylsilylene, the methylphenylsilylene moiety
was introduced to form 4t, when the reaction was carried out
with (pin)B−Si(NEt2)MePh (7).15 It should also be noted
that 1,7-enyne 1w also underwent the [2 + 2 + 1]
cycloaddition to afford 4w, albeit in moderate yield.
The reaction of 1a with (pin)B−SiMe2Ph (8) having no

heteroatom functional group on the silicon atom provided
mechanistic information (Scheme 2). In the presence of Rh/

DPPM catalyst, 1a underwent the [2 + 2 + 1] cycloaddition
even with 8, to afford 4a and 4t in 19% and 15% yields,
respectively. The ring formation took place with release of
phenyl or methyl groups through Si−C bond cleavage. Ph−
B(pin) (9) and Me−B(pin) (10) were also formed and
present in the reaction mixture. Some reports describe the
rhodium-catalyzed formation of five-membered silacarbocycles
through substitution of the methyl or phenyl groups on
silicon,6e,h,16,17 where an elementary step shown in Scheme 3 is
suggested. The formation of 4a and 4t indicates the existence
of this elementary step in the present rhodium-catalyzed [2 + 2
+ 1] cycloaddition.

A proposed reaction mechanism is shown in Scheme 4.
Transmetalation between [Rh]−X (A, X = Cl, NR2, OR, Ph, or
Me) and the borylsilane takes place to afford a rhodium
silylenoid B.18 Insertion of the C−C triple bond of 1,6-enyne
into the Rh−Si bond of B proceeds in a regioselective manner
to form alkenylrhodium C. Subsequent insertion of the C−C
double bond into the Rh−C bond of C takes place to form
alkylrhodium D. A silicon-containing five-membered ring is

then formed through either nucleophilic substitution on the
silicon center or σ-bond metathesis between Rh−C and Si−X
bonds, accompanied by the reformation of A.
Silicon-containing amino acids have received much attention

for their application in bioactive peptides.2,4 The Rh/DPPM-
catalyzed [2 + 2 + 1] cycloaddition was applied to the
synthesis of a new class of silicon-containing amino acid
derivatives (Scheme 5). The [2 + 2 + 1] cycloaddition of α-

amino acid-derived 1,6-enynes 11a−d with 3c took place
efficiently at 80−110 °C to afford the corresponding 1-
silacyclopent-2-enes (dr ca. 1:1). The products were treated
with aqueous citric acid in THF, and the aminoesters 12a−d
were obtained. The diastereomers of 12a were separable by
silica gel column chromatography; i.e., both diastereomers
were readily accessible by the [2 + 2 + 1] cycloaddition.
Because the starting compound 11 was readily prepared
through two or three steps from N-(diphenylmethylene)-
glycine ethyl ester, this method is practical for the synthesis of
a variety of silicon-containing α-aminoesters.
In conclusion, we established an efficient route to 1-

silacyclopent-2-enes through Rh/DPPM-catalyzed alkene−
alkyne−silylene [2 + 2 + 1] cycloaddition, where borylsilanes
bearing an alkoxy group on the silicon atoms participated in

Scheme 2. A Mechanistic Investigation

Scheme 3. An Elementary Step Suggested in the Literature
for Rhodium-Mediated Cyclization through Substitution of
the Methyl or Phenyl Groups on Silicon6e,h,16

Scheme 4. Possible Mechanism

Scheme 5. Application to Synthesis of Novel Silicon-
Containing Amino Acid Derivatives

aThe diastereomers were completely separable by silica gel column
chromatography. bAt 110 °C with 3c (1.2 equiv) for the first step.
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the reaction as synthetic equivalents of silylene. A mechanism
involving rhodium silylenoid is proposed based on the fact that
the [2 + 2 + 1] cycloaddition proceeded even with the
borylsilanes having no heteroatom functional group on the
silicon atom.
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