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Abstractz Absolute rate constants for reactions of bicyclo[ l.l.l]pent-l-y1 radicals with a-methylstyrene 
(1.4 x 10’ M-t s-1) and 1.4~cyclohexadiene (4.6 x 16 M-l s-1) at 25O C were measured by laser flash 
photolysis. This bridgehead radical is more reactive than terr-butyl which we attribute to its high s- 
character and the absence of steric shielding of the radical center. Copyright 0 1996 Elsevier Science Ltd 

Bridgehead radicals with cages composed of small rings are necessarily pyramidal. They are expected to 
be more reactive generally than acyclic tert-alkyl radicals, such as the essentially planar tert-butyl.3 because 
pyramidalization reduces steric shielding of the radical center and reduces radical stabilization via HCpCo’ 
hyperconjugation. Pyramidalisation also increases the s-character of the SOMO, as is reflected by enhanced 
l3Co hyperfiie splittings (a13C). and increases nucleophilicity4. Surprisingly, no attempt would appear to have 
been made to provide quantitative kinetic data which would reveal the magnitude of the enhanced reactivity of 
small ring bridgehead radicals5. 

The bicyclo[ 1.1.1 Jpent- l-y1 radical, 1, is the most extreme example of “bridgehead character” known to 
date*. Recent work has shown that this radical (generated in chain reactions involving [ 1.1. llpropellane) is 
active in atom abstraction9 and addition reaction&l1 and has high structural integrity’*. Radical 1 has .t3c = 
223 Gt3 which is not much lower than the 272 G of the tetrahedral CF3’ radicalt4 and is dramatically larger than 
&c for tert-butyl(45G)3. The C$Co’C$ angle in 1 is close to 900 15 (vs. 1090 for a tetrahedral radical and 120 
for a planar radical). Herein we report preliminary kinetic data for two prototypical reactions of 1 and compare 
these results with literature data for the same reactions of tert-butyl. 
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Radical 1 was generated “instantaneously” by 308 nm laser flash photolysis of the diacyl peroxide 216 (67 
mM in CFC12CF2Cl). Its addition to a-methylstyrene (a-MS) at 25oC was monitored by the pseudo-fist-order 
growth kexpu of the absorption at 320 nm due to the benzylic radical adduct, 3. A plot of kexpu vs. [a-MS] 
(range 0.04 - 0.17 M) was linear (<r> = 0.9994) and yielded kl(a-MS) = 1.4 x lo7 M-l s-l. This rate constant 
is 200 times greater than that reported for addition of the rerf-butyl to a-MS, viz.,18 kMe$(a-MS) = 7 x 104 
M-1 s-t at 25 Oc. 

The rate constant for H-atom abstraction from cyclohexa-1,Cdiene (CHD) was determined directly by 
monitoring the growth of the cyclohexadienyl radical, 4, at 317 nm, kl(CHD) = 4.5 x 105 M-1 s-1, and indirectly 
using Scaiano et al’s19 “probe” technique (with a-MS as the probe), kl(CHD) = 4.7 x 105 M-1 s-l. This rate 
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constant is 50-fold larger than that reported for the corresponding H-atom abstraction by rert-butyl, viz20 
kMe$(CHD) = 9.4 x lo3 M-l s-l at 27OC. 

Our absolute kinetic data demonstrate that 1 is, indeed, considerably more reactive than tert-butyl. 
However, these data were severely limited in scope by the difficult synthesis of 2. We trust that the present 
results will be expanded to produce a much more complete picture of l’s reactivity using standard competitive 
kinetic methods combined with chain reactions of the much more readily prepared [l.l. l]propellanelo. 
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