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• one-pot
• gram scale
• inexpensive reagents
• excellent selectivity
• simple protocol
• no chromatography
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Abstract The total syntheses of three enantiomerically pure non-pro-
teinogenic amino acids, L-norvaline, -oxonorvaline, and syn--hy-
droxynorvaline, are reported. The chromatography-free route pivoted
on the construction of highly enantiomerically enriched substituted -
amino--oxopentanoic acid, from which all three members were ac-
cessed divergently via chemoselective and stereoselective reductions.
The rapid synthesis of this key -amino--oxopentanoic acid was
achieved by a highly diastereoselective crystallisation-driven three-
component Mannich reaction from the readily available building blocks
acetone, glyoxylic acid monohydrate, and (S)-(4-methoxyphenyl)ethyl-
amine. The enantiomeric purity of all target molecules was confirmed
by HPLC analysis, either of the amino acids or their derivatives.

Key words stereoselective synthesis, -amino acids, Mannich reac-
tion, crystallisation-induced, norvaline, -hydroxynorvaline, aza-Mi-
chael addition

The immense quantity of enantiomerically pure pro-
teinogenic -amino acids found in nature forms the founda-
tion of all living organisms. Although their non-proteino-
genic counterparts are far less abundant, they play vital
roles in various biogenic processes, cell signalling, and en-
zyme inhibition1 and allow industrial exploration of biolog-
ical activities as antibiotics and metal chelators.2 Naturally,
synthesis of enantiomerically pure -amino acids has al-
ways been one of the most studied parts of modern stereo-
selective synthesis.3 A vast array of diverse traditional ap-
proaches including resolution,4 efficient organocatalysis,5
cooperative catalysis,6 metal catalysis,7 and auxiliary-based
synthesis8 has been developed. However, as the industrial
and academic demands for greener, waste-free, and time-
and cost-efficient processes never cease, -amino acids

have always also been hugely popular model substrates for
the development of alternative methodologies. Amongst
the less frequently used, but elegant and efficient methods
of stereoselective synthesis, crystallisation-induced asym-
metric transformation (CIAT) stands out.9 This method al-
lows the formation of enantiomerically pure crystalline
compounds due to a preferential crystallisation of one iso-
mer from a solution containing a mixture of simultaneously
equilibrating species.

In sharp contrast to its sophisticated principles10 is the
usual technical simplicity of CIAT, making the method very
attractive compared to many traditional approaches. Typi-
cally, the process involves stirring a heterogeneous reaction
mixture at room or slightly elevated temperature followed
by simple filtration of a crystalline product. Arguably, filtra-
tion represents by far the most straightforward purification
operation in organic chemistry and has gained undeniable
popularity amongst all practising chemists. Due to such
simple workup and multiple attractive ecological and eco-
nomic features, CIAT has been frequently implemented in
various industrial processes11 and was recognised for its en-
vironmentally friendly character.12

Enantiomerically pure norvalin (1) and its -oxygenated
analogues -oxonorvaline (2) and especially syn--hy-
droxynorvaline (3) have been popular subjects of numerous
synthetic studies (Scheme 1).13 Despite its structural sim-
plicity, norvaline (1) as an arginase inhibitor has been re-
cently used in the treatment of Alzheimer disease,14 has
anti-inflammatory effects,15 and is even used as a common
food supplement. syn--Hydroxynorvaline (3), first isolated
in 1966 by Fowden from Lathyrus odoratus seed16 and later
by Eugster from the mushroom Boletus satanas Lenz,17 has
been reported to show several biological activities, includ-
ing anti-diabetic properties.18 The -amino--hydroxy acid
© 2019. Thieme. All rights reserved. Synthesis 2019, 51, A–H
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fragment is found in some biologically active peptides in-
cluding the antifungal agent theonellamide F.19 But perhaps
the most notable biological properties are of the cyclic form
of -hydroxynorvaline, the -amino--butyrolactones.
They form a core structural element in a series of natural
products and pharmaceutical drugs, including pesticides,
ACE inhibitors, and bacteriostatic agents.20

Intrigued by the broad spectrum of the biological activi-
ties and the frequent natural abundance of these structur-
ally similar compounds, we envisaged that a unified syn-
thetic approach featuring CIAT from a common intermedi-
ate could enhance the existing syntheses. All three target
amino acids possess the same structural backbone and dif-
fer only in the oxidation state at C-4. The structural similar-
ities led us to believe that amino ketone 4 could be the key
common intermediate (Scheme 1). Further retrosynthesis
revealed that ketone 4 could be accessed via a stereoselec-
tive aza-Michael addition from unsaturated acid 5a21 or
Mannich reaction from acetone (7), glyoxylic acid monohy-
drate (8), and a suitable chiral mediator 6 (Scheme 1). CIAT
approaches featuring stereoselective aza-Michael addition
to various related -aryl- and -alkyl-substituted -
oxobutenoic acids 5 have already been developed (Scheme
2).22 However, as we reported, the attempted CIAT in the
aza-Michael addition to unsaturated acid 5a remained elu-
sive due to gel formation or low stereoselectivity (Scheme
2).23 Therefore, our primary goal was to significantly im-
prove the stereocontrol in the aza-Michael addition to
acetylacrylic acid (5a).

Our synthetic endeavour began with a critical analysis
of our previously reported reactions of amines 6a (R1 = Me)
and 6b (R1 = CH2OH) with 5a (R2 = Me) (Scheme 2). The out-
comes were scrutinised in the light of the recently emerged
successful applications of CIAT in aza-Michael and nitro-
Mannich reactions, where scarcely used chiral mediators 6c
and 6d (Table 1) were employed.24–26 The latest advance-
ments prompted us to return to the disappointing aza-
Michael addition and react acetylacrylic acid (5a) with a
broader range of enantiomerically pure amines 6 (Table 1).
Under conditions suitable for the crystallisation-driven
processes, four commercially available enantiomerically
pure chiral amines 6c–f were investigated in the reaction
monitored by reverse-phase HPLC. Selected results are re-
ported in Table 1.27 Pleasingly, already after a brief screen-
ing of the reaction conditions, several highly diastereoselec-
tive reactions were discovered when amines 6e and 6f were
employed in chlorinated solvents. The aza-Michael addition
with amine 6e afforded adduct 4e in 75% yield and excellent
diasteroselectivity (dr 99:1) when performed in chloro-
form. The most outstanding datapoint was obtained with
amine 6f when the addition was performed in chloroform
at room temperature. Without any precautions to exclude
moisture or light or special demands for solvent purity,
amino acid 4f was isolated by simple filtration in excellent
yield (88%) and dr (99:1) after five days of stirring. In good
agreement with the previous investigations, the origin of
the highly diastereoselective reaction was confirmed as
crystallisation-induced asymmetric transformation.

Scheme 1  Retrosynthetic analysis of norvaline (1) and its -oxygenated analogues -oxonorvaline (2) and -hydroxynorvaline (3)
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Scheme 2  Crystallisation-induced asymmetric transformation of N-nucleophiles in aza-Michael addition to acylacrylic acids 5
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Table 1  Attempted CIAT: Screening of Chiral Amines 6 in Reaction with 5aa

Encouraged by the feasibility of the stereoselective crys-
tallisation-driven aza-Michael reaction, the accessibility of
4f via a three-component Mannich reaction from acetone
(7), amine 6f, and glyoxylic acid monohydrate (8) was as-
sessed (Scheme 3).28 Such an ambitious process would ben-
efit not only from a potentially reduced overall step-count
but also from the much easier commercial access to the
starting materials. Having already identified chloroform as
the optimal solvent for CIAT and amine 6f as the most suit-
able chiral mediator, the starting point for the three-com-
ponent Mannich reaction was well set. To our delight, there
was no need for further extensive optimisation, because the
usage of acetone as a co-solvent allowed the swift forma-
tion of 4f with an initial dr of ~1:1. Similar to the aza-
Michael reaction, the rapid epimerisation of (S,R)-4f accom-
panied by crystallisation of the desired (S,S)-adduct enabled
a smooth transformation of the three inexpensive, com-
mercially available components into enantiomerically pure
amino acid 4f. Simple filtration of the solid precipitate
formed over the course of the reaction afforded 4f in 60%
yield and 98:2 dr. The reaction was successfully performed
already on a multigram scale, but the indisputable simplici-
ty of the reaction execution (‘mix → stir → filter’) holds
promises for even more significant scale-up.

With the straightforward approach to amino acid 4f via
the Mannich reaction established, its envisaged utility in
the stereoselective synthesis of norvaline (1) and its oxy-
genated analogues was surveyed. Firstly, the synthesis of -
hydroxynorvaline (3), the most complex target, was investi-
gated, and the results are presented in Scheme 4. According

to our retrosynthetic analysis (Scheme 1), a controlled syn-
1,3-induction was required to install the stereogenic centre
at C-4. We employed a highly stereoselective method taking
advantage of a pre-organised six-membered Mn chelate
formed in situ from amino ketone 4f and manganese di-
chloride.29 After a smooth syn-stereoselective reduction
with sodium borohydride in MeOH, -amino--hydroxy
acid 9 was formed in an excellent 98:2 dr, as determined by
HPLC. Due to the highly polar nature of the molecule, after a
mild lactonization, we isolated its cyclic form, lactone 10.
The following removal of the chiral mediator was achieved
by a mild reductive debenzylation by using trifluoroacetic
acid as the solvent and triethylsilane as the reducing
agent.30 Our synthesis of syn--hydroxynorvaline (3) was
completed by a gentle lactone opening, yielding the natural
product in 33% yield over five steps. The spectroscopic data
(1H and 13C NMR), melting point, and specific rotation of
our material were in excellent agreement with the pub-
lished data.13c HPLC analysis of the N-tosyl derivative of

Amine Conditions Results Isolated

6c (1.3 equiv) CHCl3, 7 d –b –b

6d (1.3 equiv) CHCl3, 7 d –b –b

6e (1.1 equiv) CH2Cl2, 7 d suspension, dr 49:51 4e, dr 49:51, 42%

6e (1.1 equiv) CHCl3, 6 d suspension, dr 97:3 4e, dr 99:1, 75%

6f (1.1 equiv) CHCl3, 5 d suspension, dr 92:8 4f, dr 99:1, 65%

6f (1.3 equiv) CHCl3, 5 d suspension, dr 92:8 4f, dr 99:1, 88%
a Reaction conditions: 5a (1 equiv), 6, solvent, rt, 5–7 d.
b The reaction mixture did not form a suspension.
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Scheme 3  Crystallisation-driven stereoselective three-component 
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hydroxynorvaline confirmed a high enantiomeric purity (er
92:8).31 To the best of our knowledge, this is the first time
that the enantiomeric purity of syn--hydroxynorvaline
was determined by HPLC analysis instead of the traditional
measurement of optical rotation.

Unlike preparation of -hydroxynorvaline (3), the syn-
thesis of norvaline (1) required complete but chemoselec-
tive removal of two latent functional groups – the N-benzyl
moiety and the oxo group in the -position (Scheme 5). Al-
though undeniable progress has been made in the deoxy-
genation of organic compounds,32 especially via advanced
Clemmensen33 or Wolff–Kishner reactions,34 epimerisa-
tion-prone substrate 4f restricted the available arsenal to
only a few options. While the classical Clemmensen reduc-
tion has met with only limited success, the two-step
Mozingo desulfuration of thioacetal 12 proved to be a high-
ly reliable alternative. Firstly, thioacetal 12, available from
ketone 4f in excellent yield, was treated with Raney nickel
under a hydrogen atmosphere at 55 °C, resulting in the for-
mation of amino acid 13 (Scheme 5). Without any purifica-
tion, the intermediate underwent Pd-catalysed debenzyla-
tion that completed the envisaged global deprotection. Nor-
valine (1) was isolated in a respectable 53% yield and 97:3
er, thus indicating a high stability of the present stereogenic
centre at C-2.31 Featuring another acid-promoted chemose-
lective debenzylation, -oxonorvaline (2) was obtained di-
rectly from key intermediate 4f in just one step in an excel-
lent 92% chemical yield (Scheme 5). HPLC analysis of -oxo-

norvaline (2) confirmed again only negligible erosion of the
stereochemical purity during the synthesis; an excellent
97:3 er was detected.31

In conclusion, we have developed short and highly ste-
reoselective syntheses of three enantiomerically pure non-
proteinogenic amino acids: L-norvaline (1), -oxonorvaline
(2), and syn--hydroxynorvaline (3). The unified, chroma-
tography-free strategy pivots on a highly diastereoselective
crystallisation-driven Mannich reaction using acetone (7),
glyoxylic acid monohydrate (8), and amine 6f as inexpen-
sive, commercially available starting materials. Further che-
moselective and/or stereoselective reductive manipulation
of key intermediate 4f allowed the preparation of all three
amino acids from the same common intermediate. The high
enantiomeric purities of norvaline (1), -oxonorvaline (2),
and syn--hydroxynorvaline (3) were confirmed by HPLC
analysis, either directly of the amino acids or of their deriv-
atives.

Melting points are uncorrected. 1H and 13C NMR spectra were record-
ed on Varian VXR-300 and 600 MHz spectrometers (300 MHz, 600
MHz and 75.4 MHz, 151 MHz, respectively). High-resolution mass
spectra were recorded on an Orbitrap Velos PRO, Thermo Scientific 5
machine. Optical rotations were measured on a JASCO P-1020 or PO-
LAR L-mP (IBZ Mestechnik) polarimeter (concentration, c, is given as
g/100 mL). The reaction progress was monitored by reverse-phase
HPLC using a UV-VIS-205 detector (at 205 nm), Varian ProStar 310
pump (1.0 mL/min flow), Clarity DataApex software, and Nucleodur®
Phenyl-Hexyl C18 column (Macherey-Nagel, 250 × 4.0, 5 m). H2O–
MeCN based eluents were used for most of the analyses, with Et3N

Scheme 4  Stereoselective synthesis of syn--hydroxynorvaline (3)
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Scheme 5  Synthesis of norvaline (1) and -oxonorvaline (2) via chemoselective reductions of amino acid 4f
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and 85% aq H3PO4 (v/v 1:1) as additives (1% v/v compare to the H2O–
MeCN mixture). (E)-4-Oxopent-2-enoic acid (5a) was prepared by a
published method.21a

2-[1-(4-Bromophenyl)ethylamino]-4-oxopentanoic Acid (4e)
To a solution of acid 5a (0.228 g, 2.00 mmol) in CHCl3 (10 mL) was
added amine (S)-6e (0.440 g, 2.20 mol, 1.1 equiv) and the resulting
mixture was stirred at rt and monitored by HPLC. After 6 d, the insol-
uble solid was collected by filtration, washed (Et2O), and dried, yield-
ing amino acid 4e.
Yield: 0.471 g, 75%, dr 99:1; white solid; mp 128 °C; []D

25 –18.6 (c 1,
MeOH–5% aq HCl, 9:1).
1H NMR (300 MHz, DMSO-d6 + DCl):  = 7.63 (d, J = 8.5 Hz, 2 H), 7.54
(d, J = 8.5 Hz, 2 H), 4.54 (q, J = 6.5 Hz, 1 H), 3.72 (t, J = 4.9 Hz, 1 H),
3.25–3.03 (m, 2 H), 2.10 (s, 3 H), 1.59 (d, J = 6.8 Hz, 3 H).
13C NMR (75 MHz, DMSO-d6 + DCl):  = 203.8, 169.4, 135.8, 132.1,
130.8, 122.7, 57.0, 52.0, 42.7, 29.7, 19.9.
HRMS (HESI): m/z [M + H]+ calcd for C13H17BrNO3: 314.03863; found:
314.03849.

2-[1-(4-Methoxyphenyl)ethylamino]-4-oxopentanoic Acid (4f)
By Michael addition: To a solution of acid 5a (4.0 g, 35 mmol) in CHCl3
(175 mL) was added amine (S)-6f (6.3 g, 6.2 mL, 42 mmol, 1.2 equiv)
and the resulting mixture was stirred at rt and monitored by HPLC.
After 5 d, the insoluble solid was collected by filtration, washed
(Et2O), and dried, yielding amino acid 4f.
Yield: 8.3 g, 88%, dr 99:1; white solid.
By Mannich reaction: glyoxylic acid monohydrate (8; 4.6 g, 50 mmol)
was suspended in a mixture of CHCl3 (200 mL) and acetone (74 mL),
which was cooled to 0 °C. Amine (S)-6f (9.1 g, 8.9 mL, 60 mmol, 1.2
equiv) was added dropwise within 10 min to this solution, and the re-
action mixture was stirred at 0 °C. After 30 min, the mixture was
warmed to rt. The reaction was monitored by HPLC and after 48 h the
precipitate was collected by filtration, washed with Et2O (15 mL), and
dried, yielding amino acid 4f.
Yield: 7.9 g, 60%, dr 98:2; white solid; mp 120 °C (dec.); []D

25 –27.8 (c
1, MeOH–5% aq HCl, 9:1).
1H NMR (300 MHz, DMSO-d6 + DCl):  = 7.41 (d, J = 8.7 Hz, 2 H), 6.93
(d, J = 8.7 Hz, 2 H), 4.44 (q, J = 6.8 Hz, 1 H), 3.71 (s, 3 H), 3.65 (m, 1 H),
3.15–3.00 (m, 2 H), 2.05 (s, 3 H), 1.55 (d, J = 6.8 Hz, 3 H).
13C NMR (75 MHz, DMSO-d6 + DCl):  = 204.4, 169.7, 160.3, 130.2,
128.2, 114.9, 57.5, 55.8, 52.1, 43.0, 30.0, 20.4.
HRMS (HESI): m/z [M + H]+ calcd for C14H20NO4: 266.13868; found:
266.13868.

Lactone 10
Amino acid 4f (2.84 g, 10.7 mmol) and MnCl2·4H2O (424 mg, 2.14
mmol, 20 mol%) were suspended in MeOH (100 mL), and the mixture
was cooled to 0 °C. NaBH4 (605 mg, 16.1 mmol, 1.5 equiv) was added
portionwise during 30 min, and the reaction mixture was allowed to
warm to rt. The reaction was monitored by HPLC, and after 1 h it was
concentrated in vacuo, affording crude hydroxy acid 9. To the crude
acid was added 8 M aq HCl (55 mL) and the reaction mixture was
stirred at 40 °C. After 2 h, the mixture was concentrated in vacuo. The
residue was diluted with 10% aq K2CO3 (55 mL) and extracted with
CH2Cl2 (3 × 50 mL). The combined organic layers were dried (MgSO4)
and concentrated in vacuo. The crude product was recrystallised
(Et2O–hexane), yielding lactone 10.

Yield: 1.54 g, 58% (over 2 steps from 4f), dr 98:2; white crystalline
solid; mp 69–70.4 °C; []D

25 –114.3 (c 1, CHCl3).
1H NMR (300 MHz, CDCl3):  = 7.31–7.26 (m, 2 H), 6.89–6.85 (m, 2 H),
4.62 (dqd, J = 7.7, 6.5, 3.5 Hz, 1 H), 4.07 (q, J = 6.6 Hz, 1 H), 3.81 (s, 3 H),
3.46 (t, J = 8.5 Hz, 1 H), 1.94 (ddd, J = 13.0, 8.6, 7.7 Hz, 1 H), 1.71 (ddd,
J = 13.0, 8.4, 3.5 Hz, 1 H), 1.37 (d, J = 6.6 Hz, 3 H), 1.26 (d, J = 6.5 Hz, 3
H).
13C NMR (300 MHz, CDCl3):  = 177.8, 158.9, 137.0, 128.2, 113.9, 74.8,
57.2, 55.4, 54.7, 37.8, 24.8, 21.3.
HRMS (HESI): m/z [M + H]+ calcd for C14H20NO3: 250.14377; found:
250.14358.

Lactone 11
To a mixture of lactone 10 (2.92 g, 11.7 mmol) and Et3SiH (1.4 g, 1.9
mL, 12 mmol) was added TFA (9 mL) and the resulting mixture was
stirred at 60 °C. After 30 min, the mixture was concentrated in vacuo
and the crude product was triturated with cold Et2O (30 mL). The pre-
cipitated white solid was collected by filtration, washed with Et2O (5
mL), and dried, yielding lactone 11.
Yield: 2.56 g, 95%, dr 98:2; white solid; mp 132–134 °C; []D

25 –11.8 (c
1, MeOH).
1H NMR (600 MHz, DMSO-d6):  = 8.76 (br s, 3 H), 4.86–4.81 (m, 1 H),
4.49 (t, J = 9.7 Hz, 1 H), 2.39 (ddd, J = 12.8, 9.9, 8.7 Hz, 1 H), 2.27 (ddd,
J = 12.8, 9.3, 2.2 Hz, 1 H), 1.34 (d, J = 6.5 Hz, 3 H).
13C NMR (151 MHz, DMSO-d6):  = 172.9, 158.4 (q, J = 31.1 Hz), 117.2
(q, J = 301.2 Hz), 75.2, 47.2, 32.3, 20.6.
HRMS (HESI): m/z [M + H]+ calcd for C5H10NO2: 116.07061; found:
116.07069.

syn--Hydroxynorvaline (3)
To a mixture of lactone 11 (229 mg, 1.00 mmol) and H2O (2.3 mL) was
added 2 M aq NaOH (1.4 mL) at rt. The reaction mixture was stirred
for 1 h and passed through a column of Dowex 50WX8 ion exchange
resin (H+ form, 3 g). The column was washed thoroughly with H2O (50
mL) and the amino acid was eluted with NH4OH (25–27% NH3 in H2O,
20 mL). The ammoniacal eluate was lyophilized to dryness in vacuo
affording syn--hydroxynorvaline (3).
Yield: 133 mg, ~100%, er 92:831; white solid; mp 213 °C (dec.) (Lit.13c

228–230 °C, EtOH–H2O); []D
25 +18 (c 1.3, H2O) [Lit.13c []D

25 +21 (c
1.3, H2O)].
1H NMR (300 MHz, D2O):  = 4.11–4.01 (m, 1 H), 3.74 (dd, J = 9.1, 4.3
Hz, 1 H), 2.06 (dt, J = 15.0, 4.3 Hz, 1 H), 1.77 (dt, J = 15.0, 9.1 Hz, 1 H),
1.24 (d, J = 6.2 Hz, 3 H).
13C NMR (75 MHz, D2O):  = 175.3, 66.6, 54.2, 38.9, 22.7.
All data are in good agreement with previously published data.13c

Thioacetal 12
To a mixture of amino acid 4f (2.65 g, 10.0 mmol) and 12 M aq HCl
(10 mL) was added dropwise ethane-1,2-dithiol (1.2 g, 1.1 mL, 0.013
mol); the resulting mixture was stirred at rt. After 24 h the insoluble
solid was collected by filtration and washed with Et2O (3 × 20 mL),
yielding thioacetal 12.
Yield: 2.8 g, 74%; white solid; mp 182–183 °C; []D

25 –29.4 (c 1.0, DM-
SO).
1H NMR (300 MHz, DMSO-d6):  = 10.26 (br s, 1 H), 7.57 (d, J = 8.7 Hz,
2 H), 6.96 (d, J = 8.7 Hz, 2 H), 4.26 (q, J = 6.5 Hz, 1 H), 3.76 (s, 3 H), 3.40
(dd, J = 9.2, 2.5 Hz, 1 H), 3.34–3.06 (m, 4 H), 2.77 (dd, J = 14.4, 2.0 Hz, 1
H), 2.46 (m, 1 H), 1.61 (m, 6 H).
© 2019. Thieme. All rights reserved. Synthesis 2019, 51, A–H
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13C NMR (75 MHz, DMSO-d6):  = 169.7, 159.6, 129.9, 128.0, 114.1,
64.0, 56.6, 56.3, 55.2, 44.1, 39.6, 30.9, 20.8.
HRMS (HESI): m/z [M + H]+ calcd for C16H24NO3S2: 342.11921; found:
342.11935

Norvaline (1)
To a mixture of thioacetal 12 (0.754 g, 2.00 mmol) in H2O (10 mL) and
MeOH (10 mL) was added Raney Ni (W-2, 3.8 g) and the heteroge-
neous mixture was stirred under H2 (balloon) at 55 °C. After 1 h, the
mixture was cooled to rt, Raney Ni (W-2, 3.9 g) was added, and the
mixture was stirred again under H2 (balloon) at 55 °C. After 24 h, the
mixture was filtered through a pad of Celite, the filter cake was
washed with boiling MeOH (5 × 20 mL), and the filtrate was concen-
trated in vacuo. H2O (10 mL) was added and the insoluble solid was
collected by filtration, washed (Et2O), and dried, affording a white sol-
id. This residue was dissolved in MeOH (20 mL), and 10% Pd/C (100
mg) was added under argon. The mixture was degassed and stirred
under H2 (balloon) at rt. After 48 h (complete conversion by LCMS),
the mixture was filtered through a pad of Celite, the filter cake was
washed with MeOH (2 × 10 mL), and the combined filtrates were con-
centrated in vacuo, affording norvaline (1).
Yield: 0.123 g, 53%, er 97:331; white solid; mp 290 °C (dec.) (Lit.35 297
°C); []D

25 +4.9 (c 1, H2O) [Lit.35 []D
25 +6.5 (c 2, H2O); Lit.4b (91% ee)

[]D
20 +4.6 (c 1.0, H2O)].

1H NMR (300 MHz, D2O):  = 3.82 (t, J = 5.9 Hz, 1 H), 1.97–1.82 (m, 2
H), 1.44 (m, 2 H), 0.99 (t, J = 7.3 Hz, 3 H).
13C NMR (75 MHz, D2O):  = 175.1, 54.7, 32.5, 17.8, 12.9.
MS (ESI): m/z [M + H]+ calcd for C5H12NO2: 118.1; found: 118.2.

-Oxonorvaline Hydrochloride (2)
A mixture of amino acid 4f (1.33 g, 500 mmol) and 6 M aq HCl (100
mL) was stirred at 95 °C. After 48 h, the mixture was cooled to rt and
extracted with Et2O (3 × 100 mL). The combined organics were dis-
carded. The aqueous layer was concentrated in vacuo, yielding
a yellow solid. To this residue was added Et2O (100 mL) and the mix-
ture was stirred at rt. After 1 h, the insoluble solid was collected by
filtration, washed with Et2O (3 × 50 mL), and dried, yielding -oxonor-
valine hydrochloride (2).
Yield: 0.60 g, 92%, er 97:331; yellow solid; mp 147 °C (Lit.36 135–137
°C); []D

25 +8.9 (c 1, H2O) [Lit.36 []D
25 +8 (c 1, H2O)].

1H NMR (300 MHz, D2O):  = 4.34–4.30 (m, 1 H), 3.43–3.28 (m, 2 H),
2.27 (s, 3 H).
13C NMR (75 MHz, D2O):  = 209.6, 171.4, 48.5, 42.1, 29.0.
HRMS (HESI): m/z [M + H]+ calcd for C5H10NO3: 132.06552; found:
132.06571.
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