Facile Synthesis, Antioxidant and Antimicrobial Activity of Amino Methylene Bisphosphonates

Uma Maheswara Rao Kunda,^{*a*} Satheesh Krishna Balam,^{*a*} Bakthavatchala Reddy Nemallapudi,^{*a*} Syama Sundar Chereddy,^{*a*} Sandip Kumar Nayak,^{*b*} and Suresh Reddy Cirandur^{*,*a*}

^a Department of Chemistry, Sri Venkateswara University; Tirupati 517 502, India: and ^bBio-Organic Division, BARC; Mumbai 400-085, India. Received September 8, 2011; accepted October 17, 2011; published online October 21, 2011

A green and efficient preparation method for the amino bisphosphonates is accomplished by simple mixing and stirring of diethylphosphite, triethylorthoformate and various amines in the presence of amberlyst-15 as catalyst at room temperature under solvent free conditions. The title compounds are characterized by IR, ¹H-, ¹³C-, ³¹P-NMR and mass spectra, also studied their antimicrobial and antioxidant activity.

Key words amino methylene bisphosphonate; antimicrobial activity; antioxidant activity; amberlyst-15

Early research on the role of antioxidants in biology focused on their use in preventing oxidation of unsaturated fats, which is the cause of rancidity.¹⁾ However, it was the identification of the antioxidant activity of vitamins A, C, and E that revolutionized the field and led to the realization of the importance of antioxidants in the biochemistry of living organisms.^{2,3)} The antioxidant activity was measured simply by placing the fat in a closed container with oxygen and measuring the rate of oxygen consumption. Excessive generation of reactive oxygen species (ROS) induced by various stimuli leads to variety of pathophysiological abnormalities such as inflammation, diabetes, genotoxicity and cancer. Search for active components that prevent or reduce the impact of oxidative stress on cell is a contemporary field.

The aim of this study was to investigate the *in vitro* antimicrobial and antioxidant profile of different nitrogen-containing bisphosphonates (N-BPS), which, the best of our knowledge has not yet been systematically studied. N-BPS, a class of geminal bisphosphonates (BPS) are important drugs for wide variety of medicinal applications.⁴⁾ Besides their well-known anti-bone resorption properties,⁵⁾ antimicrobial activity⁶⁾ and anti-tumor properties,⁷⁾ some of their derivatives inhibit cancer manifestations through antiangiogenic, anti-invasive and immunomodulatory actions.^{8–10)}

BPS are also effective in the treatment of rheumatoid arthritis (RA).^{11–13)} Recently bisphosphonates have been proved to prevent glucocorticoid-induced osteoporosis in RA^{14,15)} and to possess selective antioxidant properties *in vitro*.¹⁶⁾ Moreover, some recent clinical studies in the animals indicate antiinflammatory effects by BPS in RA.^{16,17)}

In recent years, use of solid acid catalysts has attracted considerable attention.¹⁸⁾ In this regard, amberlyst-15 possesses unique properties is successfully used as a solid acid catalyst for the preparation of bisphosphonates from the amine, dialkyl phosphite and triethylorthoformate. Amberlyst-15 is a strongly acidic, sulfonic acid, macro reticular polymeric resin based on cross linked styrene divinylbenzene copolymers. Its continuous open pore structure and excellent physical, thermal and chemical stability makes it the resin of choice in many applications. It also possesses greater resistance to oxidants such as chlorine, oxygen and chemical stability, non corrosive, non toxic nature, selectivity in reactions, reusability and environmental compatibility make this as a versatile catalyst for per-

forming the various functional group transformations in the general organic synthesis.¹⁹

We now report a relatively simple synthesis of amino methylene bisphosphonates in good yields using amberlyst-15 as an efficient and environmentally benign catalyst under solventfree conditions at room temperature. There have been no reports on the synthesis of amino methylene bisphosphonates using amberlyst-15 as catalyst.

Experimental

General Melting points were recorded on Buchi R-535 apparatus and are uncorrected. IR spectra were recorded on a Perkin-Elmer FT-IR 240-c spectrophotometer using KBr optics. ¹H-, ¹³C- and ³¹P-NMR spectra were recorded on AMX 400 MHz NMR spectrometers operating at 400 MHz for ¹H-, 100 MHz for ¹³C- and 161.89 MHz for ³¹P-NMR. NMR data were recorded in DMSO- d_6 and referenced to tetramethylsilane (TMS) (¹H and ¹³C) and 85% H₃PO₄ (³¹P). Mass spectra were recorded on a Finnigan MAT 1020/Micro-Mass Q-T of micro AMPS MAX 10/6A, Hz 60/50 system fitted with a built-in inlet system. Elemental analyses were performed using Perkin Elmer 2400 instrument at the Central Drug Research Institute (CDRI), Lucknow, India.

Experimental Procedure for the Preparation of Tetraethyl(3,4-dichlorophenylamino)methylenebisphosphonate (3a) A mixture of 3,4-dichloro aniline (1a, 0.005 mol), diethylphosphite (2, 0.01 mol), triethylorthoformate (0.005 mol) and catalytic amount of amberlyst-15 (0.1 g) was stirred magnetically at room temperature for appropriate time. After completion of the reaction as monitored by TLC, it was purified by column chromatography on 60—120 mesh silica gel using ethyl acetate–hexane (1:4) as eluent. The residue was recrystallized from ethylacetate to afford pure **3a** in 95% yield. This procedure was applied successfully for the preparation of **3b**—j. All the compounds were characterized by IR, ¹H-, ¹³C-, ³¹P-NMR, mass spectral and elemental analytical data.

Tetraethyl(3,4-dichlorophenylamino)methylenebisphosphonate (**3a**): White solid, yield: 95%, mp 120—122°C. ¹H-NMR (400MHz, DMSO- d_6) δ : 1.06 (6H, t, ³ J_{PH} =8.8 Hz, POCH₂C<u>H</u>₃), 1.20 (6H, t, ³ J_{PH} =9.2 Hz, POCH₂C<u>H</u>₃), 3.70—3.89 (8H, m, P–OC<u>H</u>₂CH₃), 4.80—5.04 (1H, m, PCH), 5.90 (1H, s, NH), 6.25—6.55 (3H, m, Ar-H). ¹³C-NMR (100MHz, DMSO- d_6) δ : 14.8 (d, ³ J_{P-C} =5.8 Hz, P–OCH₂-<u>C</u>H₃), 57.2 (t, ¹ J_{PC} =156.3 Hz, PCH), 59.5 (d, ² J_{P-C} =7.6 Hz, P–OC<u>H</u>₂CH₃),

112.1 (C-6), 111.9 (C-5), 116.4 (C-2), 122.2 (C-4), 125.6 (C-3), 138.5 (C-1). ³¹P-NMR (161.7 MHz, DMSO- d_6) δ : 18.26. IR (KBr) cm⁻¹: 3200 (NH), 1240 (P=O), 760 (P-C_{aliphatic}). Electrospray ionization (ESI)-MS (*m*/z): 447 (M⁺). *Anal.* Calcd for C₁₅H₂₅Cl₂NO₆P₂: C, 40.20; H, 5.62; N, 3.12. Found C, 40.16; H, 5.58; N, 3.08.

Tetraethyl(1-phenylethylamino)methylenebis-phosphonate (**3b**): White solid, yield: 70%, mp 135—137°C. ¹H-NMR (400 MHz, DMSO- d_6) δ : 1.15 (6H, t, ${}^{3}J_{PH}$ =9.1 Hz, POCH₂CH₃), 1.22 (3H, d, ${}^{2}J_{H-H}$ =7.4 Hz), 1.25 (6H, t, ${}^{3}J_{PH}$ =9.2 Hz, POCH₂CH₃), 1.78 (1H, q, *J*=7.6 Hz, Ph-<u>CH</u>-CH₃), 3.82—4.05 (8H, m, P-OCH₂CH₃), 4.80—5.05 (1H, m, PCH), 5.65 (1H, s, NH), 6.25—7.15 (5H, m, Ar-H). ¹³C-NMR (100 MHz, DMSO- d_6) δ : 13.7, 16.2 (d, ${}^{3}J_{P-C}$ =5.8 Hz, P-OCH₂-<u>C</u>H₃), 45.1, 58.3 (t, ${}^{1}J_{PC}$ =157.8 Hz, PCH), 61.2 (d, ${}^{2}J_{P-C}$ =7.6 Hz, P-O<u>C</u>H₂CH₃), 114.4 (C-4), 114.7 (C-2), 115.2 (C-3), 115.9 (C-5), 116.2 (C-6), 136.8 (C-1). ³¹P-NMR (161.7 MHz, DMSO- d_6) δ : 18.50. IR (KBr) cm⁻¹: 3200 (NH), 1225 (P=O), 775 (P-C_{aliphatic}). ESI-MS (*m/z*): 407 (M⁺). *Anal.* Calcd for C₁₇H₂₈N₄O₆P₂: C, 50.12; H, 7.67; N, 3.44. Found C, 50.08; H, 7.63; N, 3.39.

Tetraethyl(3,4-dimethylphenylamino)methylenebisphosphonate (**3c**): White solid, yield: 75%, mp 140—142°C. ¹H-NMR (400 MHz, DMSO- d_6) δ : 1.13 (6H, t, ³ J_{PH} =9.0 Hz, POCH₂CH₃), 1.22 (3H, s), 1.24 (3H, s), 1.26 (6H, t, ³ J_{PH} =9.2 Hz, POCH₂CH₃), 3.70—3.99 (8H, m, P–OCH₂CH₃), 4.75—4.99 (1H, m, PCH), 5.55 (1H, s, NH), 6.78—7.30 (4H, m, Ar-H). ¹³C-NMR (100 MHz, DMSO- d_6) δ : 16.5 (d, ³ J_{P-C} =5.8 Hz, P–OCH₂–CH₃), 23.5, 26.4, 56.0 (t, ¹ J_{PC} =163.6 Hz, PCH), 63.0 (d, ² J_{P-C} =7.6 Hz, P–OCH₂CH₃), 109.0 (C-2), 117.0 (C-5), 123.2 (C-6), 136.5 (C-3), 144.2 (C-4), 145.2 (C-1),. ³¹P-NMR (161.7 MHz, DMSO- d_6) δ : 20.52. IR (KBr) cm⁻¹: 3250 (NH), 1230 (P=O), 775 (P–C_{aliphatic}). ESI-MS (*m*/*z*): 407 (M⁺). *Anal.* Calcd for C₁₇H₃₁NO₆P₂: C, 50.12; H, 7.67; N, 3.44. Found C, 50.08; H, 7.62; N, 3.41.

Tetraethyl(2-methyloxazol-5-yllamino)methylenebisphosphonate (**3d**): White solid, yield: 72%, mp 160—162°C. ¹H-NMR (400MHz, DMSO- d_6) δ : 1.10 (6H, t, ³ J_{PH} =9.1 Hz, POCH₂C<u>H</u>₃), 1.20 (6H, t, ³ J_{PH} =9.2 Hz, P–OCH₂C<u>H</u>₃), 1.34 (3H, s), 3.72—3.95 (8H, m, P–OC<u>H</u>₂CH₃), 4.90—5.25 (1H, m, PCH), 5.50 (1H, s, NH), 8.25(1H, s Ar-H). ¹³C-NMR (100MHz, DMSO- d_6) δ : 17.05 (d, ³ J_{P-C} =5.6 Hz, P– OCH₂-<u>C</u>H₃), 28.7, 55.0 (t, ¹ J_{PC} =163.4 Hz, PCH), 62.2 (d, ² J_{P-C} =7.4 Hz, P–O<u>C</u>H₂CH₃), 135.5 (C-5), 147.5 (C-4), 163.0 (C-2). ³¹P-NMR (161.7 MHz, DMSO- d_6) δ : 19.52. IR (KBr) cm⁻¹: 3255 (NH), 1235 (P=O), 770 (P–C_{aliphatic}). ESI-MS (*m*/*z*): 384 (M⁺¹). *Anal.* Calcd for C₁₃H₂₆N₂O₇P₂: C, 40.63; H, 6.82; N, 7.29. Found C, 40.59; H, 6.78; N, 7.24.

Tetraethyl(4-nitrophenylamino)methylenebisphosphonate (**3e**): Yellow solid, yield: 70%, mp 205—206°C. ¹H-NMR (400 MHz, DMSO- d_6) δ : 1.12 (6H, t, ³ J_{PH} =8.7Hz, POCH₂C<u>H</u>₃), 1.22 (6H, t, ³ J_{PH} =9.2Hz, POCH₂C<u>H</u>₃), 3.85—4.10 (8H, m, P–OC<u>H</u>₂CH₃), 4.98 (1H, s, NH), 5.10—5.55 (1H, m, PCH), 6.52—7.13 (4H, m, Ar-H). ¹³C-NMR (100 MHz, DMSO- d_6) δ : 16.5 (d, ³ J_{P-C} =5.6Hz, P–OCH₂-<u>C</u>H₃), 47.8 (t, ¹ J_{PC} =161.5Hz, PCH), 62.7 (d, ² J_{P-C} =7.6Hz, P–O<u>C</u>H₂CH₃), 112.8 (C-2), 113.1 (C-6), 126.6 (C-5), 127.4 (C-3), 134.2 (C-4), 151.2 (C-1). ³¹P-NMR (161.7MHz, DMSO- d_6) δ : 21.5. IR (KBr) cm⁻¹: 3255 (NH), 1230 (P=O), 765 (P–C_{aliphatic}). ESI-MS *m/z*: 424 (M⁺). *Anal.* Calcd for C₁₅H₂₆N₂O₈P₂: C, 42.46; H, 6.18; N, 6.60. Found C, 42.43; H, 6.14; N, 6.56.

Tetraethyl(4-fluorophenylamino)methylenebisphosphonate

105

(**3f**): White solid, yield: 80%, mp 60—61°C. ¹H-NMR (400 MHz, DMSO- d_6) δ : 1.08(6H, t, ${}^{3}J_{PH}$ =8.2Hz, POCH₂C<u>H₃</u>), 1.28 (6H, t, ${}^{3}J_{PH}$ =9.2Hz, POCH₂C<u>H₃</u>), 3.60—4.10 (8H, m, P–OC<u>H</u>₂CH₃), 4.85—5.08 (1H, m, PCH), 5.95 (1H, s, NH), 7.48—8.20 (4H, m, Ar-H). ¹³C-NMR (100 MHz, DMSO- d_6) δ : 17.5 (d, ${}^{3}J_{P-C}$ =5.6Hz, P–OCH₂-<u>C</u>H₃), 56.7 (t, ${}^{1}J_{PC}$ =162.4Hz, PCH), 63.2 (d, ${}^{2}J_{P-C}$ =7.6Hz, P–OC<u>H</u>₂CH₃), 114.5 (C-4), 120.0 (C-6), 121.5 (C-5), 157.6 (C-3), 175.6 (C-1). ³¹P-NMR (161.7 MHz, DMSO- d_6) δ : 24.5; IR (KBr) cm⁻¹: 3390 (NH), 1244 (P=O), 746 (P–C_{aliphatic}). ESI-MS *m/z*: 397 (M⁺). *Anal.* Calcd for C₁₅H₂₆FNO₆P₂: C, 45.34; H, 6.60; N, 3.53. Found C, 45.29; H, 6.56; N, 3.50.

Tetraethyl(benzo[*d*]thiazol-2-ylamino)methylenebisphosphonate (**3g**): White solid, yield: 77%, mp 125—127°C. ¹H-NMR (400 MHz, DMSO-*d*₆) δ : 1.09 (6H, t, ³*J*_{PH}=8.8Hz, POCH₂C<u>H</u>₃), 1.20 (6H, t, ³*J*_{PH}=9.2Hz, POCH₂C<u>H</u>₃), 3.75— 3.99 (8H, m, P–OC<u>H</u>₂CH₃), 4.70—4.95 (1H, m, PCH), 5.60 (1H, s, NH), 7.85—8.15 (4H, m, Ar-H). ¹³C-NMR (100 MHz, DMSO-*d*₆) δ : 16.9 (d, ³*J*_{P-C}=5.6Hz, P–OCH₂-<u>C</u>H₃), 54.4 (d, ¹*J*_{PC}=162.4Hz, PCH), 65.1 (d, ²*J*_{P-C}=7.6Hz, P–O<u>C</u>H₂CH₃), 113.8 (C-4), 117.6 (C-7), 121.6 (C-6), 122.1 (C-5), 131.6 (C-8), 156.7 (C-3), 174.5 (C-1). ³¹P-NMR (161.7 MHz, DMSO-*d*₆) δ : 20.5. IR (KBr) cm⁻¹: 3350 (NH), 1235(P=O), 755 (P–C_{aliphatic}). ESI-MS *m/z*: 436 (M⁺). *Anal*. Calcd for C₁₆H₂₆ N₂O₆P₂S: C, 44.04; H, 6.01; N, 6.42. Found C, 44.01; H, 5.96; N, 6.38.

Tetraethyl(1,5-dimethyl-3-oxo-2-phenylpyrazolidin-4-ylamino)methylenebisphosphonate (3h): White solid, yield: 70%, mp 139—141°C. ¹H-NMR (400 MHz, DMSO-*d*₆) δ: 1.05 (6H, t, ${}^{3}J_{PH}$ =9.2 Hz, POCH₂CH₃), 1.20 (6H, t, ${}^{3}J_{PH}$ =9.2 Hz, POCH₂CH₃), 1.48 (3H, d, J=7.5 Hz), 1.64—1.86 (1H, m), 1.92-2.15 (1H, m), 2.52 (3H, s, N-CH₃), 3.70-3.92 (8H, m, P-OCH₂CH₃), 4.85-5.10 (1H, m, PCH), 5.29 (1H, s, NH), 6.86—7.91 (5H, m, Ar-H). ¹³C-NMR (100MHz, DMSO-d₆) δ: 11.6 (CH₃), 14.3 (d, ${}^{3}J_{P-C}$ =5.6 Hz, P-OCH₂-<u>C</u>H₃), 38.4 $(N-\underline{C}H_3)$, 44.6 (C-2), 56.4 (t, ${}^{1}J_{PC}=156.7$ Hz, PCH), 58.7 (C-1), 60.3 (d, ${}^{2}J_{P-C}$ = 7.6 Hz, P-O<u>C</u>H₂CH₃), 114.5 (C-3'), 114.9 (C-5'), 116.8 (C-4'), 119.8 (C-2'), 120.2 (C-6'), 122.1 (C-1'), 152.3 (C-5). ³¹P-NMR (161.7 MHz, DMSO- d_6) δ : 20.8. IR (KBr) cm⁻¹: 3430 (NH), 1220 (P=O), 755 (P– $C_{aliphatic}$). ESI-MS (*m/z*): 491 (M^+) . Anal. Calcd for $C_{20}H_{35}N_3O_7P_2$: C, 48.88; H, 7.18; N, 8.55. Found C, 48.84; H, 7.14; N, 8.51.

Tetraethyl(3,5-dichloro-4-hydroxyphenylamino)methylenebisphosphonate (**3i**): White solid, yield: 80%, mp 114— 116°C. ¹H-NMR (400MHz, DMSO- d_6) δ : 1.09 (6H, t, ³ J_{PH} = 8.8Hz, POCH₂C<u>H</u>₃), 1.20 (6H, t, ³ J_{PH} =9.2Hz, POCH₂C<u>H</u>₃), 3.75—3.99 (8H, m, P–OC<u>H</u>₂CH₃), 5.60 (1H, s, NH), 5.05— 5.35 (1H, m, PCH), 7.89 (1H, s, Ar-H), 8.20 (1H, s, Ar-H). ¹³C-NMR (100MHz, DMSO- d_6) δ : 15.6 (d, ³ J_{P-C} =5.8Hz, P– OCH₂-<u>C</u>H₃), 58.5 (t, ¹ J_{PC} =157.6Hz, PCH), 62.7 (d, ² J_{P-C} = 7.6Hz, P–O<u>C</u>H₂CH₃), 113.9 (C-2), 115.7 (C-5), 115.8 (C-6), 118.5 (C-3), 123.1 (C-4), 140.3 (C-1). ³¹P-NMR (161.7 MHz, DMSO- d_6) δ : 22.5. IR (KBr) cm⁻¹: 3369 (NH), 1240 (P=O), 750 (P–C_{aliphatic}). ESI-MS (m/z): 463 (M⁺). Anal. Calcd for C₁₅H₂₅Cl₂NO₇P₂: C, 38.81; H, 5.43; N, 3.02. Found C, 38.77; H, 5.38; N, 2.97.

Tetraethyl(pyridin-4-ylamino)methylenebisphosphonate (**3j**): White solid, yield: 90%, mp 142—144°C. ¹H-NMR (400 MHz, DMSO- d_6) δ : 1.10 (6H, t, ³ J_{PH} =8.9Hz, POCH₂CH₃), 1.20 (6H, t, ³ J_{PH} =9.2Hz, POCH₂CH₃), 3.80—4.10 (8H, m, P-OCH₂CH₃), 4.95—5.20 (1H, m, PCH), 5.00 (1H, s, NH), 6.70 (2H, d, *J*=8.8Hz, Ar-H), 8.40 (1H, d, *J*=7.6Hz, Ar-H). ¹³C-NMR (100 MHz, DMSO- d_6) δ : 15.8 (d, ³ J_{P-C} =5.8 Hz, P-OCH₂-<u>C</u>H₃), 54.9 (t, ¹ J_{PC} =163.4 Hz, PCH), 63.5 (d, ² J_{P-C} =7.6 Hz, P-O<u>C</u>H₂CH₃), 159.2 (C-2), 107.2 (C-5), 110.3 (C-3), 150.5 (C-6), 156.7 (C-4). ³¹P-NMR (161.7 MHz, DMSO- d_6) δ : 18.52. IR (KBr) cm⁻¹: 3252 (NH), 1235 (P=O), 770 (P-C_{aliphatic}). ESI-MS (*m*/*z*): 380 (M⁺). *Anal.* Calcd for C₁₄H₂₆N₂O₆P₂: C, 44.21; H, 6.89; N, 7.37. Found C, 44.17; H, 6.86; N, 7.33.

Results and Discussion

Synthesis The conventional method of this 3 component one pot reaction requires high temperatures and long reaction times to afford the corresponding bisphosphonates.²⁰⁾ A new method is presently developed for the preparation of bisphosphonates from a mixture of amine, diethyl phosphite and triethylorthoformate in the presence of amberlyst-15 as catalyst goes to completion at room temperature under solvent free conditions in 90 min and afforded high yields. Further after completion of the reaction the catalyst can be separated simply by filtration and reused for another 4—5 times without losing its activity.²¹⁾

To optimize the reaction conditions, the reaction of 4nitroaniline, diethyl phosphite and triethylorthoformate was selected as a model. This reaction has been performed in different organic solvents such as toluene, methanol, dioxane, tetrahydrofuran, acrylonitrile, chloroform, dichloromethane, diethyl ether in the presence of amberlyst-15 at room temperature and low yields (<40%) of the bisphosphonates were obtained in all these experiments. Use of higher amount of catalyst also did not lead to significant change in the reaction yields. The best result was obtained when the same reaction was done under solvent free conditions with small amount of catalyst.

Based on the optimized reaction conditions, a group of bisphosphonates were synthesized by the same reaction using different alkyl/aromatic/heterocyclic amines. In all the cases the reaction proceeded at room temperature in 90min and gave good to excellent yields. In these experiments, the catalyst was isolated by filtration and could be reloaded with fresh reagents for further runs, thus, recyclization of the catalyst is possible without significant loss of activity. The products were obtained as solids and purified by column chromatography using silica gel as adsorbent and ethyl acetate–hexane (1:4) as eluent. The chemical structures of 3a-j were confirmed by elemental analysis, IR, ¹H-, ¹³C-, ³¹P-NMR and mass spectral data.

Biological Activity. Antimicrobial Activity The compounds **3a**—**j** were tested for *in vitro* antimicrobial activity against the Gram-positive bacteria *Staphylococcus aureus* (NCIM No. 5021), *Bacillus subtilis* (NCIM No. 2063), the Gram-negative bacteria *Klebsiella pneumoniae* (NCIM No. 2957), *Proteus vulgaris* (NCIM No. 2027) and fungi *Fusarium solani* (NCIM No. 1330), *Curvularia lunata* (NCIM No. 716) and *Aspergillus niger* (NCIM No. 596). The preliminary screening was carried out by agar disc-diffusion method.²²⁾ Chloramphenicol and Ketoconazole were used as control drugs. The observed data on the antimicrobial activity of the compounds and control drugs are given in Tables 1 and 2.

Cells Bacterial strains *S. aureus*, *B. subtilis*, *K. pneumoniae*, *P. vulgaris* and fungi *F. solani*, *C. lunata* and *A. niger* were obtained from National Collection of Industrial Microor-

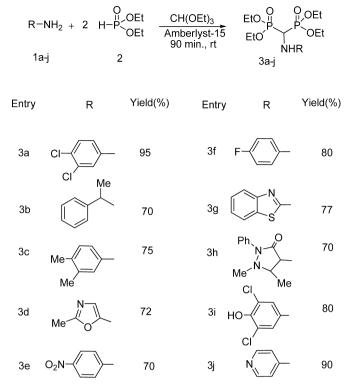


Chart 1. The Synthetic Route for Amino Methylene Bisphosphonates

ganisms (NCIM), National Chemical Laboratory, Pune, India.

Antibacterial and Antifungal Assays Preliminary antimicrobial activities of compounds 3a-j were tested by agar disc-diffusion method. Sterile filter paper discs (6mm diameter) moistened with the test compound solution in DMSO of specific concentration $100 \,\mu$ M and $200 \,\mu$ M/disc were carefully placed on the agar culture plates that had been previously inoculated separately with the microorganisms. The plates were incubated at 37°C and the diameter of the growth inhibition zones were measured after 24h in case of bacteria and after 48h in case of fungi.

The results of preliminary antimicrobial testing of the compounds are shown in Tables 1 and 2. The results revealed that, both Gram-positive bacteria and Gram-negative bacteria show similar inhibitory activity. The compounds 3a-d and 3h showed excellent activity against Gram-positive (inhibitory zone >25 mm) and Gram-negative (inhibitory zone >25 mm) bacteria. All the test compounds showed moderate to high inhibitory effect towards tested fungi.

Antioxidant Activity The compounds 3a-j were tested for antioxidant property by nitric oxide,^{23,24)} DPPH²⁵⁾ and H₂O₂ methods.²⁶⁾ The observed data on the antioxidant activity is shown in Fig. 1.

Determination of Nitric Oxide (NO) Scavenging Activity Sodium nitropruside $(5\,\mu\text{M})$ in phosphate buffer pH 7.4 was incubated with $100\,\mu\text{M}$ concentration of test compounds dissolved in a suitable solvent (dioxane/methanol) and tubes were incubated at 25°C for 120 min. Control experiment was conducted with equal amount of solvent in an identical manner. At intervals, 0.5 mL of incubation solution was taken and diluted with 0.5 mL of Griess reagent (1% sulfanilamide, 0.1% *N*-naphthylethylenediamine dihydrochloride and 2% *o*-phosphoric acid dissolved in distilled water). The absorbance

Table 1. Antibacterial Activity of **3a-j**

Compound	Concentration (µм/disc)	Zone of inhibition (mm)				
		Gram-positive bacteria		Gram-negative bacteria		
		Staphylococcus aureus	Bacillus subtilis	Klebsiella pneumoniae	Proteus vulgaris	
3a	100	29	28	30	32	
	200	32	30	32	34	
3b	100	30	31	25	26	
	200	31	33	27	29	
3c	100	28	31	26	25	
	200	29	33	28	27	
3d	100	30	26	30	26	
	200	32	29	31	28	
3e	100	26	23	24	24	
	200	25	21	26	22	
3f	100	17	20	21	18	
	200	19	21	22	19	
3g	100	19	14	25	13	
	200	18	15	26	14	
3h	100	25	28	25	30	
	200	27	30	26	31	
3i	100	17	16	16	13	
	200	18	19	17	14	
3ј	100	14	18	19	17	
	200	16	19	21	19	
Chloramphenicol	100	35	38	37	42	
	200	41	44	42	45	

Table 2. Antifungal Activity of **3a—j**

			Zone of inhibition (mm)	
Compound	Concentration (µM/disc) —	Fusarium solani	Curvularia lunata	Aspergillus niger
3a	100	30	26	28
	200	33	29	30
3b	100	31	29	27
	200	33	30	31
3c	100	27	29	28
	200	30	31	31
3d	100	28	27	27
	200	30	29	30
3e	100	23	22	26
	200	26	21	28
3f	100	16	18	17
	200	18	20	20
3g	100	19	19	18
	200	21	22	21
3h	100	29	30	27
	200	31	32	30
3i	100	15	17	19
	200	17	18	20
3j	100	17	20	21
	200	18	22	23
Ketoconazole	100	38	41	36
	200	42	44	39

108

of the chromophore formed during diazotization of nitrite with sulfanilamide and subsequent *N*-naphthylethylenediamine dihydrochloride was read at λ 546 nm. The experiment was repeated in triplicate.

NO scavenged (%) =
$$\frac{(A_{\text{cont}} - A_{\text{test}})}{A_{\text{cont}}} \times 100$$

Where A_{cont} is the absorbance of the control reaction and A_{test} is the absorbance in the presence of the sample.

In the case of amino methylene bisphosphonates 3a-jderivatives 3i showed the highest NO scavenging with IC₅₀ of 56.21 μ M when compared with other compounds. The remaining compounds exhibited reducing power activity in the following order: 3g (IC₅₀ 58.79 μ M), 3f (IC₅₀ 63.39 μ M), 3j (IC₅₀ 79.72 μ M), 3e (IC₅₀ 79.81 μ M), 3d (IC₅₀ 86.65 μ M), 3c(IC₅₀ 86.65 μ M), 3b (IC₅₀ 89.43 μ M), 3h (IC₅₀ 89.65 μ M), 3a(IC₅₀ 90.11 μ M) and when compared with ascorbic acid (IC₅₀ 96.90 μ M).

Determination of 1,1-Diphenyl-2-picrylhydrazyl (DPPH) Free Radical Scavenging Activity The nitrogen centered stable free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) has often been used to characterize antioxidants. It is reversibly reduced and the odd electron in the DPPH free radical gives a strong absorption maximum at λ 517nm, which is purple in color. This property makes it suitable for spectrophotometric studies. A radical scavenging antioxidant reacts with DPPH stable free radical and converts into 1,1-diphenyl-2-picrylhydrazine. The resulting decolorization is stoichiometric with respect to the number of electrons captured. The change in the absorbance produced in this reaction has been used to measure antioxidant properties.

The solutions of test compounds $(100 \,\mu\text{M})$ were added to DPPH $(100 \,\mu\text{M})$ in dioxane/ethanol. The tubes were kept at an ambient temperature for 20 min. and the absorbance was measured at λ 517 nm. The difference between the test and the control experiments was taken and expressed as the per cent scavenging of the DPPH radical.

In the case of amino methylene bisphosphonates 3a-j derivatives **3i** showed the highest DPPH radical scavenging activity with IC₅₀ of 62.57 μ M when compared with other compounds. The remaining compounds exhibited reducing power activity in the following order: **3g** (IC₅₀ 69.43 μ M), **3j** (IC₅₀ 72.95 μ M), **3f** (IC₅₀ 74.57 μ M), **3e** (IC₅₀ 81.21 μ M), **3h** (IC₅₀ 87.25 μ M), **3c** (IC₅₀ 87.70 μ M), **3b** (IC₅₀ 87.91 μ M), **3a** (IC₅₀ 89.81 μ M), **3d** (IC₅₀ 90.01 μ M) and when compared with ascorbic acid (IC₅₀ 95.37 μ M).

Determination of Hydrogen Peroxide (H_2O_2) **Scavenging Activity** It was determined using a modified method of Gow-Chin Yen and Hui-Yin Chen. 4mM solution of H₂O₂ was prepared in phosphate-buffered saline (PBS, pH 7.4). H₂O₂ concentration was determined spectrophotometrically from absorbance at 230 nm using molar absorptivity $81 \text{ m}^{-1}\text{cm}^{-1}$. One hundred micromolar compounds solution in 4mL distilled water were added to 0.6mL H₂O₂-PBS solution. Absorbance of H₂O₂ at 230 nm was determined 10min later against a blank solution containing parent compound with PBS without H₂O₂. Ascorbic acid was added in place of compound in 4mL distilled water and the solution wad added to 0.6mL H₂O₂ solution in PBS. Absorbance was determined 10min later against a blank solution similar to that above.

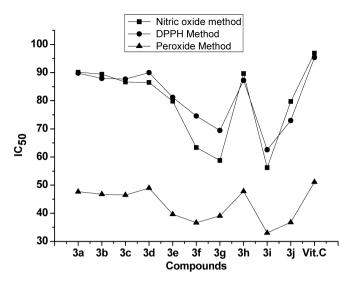


Fig. 1. Antioxidant Activity of **3a**—j

In the case of amino methylene bisphosphonates 3a-jderivatives 3i showed the highest H₂O₂ scavenging activity with IC₅₀ of 33.03 μ M when compared with other compounds. The remaining compounds exhibited reducing power activity in the following order: **3f** (IC₅₀ 36.65 μ M), **3j** (IC₅₀ 36.80 μ M), **3g** (IC₅₀ 39.05 μ M), **3e** (IC₅₀ 39.65 μ M), **3c** (IC₅₀ 46.48 μ M), **3b** (IC₅₀ 46.78 μ M), **3a** (IC₅₀ 47.65 μ M), **3h** (IC₅₀ 47.83 μ M), **3d** (IC₅₀ 48.98 μ M), and when compared with ascorbic acid (IC₅₀ 51.13 μ M).

The compounds 3a-j were tested for antioxidant property by Nitric Oxide, DPPH and H_2O_2 methods. The compounds 3e, 3f, 3g, 3i and 3j exhibited high antioxidant property in all the 3 methods at 100 μ M concentration. In fact, the compound having amino methylene bisphosphonates units displayed high antioxidant property.

Majority of the compounds showed high activities for nitric oxide, DPPH and H_2O_2 inhibition as shown in Fig. 1. The potency of these enzymes inhibition was mainly influenced by the fragments attached to the amino methylene bisphosphonates.

Compounds 3e, 3f, 3g, 3i and 3j showed appreciable antioxidant activity. Fluorine, Chlorine and NO₂ substituents which attract the electron density appear to enhance antioxidant activity. Since fluorine shows highly negative inductive effect and NO₂ is also highly electron withdrawing, the electron density around phosphonate moiety decreases and consequently increases affinity towards oxygen derived free radicals and mobilizes ROS to be scavenged from the living system. The presence of fluorine as a substituent also plays a determinant role in the inhibition of enzymes which has importance in drug discovery such as mimic and destabilization effects. Due to the presence of electron withdrawing groups in 3a-j, all the title compounds exhibit significant antioxidant activity.

Conclusion

An effective and simple method for the synthesis of new amino bisphosphonates (3a-j) is reported. Compounds 3a-d and 3h exhibited significant antimicrobial and 3e, 3f, 3g, 3i and 3j exhibited significant antioxidant properties in nitric oxide, DPPH and H₂O₂ method inhibitory potency.

January 2012

Acknowledgements The authors express their grateful thanks to Prof. C. D. Reddy, Department of Chemistry, Sri Venkateswara University, Tirupati, for his helpful discussions and for BRNS, BARC, Mumbai for providing financial assistance (2010/37C/26/BRNS/1424). The authors also express their thanks to Mr. P. Ramamohan, Department of Biochemistry, S.V. University, Tirupati for conducting biologtical activity.

References

- 1) German J. B., Adv. Exp. Med. Biol., 459, 23-50 (1999).
- 2) Jacob R. A., Subcell. Biochem., 25, 1-16 (1996).
- 3) Knight J. A., Ann. Clin. Lab. Sci., 28, 331-346 (1998).
- Kasser J., Nazarov A. A., Hartinger C. G., Wdziekonski B., Dani C., Kuznetsov M. L., Arion V. B., Keppler B. K., *Bioorg. Med. Chem.*, 17, 3388–3393 (2009).
- 5) Russell G. G., Rogers M. J., Bone, 25, 97-106 (1999).
- Veera Narayana Reddy M., Kishore Kumar Reddy K. R., Bhupendra Reddy C., Siva Kumar B., Suresh Reddy C., Devendranath Reddy C., J. Chem. Res., 4, 258–260 (2009).
- Hudock M. P., Sanz-Rodríguez C. E. Y., Song Y., Chan J. M., Zhang Y., Odeh S., Kosztowski T., Leon-Rossell A., Concepción J. L., Yardley V., Croft S. L., Urbina J. A., Oldfield E., *J. Med. Chem.*, 49, 215–223 (2006).
- Kiran Y. B., Devendranath Reddy C., Gunasekar D., Suresh Reddy C., Leon A., Barbosa L. C. A., *Eur. J. Med. Chem.*, 43, 885–892 (2008).
- 9) Green J. R., Cancer, 97 (Suppl.), 840-847 (2003).
- Clézardin P., Ebetino F. H., Fournier P. G. J., Cancer Res., 65, 4971–4974 (2005).
- 11) Dunn C. J., Galinet L. A., Wu H., Nugent R. A., Schlachter S. T.,

Staite N. D., Aspar D. G., Elliott G. A., Essani N. A., Rohloff N. A., *J. Pharmacol. Exp. Ther.*, **266**, 1691–1698 (1993).

- 12) Flora L., Smith R. J., Arthritis Rheum., 22, 340-346 (1979).
- 13) Van Offel J. F., Schuerwegh A. J., Bridts C. H., Bracke P. G., Stevens W. J., De Clerck L. S., *Clin. Exp. Rheumatol.*, **19**, 13–20 (2001).
- 14) Singh U. S., Shankar R., Kumar A., Trivedi R., Chattopadhyay N., Shakya N., Palne S., Gupta S., Hajela K., *Bioorg. Med. Chem.*, 16, 8482–8491 (2008).
- 15) Dombrecht E. J., Cos P., Vanden Berghe D., Van Offel J. F., Schuerwegh A. J., Bridts C. H., Stevens W. J., De Clerck L. S., *Biochem. Biophys. Res. Commun.*, **314**, 675–680 (2004).
- Cantatore F. P., Acquista C. A., Pipitone V., J. Rheumatol., 26, 2318–2323 (1999).
- 17) Balakrishna A., Narayana Reddy M. V., Rao P. V., Kumar M. A., Kumar B. S., Nayak S. K., Reddy C. S., *Eur. J. Med. Chem.*, 46, 1798—1802 (2011).
- 18) Ko S., Yao C. F., Tetrahedron Lett., 47, 8827-8829 (2006).
- Liu Y. H., Liu Q. S., Zhang H., J. Mol. Catal., 296, 42–46 (2008).
 Takeuchi M., Sakamoto S., Yoshida M., Abe T., Isomura Y., Chem. Pharm. Bull., 41, 688–693 (1993).
- 21) Tajbakhsh Md., Heydari A., Khalilzadeh Md. A., Synlett, 15, 2347-2350 (2007).
- 22) Mangte D. V., Deshmukh S. P., Bhokare D. D., Deshponde Arti R., Indian J. Pharm., 69, 295–298 (2007).
- 23) Shirwaiker A., Rajendran K., Dinesh Kumar C., *Indian J. Exp. Biol.*, 42, 803–807 (2004).
- 24) Babu B. H., Shailesh B. S., Paddikala J., *Fitotherapia*, **72**, 272–277 (2001).
- 25) Kato K., Terao S., Shimamoto N., Hirata M., J. Med. Chem., 31, 793-798 (1988).
- 26) Gow-Chin Y., Hui-Yin C., J. Agric. Food Chem., 43, 27-32 (1995).