Journal Pre-proofs

Benzimidazoles and Benzothiazoles from Styrenes and N-vinylimidazole via Palladium Catalysed Oxidative C=C and C-N bond Cleavage

Altab Shaikh, Owk Ravi, S. Pushpa Ragini, Nimma Sadhana, Surendar Reddy Bathula

PII: DOI: Reference:	S0040-4039(19)31147-5 https://doi.org/10.1016/j.tetlet.2019.151356 TETL 151356
To appear in:	Tetrahedron Letters
Received Date:	14 September 2019
Revised Date:	30 October 2019
Accepted Date:	1 November 2019

Please cite this article as: Shaikh, A., Ravi, O., Pushpa Ragini, S., Sadhana, N., Bathula, S.R., Benzimidazoles and Benzothiazoles from Styrenes and N-vinylimidazole via Palladium Catalysed Oxidative C=C and C-N bond Cleavage, *Tetrahedron Letters* (2019), doi: https://doi.org/10.1016/j.tetlet.2019.151356

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier Ltd.

Tetrahedron Letters journal homepage: www.elsevier.com

Benzimidazoles and Benzothiazoles from Styrenes and N-vinylimidazole via Palladium Catalysed Oxidative C=C and C–N bond Cleavage

Altab Shaikh,^{a,b} Owk Ravi,^{a,b} Pushpa Ragini S,^{a,b} Nimma Sadhana,^a Surendar Reddy Bathula^{a,b,*}

^a Organic Synthesis and Process Chemistry Division CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India ^b Academy of Scientific and Innovative Research, Ghaziabad - 201 002, India

ARTICLE INFO * Corresponding author. Tel.: +0-000-0000; fax: +0-000-0000; e-mail: author@university.edu

Article history: Received Received in revised form Accepted Available online

Keywords: 1) Benzimidazole, 2) C=C bond Cleavage, 3) Terminal Aromatic Olefins, 4) Vinylimidazole Herein we report a first, palladium catalyzed, one-pot methodology for the synthesis of pharmacologically important benzimidazoles and benzothiazoles from readily available terminal aromatic olefins. The process involves sequential $C \in C/C-N$ bond cleavage followed by C-N/C-S bond formation. Previous work x = H or OH or CI

b)

NH/

хн

X = NH.S

1. Introduction

Benzimidazoles and benzothiazoles are vital pharmacophoric units that correspond to numerous biological activities such as antiulcer, antimicrobial, anticonvulsant, antiviral and anticancer.¹ Benzazol-based marketed drugs such as albendazole, lansaprazole, mebendazole, telmisartan, astemizole, riluzole, pramipexole, viozan and ethoxyzolamide further signifies the pharmaceutical importance of the above privileged structures (Figure 1). Moreover, these core units are prevalent in various natural products and functional materials.² Due to their widespread applications; considerable efforts have been made towards the development of efficient methods for the synthesis of these molecules.

Generally, benzimidazoles and benzothiazoles are synthesized by the condensation of amino aniline/2-aminothiophenol with aldehydes,³ carboxylic acids and their derivatives⁴ (Scheme 1a). Alternately, benzylalcohols,5 benzylamines,6 methylarenes7a and nitroaniline7b-7h have been used as substrates (Scheme 1b). For instance, Milstein and co-workers reported the synthesis of benzimidazoles from alcohols and diamines via cobalt catalyzed dehydrogenative coupling reaction.8 In 2018, Hikawa et al. reported the construction of 2-arylbenzimidazoles from various benzyl alcohols.9 Huang et al. reported the cobalt catalyzed electrochemical synthesis of benzazoles from different alcohols.¹⁰ Srimani and coworkers reported the synthesis of 2substituted and 1,2-disubstituted benzimidazoles by coupling of diamine with alcohols.¹¹ In addition, Bharate et al. reported metal free protocol for benzimidazoles from o-phenylenediamine and benzylamine in ionic liquid medium.¹² Luo et al. reported benzimidazole synthesis from primary amines via by ortho-

Ar X X = H or NH₂ or OH

or 2009 Elsevier Ltd. All rights reserved.

X = NH S

Scheme 1. Synthetic Approaches to Benzimidazole/ Benzothiazole

quinone catalysis.¹³ Narender and coworkers reported the divergent synthesis of benzimidazoles and benzothiazoles from benzylamines.¹⁴ Moreover, β -keto esters,¹⁵ β -keto nitriles¹⁶ and β -diketones¹⁷ (Scheme 1c) have also been utilized as substrates for the synthesis of the title compounds. Likewise, recently, we have

reparation for the synthesis of benzimidazoles from acetophenones (Scheme 1d).¹⁸ However, use of terminal aromatic olefins as substrates for synthesis of titled compounds is not reported. Styrenes are readily available unactivated terminal alkenes and widely explored in both academia and industry for the preparation of complex organic molecules. Further, well known reactions of alkenes such as Heck reaction,¹⁹ olefin hydroformylation,²⁰ Wacker process²¹ and olefin metathesis²² ascertain their importance in modern synthetic organic chemistry. As part of our continuing interest in construction of privileged heterocyclic scaffolds from readily available substrates^{18,23} herein, we report the first one-pot synthesis of benzimidazoles and benzothiazoles from aromatic terminal olefins.

Based on the previous literature reports on alkene activation for its further functionalisation,²⁴ we initiated our study with styrene 1a and o-Phenylenediamine 2a in the presence of Pd(OAc)₂ (5 mol%), in AcOH under oxygen atmosphere. To our delight the desired product 3a was isolated with 42% yield in 12 h at 70 °C (Table 1, entry 2). Increase of temperature to 80 °C furnished 3a in 58% and to 90 °C offered 3a in 71% yield (entries 3 & 4). Additional increase in temperature did not improve the yield of the products (entry 5). Moreover, increase in catalyst loading did not enhance the yield of 3a (entry 6). Next, we have screened various solvents such as DMSO, DMF, 1,4-dioxane, acetonitrile and mixture of solvent like DMSO:AcOH (1:3) for further improvement in yield. The results show that among the tested solvents, AcOH is effective for this reaction (entries 7-11). Conducting the reaction under open air and inert conditions decreased the yield of 3a to 26% and 10%. In the absence of catalyst, 3a formation was not observed (Table 1, entries 12-14). With the optimized conditions (entry 4 in Table 1) in hand, we next evaluated the generality of the method (Table 2).

Table 1. Optimization of the Reaction Conditions^a

7	$Pd(OAc)_2(5)$	DMSO	90	12	16	
8	$Pd(OAc)_2(5)$	DMF	90	12	trace	
9	$Pd(OAc)_2(5)$	Dioxane	90	12	n.r.	
10	$Pd(OAc)_2(5)$	CH ₃ CN	90	12	n.r.	
11	$Pd(OAc)_2(5)$	DMSO: AcOH (1:3)	90	12	66	
12°	$Pd(OAc)_2(5)$	AcOH	90	12	26	
13 ^d	$Pd(OAc)_2(5)$	AcOH	90	12	10	
14		AcOH	90	12	n.r.	

^a Reaction conditions : 0.25 mmol of **1a** and 0.33 mmol of **2a** in the presence of catalyst and in solvent (1mL) at 90 °C for 12 h in oxygen atmosphere. ^b Isolated yields, ^c open air condition, ^d inert condition.

We first examined the reactions of 2-amino anilines with different styrenes under optimized reaction conditions. Simple, methyl and methoxy styrenes produced corresponding benzimidazoles **3a** (71%), **3b** (73%) & **3c** (53%) in good yields.

; 4-

fluorostyrene (3e), 4-bromo (3f) and 3-nitrostyrene (3q) produced corresponding benzimidazoles in 47%, 44% & 40% yields under optimized conditions²⁵. Next, we have examined the differently substitued o-phenylenediamines reactivity in this reaction. Methyl substituted benzene-1,2-diamine reacted well with 1a to produce 3d in 72% yield. Furthermore, halogen 4-flouro, 4-chloro, 4,5 substrates like dichloro 0phenylenediamines furnished the products 3g (49%), 3h (50%) **30** (57%) and **3p** (55%) in moderate yields. Furthermore, benzoyl substituted o-phenylenediamine reacted with simple, 4-methyl and 4-fluoro substituted styrenes gave desired product in low yield (Table 2, 31-3n, 21-27%). Moreover styrenes with electron donating groups such as 4-methyl and 4-methoxy have produced corresponding bemzimidazoles (3i-3k) with 4-fluro and 4-chloro substituted o-Phenylenediamines in good yields (51-57%).

Table 2. Scope of Styrenes and o-Phenylenediamine^a

^a Reaction conditions: 0.25 mmol of **1a** and 0.33 mmol of **2a** in the presence of catalyst and in solvent (1 mL) at 90 °C for **12** h in oxygen atmosphere.

To further expand the scope of the reaction, we tested the reactivity of 2-amino thiophenol (4) with styrene (1a) under standard reaction conditions (table 3). To our delight 2-phenylbenzo[d]thiazole (5a) was obtained with 60% yield. Furthermore, both electron-rich and electron-poor styrenes (Table 3) reacted well with 4 and afforded the products 5b, 5c, 5d, 5e & 5f in good yields (30-66%). To further expand the scope of the above reaction, we have tested the reactivity of 2-aminophenol with styrene 1a under standard conditions. Unfortunately, no desired product was obtained (no reaction between 2-aminophenol and styrene), starting materials were isolated.

Table 3. Scope of Styrenes and 2-Aminothiophenol

Moreover, so to enhance the substrate scope of styrenes, we have reacted 1-vinyl-1H- imidazole (6) in place of styrenes with ophenetered an intervention of the styrenes with or phenetered an intervention of the styrenes with or phenetered and the styrenes of the styrenes with or phenetered and the styrenes of the styrenes with or phenetered and the styrenes of the styrenes with or phenetered and the styrenes of the styrenes

Journal Pre-proofs

benzo[d]imidazole 7 via selective cleavage of the C–N bond of vinyl-1H- imidazole (Table 4). *o*-Phenylenediamines with different substituents successfully produced corresponding 2-methyl-1H-benzo[d]imidazoles. Halogen substitutions like 4-flouro, 4-chloro & 4-bromo *o*-phenylenediamines furnished products **7b** (63%), **7c** (68%) and **7d** (65%) in good yields. Also, nitro & benzoyl substituted *o*-phenylenediamines reacted well with **6** and produced **7e** (61%), **7f** (49%) with moderate yields.

Table 4. Scope of Vinylimidazole and o-Phenylenediamine

^a Reaction conditions: 0.25 mmol of **1a** and 0.33 mmol of **2a** in the presence of catalyst and in solvent (1 mL) at 90 °C for 12 h in oxygen atmosphere.

Encouraged by these results, we became curious to test the fate of allylbenzene, as our next substrate with *o*-phenylenediamine. Interestingly, 2-aryl benzimidazole 3c was isolated with 61% yield via C(sp3)-C(sp2) bond cleavage(Scheme 2).

Scheme 2. Reactivity of Allylbenzene with o-Phenylenediamine

To gain a deep insight into the reaction mechanism, control experiments were conducted (Scheme 3). When benzaldehyde (9) was reacted with *o*-phenylenediamine under standard condition, **3a** was observed with 32% yield and 2-aryl-1-arylmethyl-1H-1,3-benzimidazole (10) formed as by-product with 22% yield. However, we did not observe product 10 during reaction of styrene (1a) with *o*-phenylenediamine under standard condition, which ruled out the formation of benzaldehyde (9) as intermediate. Under standard conditions Phenyl acetaldehyde (11) afforded mixture of **3a** & **12**. Acetophenone (13) and 1-phenylethane-1,2-diol (14) were independently employed to standard conditions. Acetophenone (13) smoothly produced the corresponding product **3a** in 72% yield, whereas compound 14 was found to be unreactive (Scheme 3d). Moreover, phenylglyoxal (15) produced **3a** in 8% yield.

Based on the control experiments and a previous report²⁶, we propose a possible mechanism as shown in Scheme 4. Initially, styrene (1a) undergoes oxidation in presence of catalytic amount of palladium to give acetophenone²⁶. Subsequently, *o*-phenylenediamine reacts with acetophenone to deliver **A**. Intermediate **A** then cyclizes to give dihydro benzimidazole **B**. Oxidation of intermediate **B** gives oxo derivative **C**. Subsequent aromatization process will leads to the final product **3a** with the loss of formaldehyde.

Scheme 4. Proposed Mechanism

In summary, we have developed a palladium catalysed facile one pot synthetic method for the synthesis of benzimidazoles and benzothiazoles from readily available styrenes/vinyl imidazoles and 2-amino/2-mercaptosubstituted anilines. This method involves sequential C=C/C-N bond cleavage followed by C-N/C-S bond formation. Molecular oxygen used as sole oxidant. Easy handling and smooth reaction conditions are the salient features of this method.

Acknowledgments

This work was supported by DBT (Grant GAP0556), New Delhi. We are thankful to the NMR and Mass divisions of CSIR-IICT for providing the analytical facilities. O.R, P.R thanks CSIR and A. S. thank UGC for the Ph.D. fellowships. N.S. thanks DBT for project fellowship. We thank Director CSIR-IICT for the support (IICT/Pubs./2019/369).

References and notes

 (a) Zablotskaya, A.; Segal, I.; Geronikaki, A.; Eremkina, T.; Belyakov, S.; Petrova, M.; Shestakova, I.; Zvejniecea, L.; Nikolajeva, V. *Eur. J. Med. Chem.* 2013, 70, 846; (b) Cai, J.; Sun, M.; Wu, X.; Chen, J.; Wang, P.; Zong, X.; Ji, M. *Eur. J. Med. Chem.* 2013, 63, 702; (c) Nemeth-Konda, L.; Fuleky, G.; Morovjan, G.; Csokan, P.; Dedkova, I.; Skalova, L.; Vokral, I.; Lecova, L.; Vanek, I.; Szotakova, B.; *Environ. Sci. Pollut. Res.* **2016**, *23*, 13015; (e) Zou, R.; Ayres, K. R.; Drach, J. C.; Townsend, L. B. *J. Med. Chem.* **1996**, *39*, 3477. (f) Huang, S.-T.; Hsei, I.-J.; Chen, C.; *Bioorg. Med. Chem.* **2006**, *14*, 6106; (g) Osmaniye, D.; Levent, S.; Karaduman, A. B.; Ilgın, S.; Ozkay, Y.; Kaplancikli, Z. A. *Molecules*, **2018**, *23*, 1054. (h) Bhrigu, B.; Siddiqui, N.; Pathak D.; Alam, M. S.; Ali, R.; Azad, B. *Acta Pol Pharm.* **2012**, *69*, 53.

- (a) Yadav, G.; Ganguly, S. Eur. J. Med. Chem. 2015, 97, 419; (b) Bansal, Y.; Silakari, O.; Bioorg. Med. Chem. 2012, 20, 6208; (c) Min, J.; Won, J.; Kang, Y. S.; Nagase, S. J. Photochem. Photobiol. A: Chem. 2011, 219, 148; (d) Asensio, J. A.; Gomez-Romero, P. Fuel Cells. 2005, 5, 336; (e) White, A. W.; Almassy, R.; Calvert, A. H.; Curtin, N. J.; Griffin, R. J.; Hostomsky, Z.; Golding, B. T. J. Med. Chem. 2000, 43, 4084; (f) Battershill, A. J.; Scott, L. J. Drugs. 2006, 66, 51; (g) Gill, R. K.; Rawaland Bariwal, R. K. J. Arch. Pharm. Chem. Life Sci. 2015, 348, 155; (h) Hartley, D.; Kidd, H.; The Agrochemical Handbook; Royal Society of Chemistry: Nottingham, 1983; (i) Baker, D. R.; Basarab, G. S.; Fenyes, J. G.; Synthesis and Chemistry of Agrochemicals IV; American Chemical Society: Washington D. C. 1995. (j) Zhou, Y.; Zhou, Z.; Li, Y.; Yang, W. Catal Commun. 2015, 64, 96.
- (a) Gadekar, L. S.; Arbad, B. R.; Lande, M. K. Chin.Chem. Lett. 2010, 21, 1053; (b) Zhang, C.; Zhang, L.; Jiao, N. Green Chem. 2012, 14, 3273; (c) Mukhopadhyay, C.; Tapaswi, P. K. Catal. Commun. 2008, 9, 2392; (d) Tumelty, D.; Cao, K.; Holmes, C. P. Org. Lett. 2001, 3, 83; (e) Wu, Z.; Rea, P.; Wickham, G. Tetrahedron Lett. 2000, 41, 9871; f) Bahrami, K.; Khodaei, M. M.; Nejati, A. Green Chem. 2010, 12, 1237.
- (a) Dubois, N.; Glynn, D.; McInally, T.; Rhodes, B.; Woodward, S.; Irvine, D. J.; Dodds, C. *Tetrahedron.* 2013, 69, 9890; (b) Pinder, J. L.; Davis, R. E.; Charrier, J.-D. *Tetrahedron Lett.* 2014, 55, 4853; (c) Tandon, V. K.; Kumar, M. *Tetrahedron Lett.* 2004, 45, 4185; (d) Bommegowda, Y. K.; Lingaraju, G. S.; Thamas, S.; Kumar, K. S. V.; Kumara, C. S. P.; Rangappa, K. S.; Sadashiva, M. P. *Tetrahedron Lett.* 2013, 54, 2693. (e) Nguyen, T. B.; Retailleau, P. Org. Lett. 2017, 19, 3887.
- (a) Shiraishi, Y.; Sugano, Y.; Tanaka, S.; Hirai, T. Angew. Chem. Int. Ed. 2010, 49, 1656; (b) Xu, C.; Xiao, Z. Q.; Li, H. M.; Han, X.; Wang, Z. Q.; Fu, W. J.; Ji, B. M.; Hao, X. Q.; Song, M. P. Euro. J. Org. Chem. 2015, 2015, 7427; (c) Sun, Z.; Bottari, G.; Barta, K. Green Chem. 2015, 17, 5172; (d) Blacker, A. J.; Farah, M. M.; Hall, M. 1.; Marsden, S. P.; Saidi, O.; Williams, J. M. Org. Lett. 2009, 11, 2039; (e) Shi, X.; Guo, J.; Liu, J.; Ye, M.; Xu, Q. Chem. Euro. J. 2015, 21, 9988; (f) Xu, Z.; Wang, D. -S.; Yu, X.; Yang, Y.; Wang, D. Adv. Synth. Catal. 2017, 359, 3332; (g) Wang, D.; Albero, J.; Garcia, H.; Li, Z. J. Catal. 2017, 349, 156; (h) Xu, Z.; Yu, X.; Sang, X. and Wang, D. Green Chem. 2018, 20, 2571; (i) Qiu, Y.; Zhang, Y.; Jin, L.; Pan, L.; Du, G.; Yeb, D.; Wang, D. Org. Chem. Front. 2019, 6, 3420.
- (a) Nguyen, T. B.; Ermolenko, L.; Al-Mourabit, A. Green Chem. 2013, 15, 2713; (b) Nguyen, T. B.; Ermolenko, L.; Dean, W. A.; Al-Mourabit, A. Org. Lett. 2012, 14, 5948; (c) Yu, J.; Xia, Y.; Lu, M. Synth Commun. 2014, 44, 3019; (d) Naresh, G.; Kant, R.; Narender, T. J. Org. Chem. 2014, 79, 3821; (e) Dong, C. -P.; Higashiura, Y.; Marui, K.; Kumazawa, S.; Nomoto, A.; Ueshima, M.; Ogawa, A. ACS Omega, 2016, 1, 799; (f) Liu, J.; Wang, C.; Ma, X.; Shi, X.; Wang, X.; Li, H.; Xu, Q. Catal Lett. 2016, 146, 2139; (g) Reddy, P. L.; Arundhathi, R.; Tripathi, M.; Chauhan, P.; Yan, N.; Rawat, Diwan S. ChemistrySelect, 2017, 2, 3889; (h) Su, C.; Tandiana, R.; Balapanuru, J.; Tang, W.; Pareek, K.; Nai, C. T.; Hayashi, T.; Loh, K. P. J. Am. Chem. Soc. 2015, 137, 685.
- (a) Nguyen, T. B.; Ermolenko, L.; Al-Mourabit, A. J. Am. Chem. Soc. 2012, 135, 118; (b) Xu, Z.; Yu, X.; Sang, X. and Wang, D. Green Chem. 2018, 20, 2571; (c) Qiu, Y.; Zhang, Y.; Jin, L.; Pan, L.; Du, G.; Yeb, D.; Wang, D. Org. Chem. Front. 2019, 6, 3420; (d) Nguyen, T. B.; Ermolenko, L.; Al-Mourabit, A. Org. Lett. 2013, 15, 4218; (e) Nguyen, T. B.; Bescont, J. L.; Ermolenko, L.; Al-Mourabit, A. Org. Lett. 2013, 15, 6218; (f) Nguyen, T. B.;Bescont, J. L.; Ermolenko, L.; Corbin, M.; Al-Mourabit, A. Org. Chem. Front.2014, 1, 1157; (g) Dr. Nguyen, T. B.; Dr. Ermolenko, L.; Dr. Retailleau, P.; Dr. Al-Mourabit, A. Angew.

- Mouraoit, A. Syntnesis 2015, 47, 1741; (1) Nguyen, I. B.; Pasturaud,
 K.; Ermolenko, L.; Al-Mourabit, A. Org. Lett. 2015, 17, 2562; (j)
 Nguyen, L. A.; Ngo, Q. A.; Retailleau, P.; Nguyen, T. B. Green Chem. 2017, 19, 4289.
- 8. Daw, P.; Ben-David, Y.; Milstein, D. ACS Catal. 2017, 7, 7456.
- 9. Hikawa, H.; Ichinose, R.; Kikkawa, S.; Azumaya, I. Asian J. Org. Chem. 2018, 7, 416.
- 10. Lai, Y.-L.; Ye, J.-S.; Huang, J.-M. Chem. Eur. J. 2016, 22, 5425.
- 11. Das, K.; Mondal, A.; Srimani, D. J. Org. Chem. 2018, 83, 9553.
- 12. Sharma, R.; Abdullaha, M.; Bharate, S. B. Asian J. Org. Chem. 2017, 6, 1370.
- 13. Zhang, R.; Qin, Y.; Zhang, L.; Luo S. Org. Lett. 2017, 19, 5629.
- 14. Naresh, G.; Kant, R.; Narender, T. J. Org. Chem. 2014, 79, 3821.
- (a) Bougrin, K.; Soufiaoui, M. *Tetrahedron Lett.* **1995**, *36*, 3683. (b) Li,
 Z.; Dong, J.; Chen, X.; Li, Q.; Zhou, Y.; Yin, S. -F. J. Org. Chem. **2015**, *80*, 9392.
- (a) Kamila, S.; Koh, B.; Biehl, E. R. J. Heterocycl. chem. 2006, 43, 1609; (b) Kano, S.; Yuasa, Y.; Ono, T.; Shibuya, S. Heterocycles. 1979, 10.
- (a) Mayo, M. S.; Yu, X.; Zhou, X.; Feng, X.; Yamamoto, Y.; Bao, M. Org. Lett. 2014, 16, 764; (b) Wang, Z. X.; Qin, H. L. J. Heterocycl.chem. 2005, 42, 1001.
- Ravi, O.; Shaikh, A.; Upare, A.; Singarapu, K. K.; Bathula, S. R. J. Org. Chem. 2017, 82, 4422.
- 19. Corey, E.J.; Cheng, X. -M. The Logic of Chemical Synthesis, John Wiley, New York, 1989.
- Evans. P. A.; Tsuji, J. Modern Rhodium-Catalyzed Organic Reactions Wiley-VCH. 2005, 93.
- 21. Takacs, J. M.; Jiang, X. -T. Curr. Org. Chem. 2003, 7, 369.
- (a) Hoveyda, A.H.; Zhugralin, A. R. Nature. 2017, 450, 243; (b) Connon, S.J.; Blechert, S. Angew. Chem. Int. Ed. 2003, 42, 1900.
- (a) Ramaraju, A.; Chouhan, N. K.; Ravi, O.; Sridhar, B.; Bathula, S. R. Eur. J. Org. Chem. 2018, 2963; (b) Ravi, O.; Ramaraju, A.; Sridhar, B.; Bathula, S. R. Adv. Synth. Catal. 2018, 360, 3009; (c) Upare, A.; Sathyanarayana, P.; Kore, R.; Sharma, K.; Bathula, S. R. Tetrahedron Lett. 2018, 59, 2430; (d) Sathyanarayana, P.; Upare, A.; Ravi, O.; Muktapuram P. R.; Bathula, S. R. RSC Adv. 2016, 6, 22749; (e) Sathyanarayana, P.; Ravi, O.; Muktapuram, P. R.; Bathula, S. R. Org. Biomol. Chem. 2015, 13, 9681; (f) Viswanadham K. D. R.; Muktapuram, P. R.; Sathyanarayana, P.; Ravi, O.; Kant, R.; Bathula, S. R. Chem. Commun. 2014, 50, 13517; (g) Bathula, S. R.; Muktapuram, P. R.; Viswanadham K. D. R.; Sathyanarayana, P.; Reddy, M. S. Eur. J. Org. Chem. 2013, 2013, 4552.
- (a) Cornell, C. N.; Sigman, M. S. *Inorg. Chem.* 2007, *46*, 1903; (b) Wu,
 W.; Jiang, H. *Acc Chem Res.* 2012, *45*, 1736; (c) Wang, A.; Jiang, H. *J. Org. Chem.* 2010, *75*, 2321; (d) (m) Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. *ACS Catal.* 2011, *1*, 836; (e) Xing, D.; Guan, B.; Cai, G.; Fang, Z.; Yang, L.; Shi, Z. *Org. Lett.* 2006, *8*, 693; (f) Wang, T., Jiao, N. *J. Am. Chem. Soc.* 2013, 135, 11692.
- In case of styrenes with deactivating substituents such as fluoro, bromo and nitro, reaction requires 0.75 mmol of corresponding styrene for completion.
- Mitsudome, T.; Umetani, T.; Nosaka, N.; Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Angew. Chem. Int. Ed. 2006, 45, 481.

Supplementary Material

Supplementary material that may be helpful in the review process should be prepared and provided as a separate electronic file. That file can then be transformed into PDF format and submitted along with the manuscript and graphic files to the appropriate editorial office.

· A1-

6	Tetrahedron				
-	Journal Pre-proofs				

and benzthiazoles has been developed.

- Easy handling & smooth reaction conditions are ٠ the salient features of this method.
- Molecular oxygen used as sole oxidant. •
- •

Reaction involves Palladium Catalysed Oxidative C=C and C–N bond Cleavage.