This article was downloaded by: [University of Western Cape] On: 27 November 2012, At: 05:01 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry

Publication details, including instructions for authors and subscription information: <u>http://www.tandfonline.com/loi/lsrt20</u>

Synthesis and Characterization of Monoaminophosphine, Bis(Amino)Phosphine Derivatives, and their Metal Complexes

Özlem Sarıöz^a & Sena Öznergiz^a

^a Department of Chemistry, Faculty of Science-Arts, Niğde University, Niğde, Turkey Version of record first published: 11 Jul 2011.

To cite this article: Özlem Sarıöz & Sena Öznergiz (2011): Synthesis and Characterization of Monoaminophosphine, Bis(Amino)Phosphine Derivatives, and their Metal Complexes, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 41:6, 698-703

To link to this article: http://dx.doi.org/10.1080/15533174.2011.568464

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Synthesis and Characterization of Monoaminophosphine, Bis(Amino)Phosphine Derivatives, and their Metal Complexes

Özlem Sarıöz and Sena Öznergiz

Department of Chemistry, Faculty of Science-Arts, Niğde University, Niğde, Turkey

Functionalized monoaminophosphine of the type Ph_2PNR_2 (1 and 3) and bis(amino)phosphine of the type $PhP(NR_2)_2$ (2) have been synthesized by treating Ph_2PCl or $PhPCl_2$ with corresponding amines. Ligands react with aqueous hydrogen peroxide, elemental sulfur, or selenium to give the corresponding chalcogenides in good yield. The metal complexes of the aminophosphines have been obtained. All of the compounds were obtained in good yields and were characterized by IR, NMR, and microanalysis.

Keywords aminophosphines, complexation, oxidation, synthesis

INTRODUCTION

The coordination and organometallic chemistry of phosphorus bearing ligands possessing one (or more) P-N bond(s) has received some attention, especially of late.^[1-7] Although they possess two potential donor atoms, their coordination compounds involve almost exclusively the metal-phosphorus bond.^[8] The transition metal chemistry of aminophosphines is limited. This is partly due to the sensitivity of the P(III)/N bonds towards acid or base catalysed hydrolysis during complexation reactions.^[2] Many aminophosphine ligands and their complexes have been investigated in a number of catalytic processes.^[5,9-12] The presence of P-N bidentate ligands enables many different and important catalytic processes to occur, including asymmetric hydroboration, carbonylation of alkynes, Stille coupling, and asymmetric hydrogenation of highly substituted alkenes, to name a few.^[10] Some aminophosphines and derivatives have also found application as anticancer drugs, herbicides, and antimicrobial agents, as well as neuroactive agents^[9]

Herein, we describe the synthesis of new aminophosphine ligands and the corresponding aminophosphine chalcogenides

of the general formula $Ph_2P(E)NR_2$ or $PhP(E)(NR_2)_2$ and their transition metal complexes. The compounds were fully characterized by IR, ¹H NMR, and ³¹P NMR spectroscopic techniques, and by elemental analysis.

EXPERIMENTAL

Reactions were routinely carried out using Schlenk-line techniques under pure dry nitrogen gas. Solvents were dried and distilled prior to use. [Mo(CO)₄(bipy)] and [Cr(CO)₄(bipy)] were prepared according to the literature procedures.^[13] All other chemicals were reagent grade, available commercially, and used without further purification. Melting points were determined on a Electrothermal A 9100 and are uncorrected. ³¹P-{¹H} and ¹H NMR spectra were taken on Bruker UltraShield-400 spectrophotometer. Infrared spectra were recorded on a Perkin Emler FT-IR System Spectrum BX as KBr pellets. Elemental analysis were performed in a CHNS-932 (LECO).

Preparation of $PPh_2N(CH_2C_6H_5)_2$ (1)

Triethylamine (1.8 mL, 13.05 mmol) and Ph₂PCl (2.4 mL, 13.05 mmol) were sequentially added with stirring to a solution of NH(CH₂C₆H₅)₂ (2.5 mL, 13.05 mmol) in THF (20 mL). The reaction mixture was stirred for 3 h and then filtered to remove Et₃N.HCl. The resulting solution was evaporated under reduced pressure and the product extracted with diethyl ether at -78° C. The solvent was removed under vacuum to give a white solid of the crude product, which was crystallized from CH₂Cl₂/diethyl ether mixture (2:1) at 0°C. Yield 3.75 g (75%). m.p.: 83–85°C. ¹H NMR (CDCl₃, δ , ppm): 7.01–8.02 (m, Ph, 20H), 4.10 (d, N-CH₂, 4H, J_{P-H} = 8.2 Hz). ³¹P-{¹H} NMR (CDCl₃, δ , ppm): 66.5 (s). Selected IR (KBr, cm⁻¹): 861 (PN), 1438 (PPh). Elemental analysis: C₂₆H₂₄PN (381.45 gmol⁻¹) Found (required): C, 81.74 (81.87); H, 6.15 (6.34); N, 3.52 (3.67).

Preparation of PhP{ $N(CH_2C_6H_5)_2$ }₂ (2)

A similar procedure to that described in 1 was used. Yield 6.0 g (65%). m.p.: 93–94°C. ¹H NMR (CDCl₃, δ , ppm): 7.27–7.65 (m, Ph, 25H), 4.05 (d, NCH₂, 8H, J_{P-H} = 7.9 Hz). ³¹P-{¹H} NMR (CDCl₃, δ , ppm): 24.3 (s). Selected IR (KBr, cm⁻¹): 850 (PN), 1443 (PPh). Elemental analysis: C₃₄H₃₃PN₂

Received 12 January 2011; accepted 15 February 2011.

The authors are grateful to Research Foundation of The University of Niğde (NUAF) for financial support.

Address correspondence to Özlem Sariöz, Department of Chemistry, Faculty of Science-Arts, Niğde University, Niğde, Turkey. E-mail: ozsarioz4@yahoo.com

(500.61 gmol⁻¹) Found (required): C, 81.23 (81.57); H, 6.48 (6.64); N, 5.49 (5.60).

Preparation of PPh₂NHCH₂SO₃H (3)

A similar procedure to that described in 1 was used. Yield 2.1 g (71%). m.p.: 147°C. ¹H NMR (CDCl₃, δ , ppm): 6.90–8.01. (m, PPh, SO₃H, 11H), 5.41 (b, NH, 1H), 2.90 (d, PNCH₂, 2H, J_{P-H} = 29 Hz). ³¹P-{¹H} NMR (CDCl₃, δ , ppm): 30.3 (s). Selected IR (KBr, cm⁻¹): 960 (PN), 1433 (PPh). Elemental analysis: C₁₃H₁₄PNO₃S (295.29 gmol⁻¹) Found (required): C, 52.77 (52.88); H, 4.75 (4.78); N, 4.71 (4.74); S, 10.76 (10.86).

Preparation of $Ph_2P(O)N(CH_2C_6H_5)_2$ (4)

A THF solution (10 mL) of 1 (0.75 g, 1.96 mmol) and aqueous H₂O₂ (30% w/w, 0.2 mL) was stirred for 2 h at room temperature. The reaction mixture was concentrated to ca. 1–2 mL *in vacuo* and diethylether (20 mL) was added. The precipitate was filtered and dried in air to yield 4. Yield 0.33 g (42%). m.p.: 195–196°C. ¹H NMR (CDCl₃, δ , ppm): 7.12–8.07 (m, Ph, 20H), 4.11 (s, N-CH₂, 4H). ³¹P-{¹H} NMR (CDCl₃, δ , ppm): 31.4 (s). Selected IR (KBr, cm⁻¹): 897 (PN), 1438 (PPh), 1199 (P = O). Elemental analysis: C₂₆H₂₄PNO (397.45 gmol⁻¹) Found (required): C, 78.21 (78.57); H, 5.95 (6.09); N, 3.66 (3.52).

Preparation of $Ph_2P(S)N(CH_2C_6H_5)_2$ (5)

Ligand 1 (0.71 g, 1.87 mmol) and S₈ (0.06 g, 1.87 mmol) were refluxed in toluene (20 mL) for 5 h. The reaction mixture was concentrated to ca. 1–2 mL *in vacuo* and diethylether (20 mL) was added. The precipitate was filtered and dried in air to yield 5. Yield 0.44 g (57%). m.p.: 90–91°C. ¹H NMR (CDCl₃, δ , ppm): 7.10–8.01 (m, Ph, 20H), 4.19 (d, N-CH₂, 4H, J_{P-H} = 7.2 Hz). ³¹P-{¹H} NMR (CDCl₃, δ , ppm): 70.8 (s). Selected IR (KBr, cm⁻¹): 896 (PN), 633 (PS), 1437 (PPh). Elemental analysis: C₂₆H₂₄PNS (413.51 gmol⁻¹) Found (required): C, 75.33 (75.52); H, 5.72 (5.85); N, 3.22 (3.39); S, 7.56 (7.75).

Preparation of $Ph_2P(Se)N(CH_2C_6H_5)_2$ (6)

Ligand 1 (0.50 g, 1.30 mmol) and grey Se (0.10 g, 1.30 mmol) were refuxed in toluene (20 mL) for 5 h. The reaction mixture was concentrated to ca. 1–2 mL *in vacuo* and diethylether (20 mL) was added. The precipitate was filtered and dried in air to yield 6. Yield 0.40 g (62%). m.p.: 84–86°C. ¹H NMR (CDCl₃, δ , ppm): 7.11–8.01 (m, Ph, 20H), 4.21 (d, N-CH₂, 4H, J_{P-H} = 11.7 Hz). ³¹P-{¹H} NMR (CDCl₃, δ , ppm): 70.4 (s, J_{PSe} = 755 Hz). Selected IR (KBr, cm⁻¹): 896 (PN), 566 (PSe), 1436 (PPh). Elemental analysis: C₂₆H₂₄PNSe (460.41 gmol⁻¹) Found (required): C, 67.63 (67.83); H, 5.14 (5.25); N, 2.86 (3.04).

Preparation of PhP(O){ $N(CH_2C_6H_5)_2$ } (7)

A similar procedure to that described in 4 was used. Yield 0.20 g (40%). m.p.: 117–120°C. ¹H NMR (CDCl₃, δ , ppm): 7.29–7.57 (m, Ph, 25H), 3.95 (s, N-CH₂, 8H). ³¹P-{¹H} NMR (CDCl₃, δ , ppm): 18.9 (s). Selected IR (KBr, cm⁻¹): 856 (PN), 1429 (PPh), 1209 (P=O). Elemental analysis: C₃₄H₃₃PN₂O

(516.61 gmol⁻¹) Found (required): C, 78.87 (79.05); H, 6.22 (6.44); N, 5.28 (5.42).

Preparation of PhP(S) $\{N(CH_2C_6H_5)_2\}_2$ (8)

A similar procedure to that described in 5 was used. Yield 0.29 g (54%). m.p.: $113-114^{\circ}$ C. ¹H NMR (CDCl₃, δ , ppm): 7.22-7.32 (m, Ph, 25H), 4.12 (d, N-CH₂, 8H, J_{P-H} = 6.8 Hz). ³¹P-{¹H} NMR (CDCl₃, δ , ppm): 109.4 (s). Selected IR (KBr, cm⁻¹): 850 (PN), 665 (PS), 1442 (PPh). Elemental analysis: C₃₄H₃₃PN₂S (532.68 gmol⁻¹) Found (required): C, 76.43 (76.66); H, 6.18 (6.24); N, 5.17 (5.26); S, 5.88 (6.02).

Preparation of PhP(Se){ $N(CH_2C_6H_5)_2$ }₂ (9)

A similar procedure to that described in 6 was used. Yield 0.34 g (59%). m.p.: 103–105°C. ¹H NMR (CDCl₃, δ , ppm): 7.25–7.58 (m, Ph, 25H), 3.94 (d, N–CH₂, 8H, J_{P-H} = 8.1 Hz). ³¹P-{¹H} NMR (CDCl₃, δ , ppm): 102.2 (s, J_{PSe} = 746 Hz). Selected IR (KBr, cm⁻¹): 851 (PN), 578 (PSe), 1443 (PPh). Elemental analysis: C₃₄H₃₃PN₂Se (579.57 gmol⁻¹) Found (required): C, 70.23 (70.46); H, 5.55 (5.74); N, 4.66 (4.83).

Preparation of Ph₂P(O)NHCH₂SO₃H (10)

A similar procedure to that described in 4 was used. Yield 0.29 g (55%). m.p.: $165-167^{\circ}C$. ¹H NMR (DMSO, δ , ppm): 7.21–7.82 (m, PPh, SO₃H, 11H), 4.29 (s, NH, 1H), 3.11 (s, PNCH₂, 2H). ³¹P-{¹H} NMR (CDCl₃, δ , ppm): 22.9 (s). Selected IR (KBr, cm⁻¹): 937 (PN), 1205 (P=O), 1438 (PPh). Elemental analysis: C₁₃H₁₄PNO₄S (311.29 gmol⁻¹) Found (required): C, 50.06 (50.16); H, 4.47 (4.53); N, 4.56 (4.50); S, 10.35 (10.30).

Preparation of Ph₂P(Se)NHCH₂SO₃H (11)

A similar procedure to that described in 6 was used. Yield 0.4 g (63%). m.p.: 191–192°C. ¹H NMR (CDCl₃, δ , ppm): 7.15–7.80 (m, PPh, SO₃H, 11H), 3.79 (s, NH, 1H), 2.37 (s, PNCH₂, 2H). ³¹P-{¹H} NMR (CDCl₃, δ , ppm): 61.4 (s, J_{PSe} = 747 Hz). Selected IR (KBr, cm⁻¹): 957 (PN), 567 (PSe), 1435 (PPh). Elemental analysis: C₁₃H₁₄PSeNO₃S (374.25 gmol⁻¹) Found (required): C, 41.63 (41.72); H, 3.66 (3.77); N, 3.66 (3.74); S, 8.48 (8.57).

Preparation of cis- $[Mo(CO)_4(PPh_2N(CH_2C_6H_5)_2)_2]$ (12)

Ligand 1 (0.73 g, 1.92 mmol) and [Mo(CO)₄(bipy)] (0.35 g, 0.96 mmol) were refluxed in 20 mL CH₂Cl₂ for 5 h. The solution was concentrated *in vacuo*, and the purple product was precipitated with diethylether (30 mL). The residue was washed with toluene (3×5 mL). Yield: 0.77 g (83%). m.p.: 139–141°C (decomp).¹H NMR (CDCl₃, δ , ppm): 7.00–7.96 (m. Ph, 40H), 4.05 (s, CH₂, 8H). ³¹P-{¹H} NMR (CDCl₃, δ , ppm): 102.4. Selected IR (KBr, cm⁻¹): 894 (PN), 1437 (PPh), 2011, 1910, 1871 and 1818 (CO). Elemental analysis: C₅₆H₄₈P₂N₂O₄Mo (970.88 gmol⁻¹) Found (required): C, 69.13 (69.28); H, 4.78 (4.98); N, 2.57 (2.88).

Preparation of cis-[Mo(CO)₄(PhP{ $N(CH_2C_6H_5)_2$ }₂)₂] (13)

A similar procedure to that described in 12 was used. Yield: 0.45 g (75%). m.p.: $150-151^{\circ}$ C (decomp).¹H NMR (DMSO, δ , ppm): 7.40–7.98 (m, Ph, 50H), 4.13 (s, CH₂, 16H). ³¹P-{¹H} NMR (CDCl₃, δ , ppm): 73.7. Selected IR (KBr, cm⁻¹): 858 (PN), 1440 (PPh), 2009, 1865 and 1813 (CO). Elemental analysis: C₇₂H₆₆P₂N₂O₄Mo (1209.21 gmol⁻¹) Found (required): C, 71.33 (71.51); H, 5.38 (5.50); N, 4.37 (4.63).

Preparation of cis-[Cr(CO)₄(PhP{ $N(CH_2C_6H_5)_2$ }_2)_2] (14)

A similar procedure to that described in 12 was used. Yield: 0.38 g (65%). m.p.: 147–149°C (decomp). ¹H NMR (CDCl₃, δ , ppm): 7.32–8.11 (m, Ph, 50H), 3.66 (s, CH₂, 16H). ³¹P-{¹H} NMR (CDCl₃, δ , ppm): 102.2. Selected IR (KBr, cm⁻¹): 885 (PN), 1440 (PPh), 2002, 1871 and 1813 (CO). Elemental analysis: C₇₂H₆₆P₂N₄O₄Cr (1165.26 gmol⁻¹) Found (required): C, 73.98 (74.21); H, 5.58 (5.71); N, 4.57 (4.81).

Preparation of $[Cu(Ph_2PN(CH_2C_6H_5)_2)_2Cl_2]$ (15)

Ligand 1 (0.45 g, 1.20 mmol) and CuCl₂.2H₂O (0.10 g, 0.59 mmol) and were refluxed in 20 mL THF for 3 h. The solution was concentrated *in vacuo*, and the green product was precipitated with diethylether (30 mL). Yield: 0.38 g (70%). m.p.: $272-274^{\circ}$ C (decomp). ¹H NMR (CDCl₃, δ , ppm): 7.21–7.74 (m, Ph, 40H), 4.06 (s, CH₂, 8H). ³¹P-{¹H} NMR (CDCl₃, δ , ppm): 80.8. Selected IR (KBr, cm⁻¹): 894 (PN), 1437 (PPh). Elemental analysis: CuC₅₂H₄₈P₂N₂Cl₂ (897.35 gmol⁻¹) Found (required): C, 69.43 (69.60); H, 5.18 (5.39); N, 2.99 (3.12).

Preparation of $[Cu{(CH_3COO)_2(PhP{N(CH_2C_6H_5)_2}_2)_2}]$ (16)

Ligand 2 (0.50 g, 1.0 mmol) and Cu(CH₃COO)₂H₂O (0.10 g, 0.50 mmol) were refluxed in 20 mL CH₂Cl₂ for 4 h. The solution was concentrated *in vacuo*, and the green product was precipitated with diethylether (30 mL). Yield: 0.40 g (68%). m.p.: $253-254^{\circ}$ C (decomp).¹H NMR (CDCl₃, δ , ppm): 6.91–7.56 (m, Ph, 50H), 3.57 (s, CH₂, 16H), 2.22 (s, CH₃COO, 6H). ³¹P-{¹H} NMR (CDCl₃, δ , ppm): 80.8. Selected IR (KBr, cm⁻¹): 850 (PN), 1443 (PPh). Elemental analysis: CuC₇₂H₇₂P₂N₄O₄ (1182.86 gmol⁻¹) Found (required): C, 72.93 (73.11); H, 5.98 (6.13); N, 4.44 (4.74).

Preparation of [Ni(PPh₂NHCH₂SO₃H)₂Cl₂] (17)

A mixture of NiCl₂.6H₂O (0.13 g, 0.88 mmol) and PPh₂NHCH₂SO₃H (0.50 g, 1.7 mmol) in THF (10 ml) was stirred at r.t. for 1 h. The solution was evaporated under reduced pressure and the orange product was precipitated with diethylether (20 mL). Yield: 0.44 g (72%). m.p.: 178–180°C (decomp). ¹H NMR (CDCl₃, δ , ppm): 6.91–8.56 (m, Ph, SO₃H, 22H), 3.45 (b, NH, 2H), 2.83 (s, PNCH₂, 4H). ³¹P-{¹H} NMR (CDCl₃, δ , ppm): 47.2. Selected IR (KBr, cm⁻¹): 943 (PN), 1436 (PPh). Elemental analysis: NiC₂₆H₂₈P₂N₂O₆S₂Cl₂ (720.19 gmol⁻¹) Found (required): C, 43.21 (43.36); H, 4.18 (3.92); N, 3.98 (3.89); S, 8.82 (8.90).

Preparation of [Co(PPh₂NHCH₂SO₃H)₂Cl₂] (18)

CoCl₂.2H₂O (0.14 g, 0.84 mmol) and PPh₂NHCH₂SO₃H (0.5 g, 1.69 mmol) were refluxed in 20 mL THF for 5 h. The solvent was removed under vacuum to give a blue solid of the crude product, which was crystallized from dichloromethane/diethylether (2:1). Yield: 0.42 g (69%). m.p.: 227–228°C (decomp). ¹H NMR (CDCl₃, δ , ppm): 7.10–7.70 (m, Ph, SO₃H, 22H), 4.52 (b, NH, 2H), 2.66 (s, PNCH₂, 4H). ³¹P-{¹H} NMR (CDCl₃, δ , ppm): 45.8. Selected IR (KBr, cm⁻¹): 945 (PN), 1438 (PPh). Elemental analysis: CoC₂₆H₂₈P₂N₂O₆S₂Cl₂ (720.43 gmol⁻¹) Found (required): C, 43.03 (43.35); H, 3.88 (3.92); N, 3.78 (3.89); S, 8.98 (8.90).

RESULTS AND DISCUSSION

Earlier works had shown that primary and secondary amines react with chlorophosphines in the presence of a tertiary amine base to form aminophosphines.^[14] Ligands 1–3 can be prepared from corresponding commercially available amine and dichlorophenylphosphine or chlorodiphenylphosphine according to the literature.^[15] Synthesis of mono- and bis(amino)phosphine ligands (1–3) and their oxidation reactions are shown in Figure 1.

The structure of the compounds (1–3) was confirmed by spectroscopic analysis. The spectroscopic data for synthesized compounds is shown in Table 1. The ³¹P-{¹H} NMR spectra of the aminophosphines and the bis(amino)phosphine show singlets at 66.5 ppm for 1, 24.3 ppm for 2, and 30.3 ppm for 3.^[16–19] The absence of a signal at 81.5 or 160.2 ppm indicates that no unreacted PPh₂Cl or PPhCl₂ remained.^[20] The ³¹P NMR spectra are consistent with the proposed structure. The chemical shifts in the ³¹P-{¹H} NMR spectra are in accordance with the electronic properties of the substituents on nitrogen and phosphorus.^[16–19]

Among the routes used to prepare aminophosphines, the most frequently used method involves aminolysis of a phosphine chloride. The reaction of phosphine chloride and the primary amine usually provides the target compound, RNHPR₂, in high yield.^[18] The reactions of some primary amine derivatives with Ph₂PCl in the presence of triethylamine have been thoroughly studied, and different substances were obtained, depending on the relative ratio of the reagents, the electron-withdrawing groups, and their positions on the aromatic ring and solvents such as diethyl ether and dichloromethane.^[19] Aminophosphines (Ph₂PNHR) are found as the main products, and when the reaction conditions changed, diphosphinoamines (RN(PPh₂)₂) or iminodiphosphines ($RN = PPh_2PPh_2$) are also formed as the major products.^[19] The substituents at the amine backbone can also play an important role in determining the outcome of the products.^[21]

We investigated the aminolysis reaction of aminomethanesulfonic acide with Ph_2PCl in the presence of Et_3N in thf. The ³¹P-{¹H} NMR spectrum of product 3 shows that the compound displays the characteristic signal of aminophosphine at

TABLE 1The spectroscopic data for synthesized compounds

			υ				
Compound	δΡ	$\Delta\delta$	PN	PPh	P=O	P=S	P=Se
$\overline{PPh_2N(CH_2C_6H_5)_2}$	66.5	_	861	1438			
$PhP\{N(CH_2C_6H_5)_2\}_2$	24.3	-	850	1443			
PPh ₂ NHCH ₂ SO ₃ H	30.3	-	960	1433			
$Ph_2P(O)N(CH_2C_6H_5)_2$	31.4	-	897	1438	1199		
$Ph_2P(S)N(CH_2C_6H_5)_2$	70.8	-	896	1437		633	
$Ph_2P(Se)N(CH_2C_6H_5)_2$	70.4	-	896	1436			566
$PhP(O)\{N(CH_2C_6H_5)_2\}_2$	18.9	-	856	1429	1209		
$PhP(S)\{N(CH_2C_6H_5)_2\}_2$	109.4	-	850	1442		665	
$PhP(Se)\{N(CH_2C_6H_5)_2\}_2$	102.2	-	851	1443			578
Ph ₂ P(O)NHCH ₂ SO ₃ H	22.9	-	937	1438	1205		
Ph ₂ P(Se)NHCH ₂ SO ₃ H	61.4	-	957	1435			567
cis-[Mo(CO) ₄ (PPh ₂ N(CH ₂ C ₆ H ₅) ₂) ₂]	102.4	35.9	894	1437			
$[Cu(Ph_2PN(CH_2C_6H_5)_2)_2Cl_2]$	80.8	14.3	894	1437			
$cis-[Mo(CO)_4(PhP{N(CH_2C_6H_5)_2}_2)_2]$	73.7	49.4	858	1440			
cis-[Cr(CO) ₄ (PhP{N(CH ₂ C ₆ H ₅) ₂ } ₂) ₂]	102.2	77.9	885	1440			
$[Cu{(CH_{3}COO)_{2}(PhP{N(CH_{2}C_{6}H_{5})_{2}}_{2})_{2}}]$	80.8	56.5	850	1443			
[Ni(PPh ₂ NHCH ₂ SO ₃ H) ₂ Cl ₂]	47.2	16.9	943	1436			
$[Co(PPh_2NHCH_2SO_3H)_2Cl_2]$	45.8	15.5	945	1438			

FIG. 1. Synthesis of mono- and bis(amino)phosphine ligands (1-3) and their oxidation reactions.

30.3 ppm, and the result is in agreement with the earlier studies.^[19] In general, aminodiphenylphosphines RNHPPh₂ give rise to singlet resonances between 25 and 35 ppm. Diphosphinoamines (R-N(PPh₂)₂) also exhibit a singlet resonance, but at higher frequency, typically around 64–70 ppm.^[19] There was no evidence for the formation of iminobiphosphine, producing two sets of doublets at ~ +10 to ~ -20 ppm.^[22] The 1H NMR spectra are consistent with the proposed structure. In the IR spectra (KBr) of the ligands, the v(PN) vibration is tentatively assigned to a very strong absorption at 861 cm⁻¹ for **1**, 850 cm⁻¹ for **2**, and 960 cm⁻¹ for **3**, respectively ^[16,21]. The v(PPh) bands are observed in 1438 cm⁻¹ for **1**, 1443 cm⁻¹ for **2**, and 1433 cm⁻¹ for **3**, respectively.^[23]

Oxidation of 1-3 aqueous hydrogen peroxide or elemental sulfur or selenium gave the corresponding oxides (4, 7, and 10), sulfides (5 and 8), and selenides (6, 9, and 11), respectively (Scheme 1). Oxidation of 1-3 using aqueous H_2O_2 was very rapid even at ambient temperature. However, the reaction with elemental sulfur or selenium had to be carried out at elevated temperatures as expected because elemental sulfur and selenium are weaker oxidizing agents than hydrogen peroxide, especially towards phosphorus atoms with bulky phenyl groups. Compound 3 does not react even at elevated temperature with elemental sulfur. As is typical of P(V) = E compounds, ³¹P chemical shifts of compounds 4–11 occured in the δ 18.9–109.4 ppm range, and the chemical shift region is quite consistent with the literature for analogous derivatives.^[21,24-26] As indicated in the literature, coupling constants of ¹J_{PSe} 746–755 Hz are often seen for $E = Se^{[24]}$ The ¹H NMR spectra are consistent with the proposed structure. In the IR spectra of 4-11, the v(PN) vibration is observed at 897 cm⁻¹ (4), 896 cm⁻¹ (5), 896 cm⁻¹ (6), 856 cm⁻¹ (7), 850 cm⁻¹ (8), 851 cm⁻¹ (9), 937 cm⁻¹ (10), and 957 cm⁻¹ (11).^[16,21] The v(PPh) bands are observed in region of 1429–1443 cm⁻¹. The IR spectra of 4, 7, and 10 show vP = O vibration at 1199 for 4, 1209 cm⁻¹ for 7, and 1205 cm^{-1} for 10, respectively.^[25] In the IR spectra of the compounds, while the vP=O vibration is observed in very narrow range, the vP-N vibration is observed in relatively wide range, suggesting that P(III)-N bonds are quite sensitive to the substituents attached to them. The structures of the oxidized derivatives (4,7,10), sulfides (5 and 8), and selenides (6,9,11) were further confirmed by using microanalysis, and found to be in good agreement with the theoretical values.

The metal carbonyl derivatives, cis- $[M(CO)_4(L)_2]$ (M = Mo, L = Ph₂PN(CH₂Ph)₂, **12**; M = Mo, L = PhP(N(CH₂Ph)₂)₂, **13**; M = Cr, L = PhP(N(CH₂Ph)₂)₂, **14**) were obtained by the displacement of bipyridine from the [M(CO)₄(bipy)]. Compound **3** does not react even at elevated temperature. The metal carbonyl derivatives are shown in Figure 2.

The metal carbonyl derivatives, $cis-[M(CO)_4(L)_2]$ (12–14) were characterized by IR, NMR, and elemental analysis. Ligands bearing both amine and tertiary phosphine donors can behave as monodentate ligand (via P or N) or bidentate ligand (via P and N). The P—N bond in aminophosphines is essentially

FIG. 2. Proposed structures of cis-[M(CO)₄(L)₂] complexes.

a single bond, so the lone pairs on nitrogen and phosphorus are available for donor bonding towards metal atoms. However, no examples have been synthesized where both P and N have acted as donor atoms. It is only P that acts as the donor atom. The phosphorus chemical shift for complexes indicates P-M interaction due to the low coordination shift value of complexes ($\Delta \delta$). In the ${}^{31}P-{}^{1}H$ NMR spectra, **12**, **13**, and **14** exhibit singlets that show the expected low-field shifts relative to the uncoordinated ligands [12: 102.4 ppm ($\Delta \delta$ = 35.9 ppm), 13: 73.7 ppm ($\Delta \delta$ = 49.4 ppm), **14**: 102.2 ppm ($\Delta \delta = 77.9$ ppm)].^[16] The phosphorus chemical shifts for the complexes indicate P-M interaction. The coordination chemical shift value decreases considerably from chromium to molybdenum, as expected.^[2,27] In the IR spectra of the metal carbonyl complexes, the v(PN) vibration is tentatively assigned to a very strong absorption at 894 cm^{-1} for 12, 858 cm^{-1} for 13, and 885 cm^{-1} for 14, respectively, which is shifted to higher wavenumbers for 12 ($\Delta v = 33 \text{ cm}^{-1}$), 13 (Δv = 8 cm⁻¹), and 14 (Δv = 35 cm⁻¹) compared with their free ligands.^[28] The v(PPh) bands are observed in 1437 cm⁻¹ for 12, 1440 cm^{-1} for 13 and 14, respectively. The infrared spectra of the complexes $[M(CO)_4L_2]$ exhibit three or four intense ν (CO) absorptions, in the carbonyl region (1813–2011 cm⁻¹), characteristic of the presence of cis -[M(CO)₄] with C_{2v} symmetry.^[5,18,27,29,30] The generation of [Mo(CO)₄L] complexes may be used to as a rapid "spot test" for the donor properties of new ligands. This attribute has been recognized for many years, and an extensive literature exists for these complexes, allowing ready comparison with a variety of other phosphorus (III) ligands. The value vCO has been used to evaluate the ligand electronic properties, and it has been found that for π -acceptor ligands, ν CO is at higher wave number than for σ -donor ligands. A shift to lower frequency indicates a stronger donation of electron density from ligand to metal to carbonyl ligand and thereby indicates a stronger σ -donor ability for the P–N ligands.^[31] The position of vCO for the molybdenum complexes (12 and 13) is shown in Table 2. It was found that in the molybdenum complex 13, the CO stretching frequency (2009 cm^{-1}) is lower than in the molybdenum complex $12 (2011 \text{ cm}^{-1})$. Hence the ligand 2 is stronger σ -donor and more electron rich than the ligand 1. The chromium complex 14, the CO stretching frequency (2002 cm^{-1}) is lower than in the molybdenum complex 13 (2009 cm⁻¹) as expected.^[2]

When a THF solution of $CuCl_2.2H_2O$ is treated with a THF solution of $Ph_2PN(CH_2C_6H_5)_2$, the com-

TABLE 2 Comparison of ν CO of [M(CO)₄L₂]

Complexes	$v { m CO}~{ m cm}^{-1}$
cis-[Mo(CO) ₄ (PPh ₂ N(CH ₂ C ₆ H ₅) ₂) ₂]	2011, 1910, 1871, 1818
$\begin{array}{l} cis-[Mo(CO)_4(PhP\{N(CH_2C_6H_5)_2\}_2)_2]\\ cis-[Cr(CO)_4(PhP\{N(CH_2C_6H_5)_2\}_2)_2] \end{array}$	2009, 1865, 1813 2002, 1871, 1813

plex $[CuCl_2(Ph_2PN(CH_2C_6H_5)_2)_2]$ (15) is obtained. The reaction of PhP{N(CH₂C₆H₅)₂} with Cu(OAc)₂.H₂O gave $[Cu(CH_3COO)_2(PhP{N(CH_2C_6H_5)_2}_2)_2]$ (16). The products (15, 16) were characterized by IR, NMR and elemental analysis. The ${}^{31}P-{}^{1}H$ NMR chemical shifts of 15 and 16 are also within the expected range, 80.8, for structurally similar complexes.^[23] The phosphorus resonances of complexes 15 and 16 show a coordination shift to higher frequencies by ca. 14.3 and 56.5 ppm, respectively, compared to those of the free ligands. The phosphorus chemical shifts for the complexes indicate P-Cu interaction. In the IR spectra (KBr) of the complexes, the v(PN)vibration in 15 and 16 is tentatively assigned to strong absorptions at 894 cm⁻¹ (**15**) and 850 cm⁻¹ (**16**), which is shifted to higher wavenumbers for 15 ($\Delta v = 33 \text{ cm}^{-1}$). The v(PN) vibration in 16 show no shift with respect to that of free ligand. The v(PPh) bands are observed in 1437 cm⁻¹ for **15** and 1443 cm⁻¹ for 16, respectively.

The reactions of Ph₂PNHCH₂SO₃H with NiCl₂.6H₂O and CoCl₂.2H₂O gave [Ni(PPh₂NHCH₂SO₃H)₂Cl₂] (**17**) and [Co(PPh₂NHCH₂SO₃H)₂Cl₂] (**18**), respectively. The products (**17, 18**) were characterized by IR, NMR, and elemental analysis. The complexes **17** and **18** exhibit singlets that show the expected low-field shifts relative to the uncoordinated ligands [**17**: 47.2 ppm ($\Delta \delta = 16.9$ ppm), **18**: 45.8 ppm ($\Delta \delta =$ 15.5 ppm)].^[32] The phosphorus chemical shifts for the complexes indicate P–M interaction. In the IR spectra of the complexes, the υ (PN) vibration in **17** and **18** is tentatively assigned to strong absorptions at 943 cm⁻¹ (**17**) and 945 cm⁻¹ (**18**), which is shifted to higher wavenumbers for **17** ($\Delta \upsilon = 17$ cm¹) and **18** ($\Delta \upsilon = 15$ cm¹) compared with their free ligands. The υ (PPh) bands are observed in 1436 cm⁻¹ for **17** and 1438 cm⁻¹ for **18**, respectively.

CONCLUSIONS

In conclusion, the new monoaminophosphines and bis(amino)phosphine and their oxides, sulfides, selenides, and transition metal complexes have been prepared. The compounds were characterized. Although aminophosphines possess two potential donor atoms, their coordination compounds involve the metal–phosphorus bond. The coordination through phosphorus is attributed to the low basicity of the amine nitrogen because of the P–N π interaction between the phosphorus d $_{\pi}$ and nitrogen p $_{\pi}$ orbitals.

REFERENCES

- Burrows, A.D.; Mahon, M.F.; Palmer, M.T. J. Chem. Soc., Dalton Trans. 2000, 3615–3619.
- Priya, S.; Balakrishna M.S.; Mague, J.T. J. Organomet. Chem. 2003, 679, 116–124.
- Necas, M.; St J. Foreman, M.R.; Dastych, D.; Novosad. J. Inorg. Chem. Commun. 2001, 4, 36–40.
- Liu, H.; Banderia, N.A. G.; Calhorda, M.J.; Drew, M.G. B.; Felix, V.; Novosad, J.; Fabrizi de Biani, F.; Zanello, P. J. Organomet. Chem. 2004, 689, 2808–2819.
- Gaw, K.G.; Smith, M.B.; Steed, J.D. J. Organomet. Chem. 2002, 664, 294–297.
- Bhattacharyya, P.; Ly, T.Q.; Slawin, A.M. Z.; Woollins, J.D. Polyhedron 2001, 20, 1803–1808.
- Guo, R., Li, X.; Wu, J.; Kwok, W.H.; Chen, J.; Choi, M.C. K.; Chan, A.S. C. *Tetrahedron Lett.* 2002, 43, 6803–6806.
- Gümgüm, B.; Akba, O.; Durap, F.; Yıldırım, L.T.; Ülkü, D.; Özkar, S. Polyhedron. 2006, 25, 3133–3137.
- Durap, F.; Biricik, N.; Gümgüm, B.; Özkar, S.; Ang, W.H.; Fei, Z.; Scopelliti, R. Polyhedron. 2008, 27, 1, 196–202.
- Slawin, A.M. Z.; Wheatley, J.; Wheatley, M.V.; Woollins, J.D. *Polyhedron* 2003, 22, 1397–1405.
- Saluzzo, C.; Breuzard, J.; Pellet-Rostaing, S.; Vallet, M.; Le Guyader, F.; Lemaire, M. J. Organomet. Chem. 2002, 98, 643– 644.
- Cheng, J.; Wang, F.; Xu, J.; Pan, Y.; Zhang, Z. Tetrahedron Lett. 2003, 44, 7095–7098.
- 13. Stiddard, M.H. B. J.Chem. Soc. 1962, 4712-4715.
- Hill, T.G.; Haltiwanger, R.C.; Prout, T.R.; Norman, A.D. Inorg. Chem. 1989, 28, 3461–3467.
- Sariöz, O.; Serindağ, O.; Abdullah, M.I. Phosphorus, Sulfur, Silicon Relat. Elem. 2009, 184, 1785–1795.
- Kühl, O.; Blaurock, S.; Sieler, J.; Hey-Hawkins, E. Polyhedron 2001, 20, 111–117.
- 17. Gaw, K.G., Smith, M.B.; Slawin, A.M. Z. New J. Chem. 2000, 24, 429-435.
- Lindner, E.; Mohr, M.; Nachtigal, C.; Fawzi, R.; Henkel, G. J. Organomet. Chem. 2000, 595, 166–177.
- Fei, Z.; Scopelliti, R.; Dyson, P.J. J. Chem. Soc. Dalton Trans. 2003, 2772–2779.
- 20. Hessler, A.; Stelzer, O. J. Org. Chem. 1997, 62, 2362-2369.
- Biricik, N.; Durap, F.; Kayan, C.; Gümgüm, B.; Gürbüz, N.; Özdemir, İ.; Ang, W.H.; Fei, Z.; Scopelliti, R. *Journal of Organometallic Chemistry*, 2008, 693, 2693–2699.
- Biricik, N.; Durap, F.; Kayan, C.; Gümgüm, B. Heteroatom Chemistry 2007, 18, 6, 613–616.
- Aydemir, M.; Durap, F.; Baysal, A.; Akba, O.; Gümgüm, B.; Özkar, Ö.; Yıldırım, L. *Polyhedron* 2009, 28, 2313–2320.
- 24. Rudd, M.D.; Creighton, M.A.; Kautz, J.A. Polyhedron 2004, 23, 1923–1929.
- Kingsley, S.; Vij, A.; Chandrasekhar, V. *Inorganic Chemistry* 2001, 40, 6057–6060.
- 26. Balakrishna, M.S.; Mague, J.T. Polyhedron 2001, 20, 2421-2424.
- Balakrishna, M.S.; Abhyankar, R.M.; Mague, J.T. J. Chem. Soc. Dalton Trans. 1999, 1407–1412.
- Zubiri, M.R.; Slawin, A.M. Z.; Wainwright, M.; Woollins, J.D. Polyhedron 2002, 21, 1729–1736.
- 29. Balakrishna, M.S.; McDonald, R. Inorg. Chem. Commun. 2002, 5, 782-786.
- Thurner, C.L.; Barz, M.; Spiegler, M.; Thiel, W.R. J. Organomet. Chem. 1997, 541, 39–49.
- Zubiri, M.R.; Clarke, M.L.; Foster, D.F.; Cole-Hamilton, D.J.; Slawin, A.M. Z.; Woollins, J.D. J. Chem.Soc., Dalton Trans. 2001, 969– 971.
- Said, M.; Hughes, D.L.; Bochmann, M. Polyhedron 2006, 25, 843– 852.