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Abstract: Novel and efficient synthesis of functionalized furan de-
rivatives have been developed in this paper. Promoted by K,COs;,
allenic ketones underwent tandem reactions with 2-chloroacetoace-
tate or 3-chloropentane-2,4-dione to afford 3-methylene-2,3-dihy-
drofurans with high efficiency under remarkably mild conditions.
When the same substrates were treated with potassium carbonate
and triphenylphosphine, on the other hand, 1,2,4-trisubstituted fu-
rans could be obtained in good yields.

Key words: allenic ketones, furan derivatives, phosphine catalysis,
tandem reactions

The development of efficient and novel synthetic strate-
gies by employing functionalized allenes as versatile syn-
thetic intermediates has become a hot topic in organic
synthesis.! As a continuation of our study in this field, we
have recently developed a selective synthesis of oxepin-
3(2H)-ones via base-promoted tandem reaction of 1,2-al-
lenic ketone with 4-chloroacetoacetate (Scheme 1).2
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Scheme 1 Synthesis of oxepin-3(2H)-one via tandem reaction of
1,2-allenic ketone with 4-chloroacetoacetate

Inspired by the above results, we envisioned a new syn-
thetic pathway toward 3-methylene-2,3-dihydrofuran (3)
via a cascade reaction of 1,2-allenic ketone 1 with 2-chlo-
roacetoacetate (2) as shown in Scheme 2. It is well known
that 2,3-dihydrofurans belong to an important class of
compounds which show a wide range of biological activ-
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ity and form the basic structure of many natural products,
such as aflatoxins and others.? Notwithstanding their im-
portance, simple and efficient synthetic methods toward
2,3-dihydrofurans without using transition-metal catalysts
are still highly desirable.*
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Scheme 2 Proposed synthesis of 3-methylene-3-dihydrofuran via a
cascade reaction of 1,2-allenic ketone with 2-chloroacetoacetate

To check the feasibility of our proposed preparation of 3,
1-phenylbuta-2,3-dien-1-one (1a) and ethyl 2-chloroace-
toacetate (2a) were treated with K,CO; in THF at room
temperature for two hours. To our delight, ethyl 2-acetyl-
3-methylene-5-phenyl-2,3-dihydronpuran-2-carboxylate
(3aa) was obtained in a yield of 75%.

Then, a number of solvents (CH,Cl,, EtOAc, toluene,
DMSO, and MeCN), different bases (Na,CO;, NaHCO;,
LiOH, and NaOH) were tested. It was found that the high-
est yield could be obtained when the reaction was run in
MeCN at room temperature for one hour in the presence
of one equivalent of K,CO;. With the optimized reaction
conditions, the scope of the synthesis of 3 was then stud-
ied with a series of substituted 1,2-allenic ketones 1a—e
and a-halogenated active methylene compounds 2a,b.
Representative results are shown in Table 1.° It turned out
that both 1-aryl- (Table 1, entries 1-3, 5) and 1-phenyl-
ethyl-substituted (Table 1, entry 4) 1,2-allenic ketones un-
derwent this tandem reaction smoothly to afford the
corresponding 3-methylene-2,3-dihydrofurans 3 in good
yields. It was noted that the electronic nature of substitu-
ents does not show an obvious effect on the yield of 3 (Ta-
ble 1, entries1-3). On the other hand, the retarding effect
of sterics on this reaction is illustrated in Table 1, entry 6
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where 1,2-allenic ketone bearing a substituent on the ter-
minal position of the allenic unit gave the corresponding
product in lower yield.

Table 1 Synthesis of Substituted 2,3-Dihydrofurans 3*

i i o /o
R1k/'/\R2 . )J\/CORs ﬁ 1[—§;OM9
¢ R™ ~0” “core
1la-e 2a,b 3aa-3da, 3na, 3ab
Entry  R!,R? R3 Yield of 3 (%)°
1 laPh, H 2a OEt 3aa 85
2 1b 4-BrC,H,, H 2a OEt 3ba 82
3 1c 4-MeC¢H,, H 2a OEt 3ca 86
4 1d PhCH,CH,, H 2a OEt 3da 81
5 laPh, H 2b Me 3ab 83
6 1n Ph, Me 2a OEt 3na 54

2 Reaction conditions: 1 (1.5 mmol), 2 (1.65 mmol), K,CO; (1.5
mmol), MeCN (5§ mL), r.t., 1 h.
b Isolated yield.

Recently, phosphine-catalyzed cycloaddition reactions of
allenoates or their surrogates as a nucleophile with various
electrophiles have emerged as a versatile platform for the
synthesis of valuable five- and six-membered cyclic struc-
tures.'*™¢ We noticed that in the formation of 3-methy-
lene-2,3-dihydrofurans 3, allenic ketones 1 were actually
acting as an electrophile while 2-chloroacetoacetate (2)
was acting as a nucleophile. If treated with phosphine, on
the other hand, allenic ketones are expected to be trans-
formed into a nucleophilic intermediate® to undergo a nu-
cleophilic reaction with 2-chloroacetoacetate (2). To
explore the possible reactivity of allenic ketones with 2-
chloroacetoacetate under the promotion of phosphine, the
mixture of 1a (1 mmol), 2a (1.1 mmol), Ph;P (0.1 mmol),
and K,CO; (1 mmol) in toluene was stirred at room tem-
perature for 0.5 hours. It turned out that the reaction gave
a yellow solid product, which was identified as a polysub-
stituted furan 4aa based on its NMR and HRMS spectra.

Furans represent an important class of heterocycles since
they occur in a multitude of natural products’ and possess
a broad spectrum of biological and pharmaceutical prop-
erties.® Furthermore, they are also versatile building
blocks in synthetic organic chemistry.® Although many
synthetic routes for their preparation have been devel-
oped, this field is still far from being solved and the devel-
opment of efficient ways to construct furan molecules
from readily available starting materials under mild con-
ditions remains an important goal.!” This urged us to opti-
mize the above process to develop it into an efficient and
general protocol for the preparation of functionalized fu-
rans.

For this purpose, the amount of phosphine, different
bases, and solvents were screened and their effects on this
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reaction are summarized in Table 2. Firstly, it showed that
the amount of Ph;P has a remarkable effect on this reac-
tion (Table 2, entries 1-4). In the absence of Ph;P, no for-
mation of 4aa was observed. With 0.1 or 0.2 equivalents
of Ph,P, the yield of 4aa was very low. With 0.5 equiva-
lents of Ph;P, a yield of 65% could be obtained (Table 2,
entry 4). Further increase in the dosage of Ph;P did not
improve the reaction obviously (Table 2, entry 5). It was also
demonstrated that 1,4-diazabicyclo[2,2,2]-octane (DABCO)
and Me;P did not perform as well in terms of catalytic ac-
tivity as Ph,P for this reaction (Table 2, entries 7 and 8).
Subsequently, the effect of different solvents was also ex-
amined. Among the solvents studied, toluene turned out to
be the most efficient (Table 2 entries 9—11). With toluene
as solvent, other bases, such as Na,CO;, KOH, LiOH, or
NaHCO,, were also tried. They gave lower yields of 4aa
than K,CO; (Table 2, entries 12—15).

Table 2 Optimization Studies for the Formations of 4aa®

o o . COEt
Ph)k%.%Jr )J\/C02Et conditions w
& Ph O
1a 2a 4aa
Entry Base Catalyst (equiv)  Solvent  Yield (%)®
1 K,CO; - toluene trace
2 K,CO; Ph;P (0.1) toluene 15
3 K,CO, Ph;P (0.2) toluene 20
4 K,CO; Ph;P (0.5) toluene 65
5 K,CO;, Ph;P (1.0) toluene 66
6 - Ph;P (0.5) toluene 25
7 K,CO;, DABCO(0.5) toluene 27
8 K,CO; Me,;P(0.5) toluene 24
9 K,CO;, Ph;P (0.5) CH;C1 26
10 K,CO, Ph;P (0.5) THF 14
11 K,CO, Ph,P (0.5) MeCN 10
12 Na,CO;, Ph;P (0.5) toluene 40
13 KOH Ph;P (0.5) toluene 34
14 LiOH Ph;P (0.5) toluene 30
15 NaHCO, Ph;P (0.5) toluene 15

2 Reaction conditions: 1a (1.0 mmol), 2a (1.1 mmol), base (1.0
mmol), solvent (5 mL), r.t., 1.5 h.
®Isolated yield.

With the optimized conditions in hands, the scope and
generality for the synthesis of 1,2,4-trisubstituted furans
was investigated.!! It turned out that both 1-aryl (Table 3,
entries 1-10, 13, and 14) and 1-benzyl- (Table 3, entries
11 and 15) or 1-phenylethyl-substituted (Table 3, entries
12 and 16) 1,2-allenic ketones underwent this tandem re-
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action smoothly to afford the desired furan in moderate to
good yields. Functional groups such as F, Cl, Br, CH;0,
and CF; are well tolerated. Clearly, the electronic nature
of substituents on the aromatic ring shows an obvious ef-
fect on the yield of 4aa. Substrates with an electron-donat-
ing group gave better yields (Table 3, entries 6, 7, 9, and
10) than that with an electron-withdrawing group (Table
3, entries 2—5, 8). Promisingly, this transformation could
be extended to 3-chloropentane-2,4-dione (2b), though
the yields of the corresponding products were lower (Ta-
ble 3, entries 14-16).

Table 3 Synthesis of Substituted Furans 4°

o] 0 COR?2
AT AN B m
cl toluene, r.t. Rt o)
1a-m 2a,b 4aa—4ma, 4jb—4kb
Entry R! R? Yield of 4 (%)°
1 la Ph 2a OEt 4aa 65
2 1b 4-FC,H, 2a OEt 4ba 58
3 1c 4-CICH, 2a OEt 4ca 52
4 1d 4-BrCH, 2a OEt 4da 53
5 le 4-CNC¢H, 2a OEt 4ea 40
6 1f 4-MeC,H, 2a OEt 4fa 82
7 1g 4-MeOC¢H, 2a OEt 4ga 80
8 1h 3-BrCH, 2a OEt 4ha 45
9 1i 3-MeC¢H, 2a OEt 4ia 74
10 1j 2-MeOC¢H, 2a OEt 4ja 72
11 1k Bn 2a OEt 4ka 83
12 11 PhCH,CH, 2a OEt 4la 88
13 1m furan-2-yl 2a OEt 4ma 42
14 1j 2-MeOC¢H, 2b Me 4jb 40
15 1k Bn 2b Me 4kb 42
16 11 PhCH,CH, 2b Me 41b 44

# Reaction conditions: 1 (1.5 mmol), 2 (1.65 mmol), Ph;P (0.75
mmol), K,COj; (1.5 mmol), toluene (5§ mL), r.t., 1.5 h.
b Isolated yield.

Based on the above observations, a plausible mechanistic
pathway for the formation of 4 is proposed in Scheme 3.
Firstly, nucleophilic addition of triphenylphosphine onto
allenic ketone 1 results in a phosphonium intermediate A.
Then, A undergoes an intermolecular C-nucleophilic sub-
stitution with 2 to afford B, which is then deprotonated to
give a zwitterionic intermediate C. Intermediate C can
readily isomerize to its tautomer D. Compound D under-
goes a S-exo-trig process to produce the furan intermedi-
ate E. Subsequent expulsion of the phosphine catalyst
from E furnishes 4.

© Georg Thieme Verlag Stuttgart - New York
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Scheme 3 Plausible pathway for the formation of 4

In summary, we have established a highly selective, con-
venient, and practical method to synthesize 2,3-dihydro-
furans or 1,2,4-trisubstituted furans from the tandem
reaction of 1,2-allenic ketones with a-chloro B-keto esters
or ketones under the promotion of potassium carbonate or
a combination of triphenylphosphine and potassium car-
bonate at room temperature. With advantages such as
readily available acyclic substrates, free of expensive cat-
alysts/reagents, and extremely mild reaction conditions,
the methods developed herein should be important appli-
cations in heterocyclic chemistry and related areas.
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Typical Procedure for the Preparation of Compounds
3aa—da,na,ab — Exemplified with 3aa (Table 1, Entry 1)
To a flask containing 1-phenylbuta-2,3-dien-1-one (1a, 1
mmol) and ethyl 2-chloroacetoacetate (2, 1.1 mmol) in
MeCN (3 mL) were added anhydrous K,CO; (1.0 mmol).
The solution was stirred at r.t. for 1 h. The reaction then was
quenched with aq NH,Cl and extracted with EtOAc (3 x 5
mL). The combined organic phases were dried, filtered, and
concentrated under vacuum. The residue was purified by
column chromatography over silica gel using EtOAc-PE
(1:15, v/v) as eluent to give 3aa (68%).
2-Acetyl-3-methylene-5-phenyl-2,3-dihydrofuran-2-
carboxylate (3aa, Table 1, Entry 1)

Eluent: EtOAc-PE (1:15), yellow oil; yield: 85%. 'H NMR
(400 MHz, CDCl,): 6 =7.71-7.68 (m, 2 H), 7.42-7.38 (m, 3
H), 6.07 (s, 1 H), 5.18 (s, 1 H), 5.12 (s, 1 H), 4.29 (q, /= 6.8
Hz, 2 H), 2.31 (s, 3 H), 1.30 (t, /= 7.2 Hz, 3 H). 3*C NMR
(100 MHz, CDCl,): 6 =200.0, 166.1, 161.1, 144.7, 129.9,
129.1, 128.8, 128.6, 125.6, 104.9, 101.9, 94.1, 62.5, 25.1,
14.013. ESI-HRMS: m/z calcd for C,sH,,04 [M + H]":
273.1127; found: 273.1137.

Ethyl 2-Acetyl-5-(4-bromophenyl)-3-methylene-2,3-
dihydrofuran-2-carboxylate (3ba, Table 1, Entry 2)
Eluent: EtOAc—PE (1:15); yellow oil; yield: 82%. 'H NMR
(400 MHz, CDCl,): 6 = 7.54-7.53 (m, 4 H), 6.06 (s, 1 H),
5.20(s, 1 H),5.14 (s, 1 H),4.28 (q,J= 7.2 Hz, 2 H), 2.30 (s,
3H), 1.30(t,J = 7.2 Hz, 3 H). *C NMR (100 MHz, CDCl,):
§=199.7, 166.0, 160.0, 144.3, 131.9, 128.0, 127.1, 124.0,
105.7,102.5, 94.1, 62.7, 25.1, 14.0. ESI-HRMS: m/z calcd
for C,4H,,BrO, [M + H]*: 351.0232; found: 351.0237.
Ethyl 2-Acetyl-3-methylene-5-p-tolyl-2,3-dihydrofuran-
2-carboxylate (3ca, Table 1, Entry 3)

Eluent: EtOAc-PE (1:15); yellow oil; yield: 86%. '"H NMR
(400 MHz, CDCl,): 6 =7.59 (d, J= 8.4 Hz, 2 H), 7.21 (d,
J=8.0Hz, 2 H), 6.02 (s, 1 H), 5.51 (s, 1 H), 5.08 (s, 1 H),
4.29 (t,J= 6.8 Hz, 2 H), 2.38 (s, 3 H), 2.31 (s, 3 H), 1.30 (4,
J=6.8 Hz, 3 H). *C NMR (100 MHz, CDCl,): § = 200.2,
166.2, 161.4, 144.8, 140.2, 129.3, 126.4, 125.6, 104.3,
101.1,94.0, 62.5,25.1, 25.5, 14.0. ESI-HRMS: m/z calcd for
C,7H,40, [M + H]": 287.1283; found: 287.1280.

Ethyl 2-Acetyl-3-methylene-5-(3-0xo0-3-phenylpropyl)-
2,3-dihydrofuran-2-carboxylate (3da, Table 1, Entry 4)
Eluent: EtOAc—PE (1:15); yellow oil; yield: 81%. '"H NMR
(400 MHz, CDCl,): §=17.31-7.27 (m, 2 H), 7.22-7.20 (m, 3
H), 5.38 (s, | H), 4.99 (s, 1 H), 4.95 (s, 1 H), 4.31-4.25 (m,
2 H),2.96-2.91 (m, 2 H), 2.70-2.66 (m, 2 H), 2.23 (s, 3 H),
1.38 (t,J = 7.6 Hz, 3 H). *C NMR (100 MHz, CDCl,): § =
199.6, 166.2, 165.1, 144.6, 140.4, 128.5, 128.4, 128.3,
126.4, 103.1, 102.9, 94.1, 62.5, 32.6, 30.0, 24.9, 14.0. ESI-
HRMS: m/z caled for CoH,,05 [M + H]*: 329.1389; found:
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329.1383.
1,1'-(3-Methylene-5-phenyl-2,3-dihydrofuran-2,2-
diyl)diethanone (3ab, Table 1, Entry 5)

Eluent: EtOAc-PE (1:15); yellow oil; yield: 83%. 'H NMR
(400 MHz, CDCl,): 6 =7.71-7.69 (m, 2 H), 7.44-7.42 (m, 3
H), 6.08 (s, 1 H), 5.13 (s, 1 H), 5.03 (s, 1 H), 2.31 (s, 3 H).
3CNMR (100 MHz, CDCl,): §=199.9, 160.9, 144.0, 130.0,
129.1, 128.8, 128.7, 127.0, 125.4, 104.4, 102.3, 99.0, 25.5.
ESI-HRMS: m/z calcd for C,sH,s05 [M + H]": 243.1021;
found: 243.1027.
1,1'-(3-Ethylidene-5-phenyl-2,3-dihydrofuran-2,2-
diyl)diethanone (3na, Table 1, Entry 6)

Eluent: EtOAc-PE (1:15); yellow oil; yield: 54%. 'H NMR
(400 MHz, CDCl,): 6 =7.71-7.69 (m, 2 H), 7.42-7.36 (m, 3
H), 6.18 (s, l H), 5.51 (q,J=7.6 Hz, 1 H), 4.31-4.23 (m, 2
H),2.29 (s,3 H), 1.85(d, J=7.2Hz,3 H), 1.29 (t, J=17.6
Hz, 3 H). *C NMR (100 MHz, CDCl,): § =200.8, 166.7,
159.6, 136.9, 129.5, 128.6, 125.4, 116.2, 98.6, 93.8, 62.4,
25.1,15.4, 14.0. ESI-HRMS: m/z calcd for C,¢H;,0; [M +
H]*: 257.1178; found: 257.1183.
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(11) Typical Procedure for the Preparation of Compounds J=8.0Hz,2H), 6.47(s,1 H),4.23 (q,J="7.2Hz,2 H),4.20

4aa—ma,jb—kb — Exemplified with 4aa (Table 3, Entry 1)
To a flask containing 1-phenylbuta-2,3-dien-1-one (1a, 1
mmol) and triphenylphosphine (0.5 mmol) in toluene (5 mL)
were added ethyl 2-chloroacetoacetate (2, 1.1 mmol) and
anhydrous K,CO; (1.0 mmol). The solution was stirred at r.t.
for 1.5 h. The reaction then was quenched with aq NH,Cl
and extracted with EtOAc (3 x 5 mL). The combined organic
phases were dried, filtered, and concentrated under vacuum.
The residue was purified by column chromatography over
silica gel using EtOAc—PE (1:30, v/v) as eluent to give 4aa
(65%).

Ethyl 2-Methyl-5-(2-oxo0-2-phenylethyl)furan-3-
carboxylate (4aa, Table 3, Entry 1)

Eluent: EtOAc-PE (1:30); yellow syrup; yield: 65%. 'H
NMR (400 MHz, CDCl;): 6=7.98 (d,J= 8.0 Hz,2 H), 7.57
(t,J=7.2Hz,1H), 7.46 (t, /= 8.0 Hz, 1 H), 6.49 (s, 1 H),
4.24(s,2H),4.24(q,J=7.6Hz,2 H), 2.52 (s, 3 H), 1.30 (t,
J=17.6 Hz, 3 H). 3C NMR (100 MHz, CDCl,): § = 194.6,
164.0, 158.8, 146.2, 136.0, 133.6, 128.8, 128.5, 114.5,
109.3, 60.1, 38.0, 14.4, 13.8. ESI-HRMS: m/z calcd for
C,¢H,;0, [M + H]": 273.1127; found: 273.1130.

Ethyl 5-[2-(4-Fluorophenyl)-2-oxoethyl]-2-methylfuran-
3-carboxylate (4ba, Table 3, Entry 2)

Eluent: EtOAc-PE (1:30); yellow solid; yield: 58%. 'H
NMR (400 MHz, CDCl;): 6 = 8.03-8.00 (m, 2 H), 7.313—
7.308 (m, 1 H), 7.15-7.11 (m, 2 H), 6.49 (s, | H), 4.24 (q,
J=7.6Hz,2 H),4.21 (s,2 H),2.52 (s, 3H), 1.30 (t, J=7.2
Hz, 3 H). *C NMR (100 MHz, CDCl,): = 193.1, 167.2,
164.7, 164.0, 158.9, 146.0, 133.8, 133.6, 132.4, 132.4,
132.1, 131.3, 131.2, 128.8, 128.6, 128.6, 128.5, 116.0,
115.8,114.5,109.4, 60.1, 38.0, 14.4, 13.8. ESI-HRMS: m/z
caled for C,¢H,(FO, [M + H]": 291.1033; found: 291.1037.
Ethyl 5-[2-(4-Chlorophenyl)-2-oxoethyl]-2-methylfuran-
3-carboxylate (4ca, Table 3, Entry 3)

Eluent: EtOAc-PE (1:30); yellow solid; yield: 52%. 'H
NMR (400 MHz, CDCl;): 6=7.96 (d,J= 8.8 Hz,2 H), 7.44
(d,J=8.8Hz,2 H), 6.49 (s, | H), 4.24 (q,J=7.2 Hz, 2 H),
4.22(s,2 H),2.52 (s, 3 H), 1.31 (t,J= 6.8 Hz, 3 H). 13C
NMR (100 MHz, CDCl;): 6 = 193.5, 164.0, 159.0, 145.8,
140.1, 134.3, 123.0, 129.1, 114.5, 109.5, 60.1, 38.1, 14.4,
13.8. ESI-HRMS: m/z calcd for C,¢H,;C104 [M + H]":
307.0737; found: 307.0742.

Ethyl 5-[2-(4-Bromophenyl)-2-oxoethyl]-2-methylfuran-
3-carboxylate (4da, Table 3, Entry 4)

Eluent: EtOAc-PE (1:30); yellow solid; yield: 53%. 'H
NMR (400 MHz, CDCl;): 6=7.83 (d,J= 8.4 Hz,2 H), 7.58
(d,J=8.4Hz,2 H), 6.47 (s, | H), 4.23 (q, J= 6.8 Hz, 2 H),
4.20 (s, 2 H), 2.51 (s, 3 H), 1.29 (t, J = 6.8 Hz, 3 H). 13C
NMR (100 MHz, CDCl,): 6 = 193.6, 163.9, 158.9, 145.8,
134.7,132.1, 130.1, 128.8, 114.5, 109.5, 60.1, 38.0, 14.4,
13.8. ESI-HRMS: m/z caled for C,(H,,BrO, [M + H]":
351.0232; found: 351.0237.

Ethyl 5-[2-(4-Cyanophenyl)-2-oxoethyl]-2-methylfuran-
3-carboxylate (4ea, Table 3, Entry 5)

Eluent: EtOAc—PE (1:10); white solid; yield: 40%. "H NMR
(400 MHz, CDCls): 6 = 8.08 (d, /J=8.4 Hz, 2 H), 7.79 (d,
J=8.4Hz,2H),6.51(s,1H),4.27(s,2H),4.25(q,J=7.2
Hz, 2 H), 2.53 (s, 3 H), 1.32 (t,J = 7.2 Hz, 3 H). 3*C NMR
(100 MHz, CDCl5): 6 = 193.3, 163.9, 159.1, 145.0, 138.9,
132.7,129.0, 117.8, 116.8, 114.6, 109.8, 60.2, 38.4, 14.4,
13.8. ESI-HRMS: m/z calced for C,,H;(NO, [M + H]":
298.1079; found: 298.1083.

Ethyl 2-Methyl-5-(2-0x0-2-p-tolylethyl)furan-3-
carboxylate (4fa, Table 3, Entry 6)

Eluent: EtOAc—PE (1:15); white solid; yield: 82%. '"H NMR
(400 MHz, CDCls): 6 =7.87 (d,J=8.2 Hz, 2 H), 7.24 (d,
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(s,2H),2.51(s,3H),2.38(s,3H), 1.29 (t,/J=7.6 Hz, 3 H).
BCNMR (100 MHz, CDCl,): §=194.3,164.1, 158.8, 146.4,
144.5, 133.5, 129.4, 128.7, 114.4, 109.2, 60.0, 37.9, 21.7,
14.4, 13.8. ESI-HRMS: m/z calcd for C,;H,,04 [M + H]":
287.1283; found: 287.1289.

Ethyl 5-[2-(4-Methoxyphenyl)-2-oxoethyl]-2-
methylfuran-3-carboxylate (4ga, Table 3, Entry 7)
Eluent: EtOAc—PE (1:10); white solid; yield: 80%. "H NMR
(400 MHz, CD;0D and DMSO-dy): 6 =8.07 (d, /= 8.8 Hz,
2 H), 7.09 (d, /= 8.8 Hz, 2 H), 6.53 (s, 1 H), 4.38 (s, 2 H),
4.28(q,J=6.8 Hz,2 H), 3.92 (s, 3 H), 2.55 (s, 3 H), 1.35 (¢,
J=6.8 Hz, 3 H). *C NMR (100 MHz, CDCl,): § = 193.8,
164.1, 163.8, 158.4, 148.0, 130.9, 129.1, 114.2, 114.0,
108.9, 60.0, 55.2,37.3, 13.8, 12.3. ESI-HRMS: m/z calcd for
C,7H,405 [M + H]J": 303.1232; found: 303.1236.

Ethyl 5-[2-(3-Bromophenyl)-2-oxoethyl]-2-methylfuran-
3-carboxylate (4ha, Table 3, Entry 8)

Eluent: EtOAc-PE (1:30); white solid; yield: 40%. '"H NMR
(400 MHz, CDCL,): 6 =8.12 (s, 1 H), 7.91 (d,J=7.6 Hz, 1
H), 7.71 (d, J=8.4 Hz, 1 H), 7.36 (t, /= 8.4 Hz, 1 H), 6.50
(s, 1 H),4.26 (q,J = 7.6 Hz, 2 H), 4.23 (s, 2 H), 2.54 (s, 3 H),
1.32 (t,J = 7.6 Hz, 3 H). ¥*C NMR (100 MHz, CDCl,): § =
193.3, 164.0, 159.0, 145.5, 137.7, 136.4, 131.6, 130.4,
127.1,123.1, 114.5, 109.6, 60.1, 38.1, 14.4, 13.8. ESI-
HRMS: m/z caled for C,¢H,(BrO, [M + H]": 351.0232;
found: 351.0237.

Ethyl 2-Methyl-5-(2-0x0-2-m-tolylethyl)furan-3-
carboxylate (4ia, Table 3, Entry 9)

Eluent: EtOAc-PE (1:15); yellow oil; yield: 74%. 'H NMR
(400 MHz, CDCl,): §=7.79-7.77 (m, 2 H), 7.37-7.26 (m, 2
H), 6.48 (s, 1 H),4.25(q,J=7.2Hz,2 H),4.22 (5,2 H), 2.53
(s, 3 H), 2.40 (s, 3 H), 1.31 (t, J= 7.6 Hz, 2 H). *C NMR
(100 MHz, CDCl,): 6 = 194.7, 164.0, 158.7, 146.3, 138.6,
136.2, 134.3, 129.0, 128.6, 125.8, 114.5, 109.3, 60.0, 38.0,
21.3,14.3, 13.7. ESI-HRMS: m/z calcd for C;H 4O, [M +
H]": 287.1283; found: 287.1289.

Ethyl 5-[2-(2-Methoxyphenyl)-2-oxoethyl]-2-
methylfuran-3-carboxylate (4ja, Table 3, Entry 10)
Eluent: EtOAc—PE (1:10); white solid, yield 72%. 'H NMR
(400 MHz, CDCl,): §=7.73-7.71 (m, 1 H), 7.47-7.42 (m, 1
H), 6.99-6.93 (m, 2 H), 6.43 (s, 1 H), 4.26 (s, 2 H), 4.23 (q,
J=6.8 Hz, 2 H), 3.89 (s, 3 H), 2.51 (s, 3H), 1.29 (t, /= 6.8
Hz, 2 H). *C NMR (100 MHz, CDCL,): § = 196.5, 164.1,
158.7, 158.4, 147.3, 134.1, 130.8, 127.2, 120.8, 114.3,
111.6, 108.8, 59.9, 55.5, 42.6, 14.3, 13.7. ESI-HRMS: m/z
calcd for C;H,405: [M + H]": 303.1232; found: 303.1236.
Ethyl 2-Methyl-5-(2-oxo0-3-phenylpropyl)furan-3-
carboxylate (4ka, Table 3, Entry 11)

Eluent: EtOAc-PE (1:15); white solid; yield: 83%. '"H NMR
(400 MHz, CDCl5): 8 =7.33-7.25 (m, 3 H), 7.17-7.15 (m, 2
H), 6.43 (s, | H),4.25(q,J = 6.8 Hz,2 H), 3.73 (s, 2 H), 3.67
(s,2 H), 2.51 (s,3H), 1.32 (t,J = 7.2 Hz, 3 H). *C NMR
(100 MHz, CDCl,): 6 =202.8, 163.9, 158.8, 145.9, 133.6,
129.4, 128.8, 127.2, 114.5, 109.4, 60.0, 49.1, 41.2, 14.3,
13.7. ESI-HRMS: m/z calcd for C,;H,,0, [M + H]":
287.1283; found: 287.1288.

Ethyl 2-Methyl-5-(2-0x0-4-phenylbutyl)furan-3-
carboxylate (4la, Table 3, Entry 12)

Eluent: EtOAc-PE (1:15); colorless oil; yield: 88%. 'H
NMR (400 MHz, CDCl;): 6 =7.29-7.25 (m, 2 H), 7.20-7.15
(m, 3 H), 6.43 (s, 1 H), 4.26 (q, /= 7.2 Hz, 2 H), 2.89 (t,
J=72Hz,2H),2.79 (t,/=7.2Hz,2 H),2.53 (s, 3 H), 1.33
(t,J = 6.8 Hz, 3 H). 3*C NMR (100 MHz, CDCl,): § =204.8,
164.0, 158.9, 146.0, 140.7, 133.9, 133.7, 128.5, 128 4,
126.2, 114.5, 109.3, 60.1, 43.5, 42.2, 29.6, 14.4, 13.8. ESI-
HRMS: m/z caled for C gH,,0, [M + H]": 301.1440; found:
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301.1446.

Ethyl 5-[2-(Furan-2-yl)-2-oxoethyl]-2-methylfuran-3-
carboxylate (4ma, Table 3, Entry 13)

Eluent: EtOAc-PE (1:10); yellow solid; yield: 42%. 'H
NMR (400 MHz, CDCly): 6 =7.61 (d, J=1.2 Hz, 1 H),
7.26-7.25 (m, 1 H), 6.56-6.55 (m, 1 H), 6.50 (s, 1 H), 4.25
(q,J=6.8 Hz,2 H), 4.10 (s, 2 H), 2.52 (s, 3 H), 1.31 (4,
J=6.8 Hz, 3 H). 3C NMR (100 MHz, CDCl,): § = 183.5,
164.1, 158.9, 151.9, 147.0, 145.6, 118.3, 114.5, 112.6,
109.4, 60.1, 37.8, 14.4, 13.8. ESI-HRMS: m/z calcd for
C4,H,505 [M + H]": 263.0919; found: 263.0915.
2-(4-Acetyl-5-methylfuran-2-yl)-1-(2-methoxyphenyl)-
ethanone (4jb, Table 3, Entry 14)

Eluent: EtOAc—PE (1:30); white solid; yield: 40%. 'H NMR
(400 MHz, CDCl;): 6 =7.78-7.76 (m, 1 H), 7.51-7.47 (m, 1
H), 7.03-6.97 (m, 2 H), 6.43 (s, 1 H), 4.30 (s, 2 H), 3.93 (s,
3 H), 2.54 (s, 3 H), 2.36 (s, 3 H). 3C NMR (100 MHz,
CDCl;): 6 =196.6,194.4, 158.8, 157.8, 147.3, 134.3, 130.9,
126.9,122.2,120.9, 111.6, 108.7, 59.9, 55.6, 42.6, 29.2,
14.5. ESI-HRMS: m/z calcd for C,¢H,;0, [M + H]":
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273.1127; found: 273.1125.
1-(4-Acetyl-5-methylfuran-2-yl)-3-phenylpropan-2-one
(4kb, Table 3, Entry 15)

Eluent: EtOAc-PE (1:10) yellow oil; yield: 42%. 'H NMR
(400 MHz, CDCls): 8 =7.33-7.26 (m, 3 H), 7.18-7.17 (m, 2
H), 6.39 (s, 1 H), 3.76 (s, 2 H), 3.70 (s, 2 H), 2.52 (s, 3 H),
2.36 (s, 3 H). 3C NMR (100 MHz, CDCl;): §=203.0, 194.1,
158.1,145.8,133.4,129.5,128.9, 127.3,122.3, 109.2, 49 4,
41.0,29.2, 14.4. ESI-HRMS: m/z calcd for C,(H,;,05 [M +
H]": 257.1178,; found: 257.1184.
1-(4-Acetyl-5-methylfuran-2-yl)-4-phenylbutan-2-one
(41b, Table 3, Entry 16)

Eluent: EtOAc-PE (1:10); yellow oil; yield: 44%. 'H NMR
(400 MHz, CDCl,): §=7.29-7.25 (m,2 H), 7.21-7.15 (m, 3
H), 6.38 (s, 1 H), 3.64 (s,2H),2.90 (t, /= 7.6 Hz, 2 H), 2.81
(t, J=8.0 Hz, 2 H), 2.53 (s, 3 H), 2.36 (s, 3 H). '*C NMR
(100 MHz, CDCl,): 6 =204.7, 194.1, 158.1, 145.9, 140.7,
128.6, 128.4,126.3, 122.3, 109.1, 43.7, 42.1, 29.6, 29.2,
14.4. ESI-HRMS: m/z calcd for C,;H,,0; [M + H]":
271.1334; found: 271.1341.
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