Selective Synthesis of 3-Methylene-2,3-dihydrofurans or 1,2,4-Trisubstituted Furans via Tandem Reactions of Allenic Ketones with α -Chloro β -Keto Esters or Ketones

Qiang Wang,^{a,b} Lei Yang,^b Xuesen Fan*a

^a School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, P. R. of China Fax +86(373)3326336; E-mail: xuesen.fan@htu.cn

^b School of Physics-Chemistry, Henan Polytechnic University, Jiaozuo 454003, P. R. of China

Received: 02.12.2013; Accepted after revision: 05.01.2014

Abstract: Novel and efficient synthesis of functionalized furan derivatives have been developed in this paper. Promoted by K_2CO_3 , allenic ketones underwent tandem reactions with 2-chloroacetoacetate or 3-chloropentane-2,4-dione to afford 3-methylene-2,3-dihydrofurans with high efficiency under remarkably mild conditions. When the same substrates were treated with potassium carbonate and triphenylphosphine, on the other hand, 1,2,4-trisubstituted furans could be obtained in good yields.

Key words: allenic ketones, furan derivatives, phosphine catalysis, tandem reactions

The development of efficient and novel synthetic strategies by employing functionalized allenes as versatile synthetic intermediates has become a hot topic in organic synthesis.¹ As a continuation of our study in this field, we have recently developed a selective synthesis of oxepin-3(2H)-ones via base-promoted tandem reaction of 1,2-allenic ketone with 4-chloroacetoacetate (Scheme 1).²

Scheme 1 Synthesis of oxepin-3(2*H*)-one via tandem reaction of 1,2-allenic ketone with 4-chloroacetoacetate

Inspired by the above results, we envisioned a new synthetic pathway toward 3-methylene-2,3-dihydrofuran (3) via a cascade reaction of 1,2-allenic ketone 1 with 2-chloroacetoacetate (2) as shown in Scheme 2. It is well known that 2,3-dihydrofurans belong to an important class of compounds which show a wide range of biological activ-

SYNLETT 2014, 25, 0687–0692 Advanced online publication: 10.02.2014

DOI: 10.1055/s-0033-1340671; Art ID: ST-2013-W1097-L

© Georg Thieme Verlag Stuttgart New York

ity and form the basic structure of many natural products, such as aflatoxins and others.³ Notwithstanding their importance, simple and efficient synthetic methods toward 2,3-dihydrofurans without using transition-metal catalysts are still highly desirable.⁴

Scheme 2 Proposed synthesis of 3-methylene-3-dihydrofuran via a cascade reaction of 1,2-allenic ketone with 2-chloroacetoacetate

To check the feasibility of our proposed preparation of **3**, 1-phenylbuta-2,3-dien-1-one (**1a**) and ethyl 2-chloroace-toacetate (**2a**) were treated with K_2CO_3 in THF at room temperature for two hours. To our delight, ethyl 2-acetyl-3-methylene-5-phenyl-2,3-dihydronpuran-2-carboxylate (**3aa**) was obtained in a yield of 75%.

Then, a number of solvents (CH₂Cl₂, EtOAc, toluene, DMSO, and MeCN), different bases (Na₂CO₃, NaHCO₃, LiOH, and NaOH) were tested. It was found that the highest yield could be obtained when the reaction was run in MeCN at room temperature for one hour in the presence of one equivalent of K_2CO_3 . With the optimized reaction conditions, the scope of the synthesis of 3 was then studied with a series of substituted 1,2-allenic ketones 1a-e and α -halogenated active methylene compounds 2a,b. Representative results are shown in Table 1.5 It turned out that both 1-aryl- (Table 1, entries 1-3, 5) and 1-phenylethyl-substituted (Table 1, entry 4) 1,2-allenic ketones underwent this tandem reaction smoothly to afford the corresponding 3-methylene-2,3-dihydrofurans 3 in good yields. It was noted that the electronic nature of substituents does not show an obvious effect on the yield of 3 (Table 1, entries 1-3). On the other hand, the retarding effect of sterics on this reaction is illustrated in Table 1, entry 6

where 1,2-allenic ketone bearing a substituent on the terminal position of the allenic unit gave the corresponding product in lower yield.

 Table 1
 Synthesis of Substituted 2,3-Dihydrofurans 3^a

0 R ¹	• R ² + Cl Cl 2a,b	$COR^3 \xrightarrow{K_2CO_3} \xrightarrow{MeCN, r.t.}$	COMe COR ³ 3aa-3da, 3na, 3ab
Entry	R ¹ , R ²	R ³	Yield of 3 (%) ^b
1	1a Ph, H	2a OEt	3aa 85
2	1b 4-BrC ₆ H ₄ , H	2a OEt	3ba 82
3	1c 4-MeC ₆ H ₄ , H	2a OEt	3ca 86
4	1d PhCH ₂ CH ₂ , H	2a OEt	3da 81
5	1a Ph, H	2b Me	3ab 83
6	1n Ph, Me	2a OEt	3na 54

^a Reaction conditions: **1** (1.5 mmol), **2** (1.65 mmol), K₂CO₃ (1.5 mmol), MeCN (5 mL), r.t., 1 h.

^b Isolated yield.

Recently, phosphine-catalyzed cycloaddition reactions of allenoates or their surrogates as a nucleophile with various electrophiles have emerged as a versatile platform for the synthesis of valuable five- and six-membered cyclic structures.^{1k,m,6} We noticed that in the formation of 3-methylene-2,3-dihydrofurans 3, allenic ketones 1 were actually acting as an electrophile while 2-chloroacetoacetate (2) was acting as a nucleophile. If treated with phosphine, on the other hand, allenic ketones are expected to be transformed into a nucleophilic intermediate⁶ to undergo a nucleophilic reaction with 2-chloroacetoacetate (2). To explore the possible reactivity of allenic ketones with 2chloroacetoacetate under the promotion of phosphine, the mixture of **1a** (1 mmol), **2a** (1.1 mmol), Ph₃P (0.1 mmol), and K₂CO₃ (1 mmol) in toluene was stirred at room temperature for 0.5 hours. It turned out that the reaction gave a yellow solid product, which was identified as a polysubstituted furan 4aa based on its NMR and HRMS spectra.

Furans represent an important class of heterocycles since they occur in a multitude of natural products⁷ and possess a broad spectrum of biological and pharmaceutical properties.⁸ Furthermore, they are also versatile building blocks in synthetic organic chemistry.⁹ Although many synthetic routes for their preparation have been developed, this field is still far from being solved and the development of efficient ways to construct furan molecules from readily available starting materials under mild conditions remains an important goal.¹⁰ This urged us to optimize the above process to develop it into an efficient and general protocol for the preparation of functionalized furans.

For this purpose, the amount of phosphine, different bases, and solvents were screened and their effects on this

CO₂Et

reaction are summarized in Table 2. Firstly, it showed that the amount of Ph₃P has a remarkable effect on this reaction (Table 2, entries 1–4). In the absence of Ph₃P, no formation of 4aa was observed. With 0.1 or 0.2 equivalents of Ph₃P, the yield of 4aa was very low. With 0.5 equivalents of Ph₃P, a yield of 65% could be obtained (Table 2, entry 4). Further increase in the dosage of Ph₃P did not improve the reaction obviously (Table 2, entry 5). It was also demonstrated that 1,4-diazabicyclo[2,2,2]-octane (DABCO) and Me₃P did not perform as well in terms of catalytic activity as Ph₃P for this reaction (Table 2, entries 7 and 8). Subsequently, the effect of different solvents was also examined. Among the solvents studied, toluene turned out to be the most efficient (Table 2 entries 9-11). With toluene as solvent, other bases, such as Na₂CO₃, KOH, LiOH, or $NaHCO_3$, were also tried. They gave lower yields of 4aa than K_2CO_3 (Table 2, entries 12–15).

Table 2 Optimization Studies for the Formations of 4aa^a

 \sim

Ph	, , , , , , , , , , , , , , , , , , ,	CO ₂ Et conditions		
1a	:	2a		4aa
Entry	Base	Catalyst (equiv)	Solvent	Yield (%) ^b
1	K ₂ CO ₃	_	toluene	trace
2	K ₂ CO ₃	Ph ₃ P (0.1)	toluene	15
3	K ₂ CO ₃	Ph ₃ P (0.2)	toluene	20
4	K ₂ CO ₃	Ph ₃ P (0.5)	toluene	65
5	K ₂ CO ₃	Ph ₃ P (1.0)	toluene	66
6	_	Ph ₃ P (0.5)	toluene	25
7	K ₂ CO ₃	DABCO(0.5)	toluene	27
8	K ₂ CO ₃	$Me_{3}P(0.5)$	toluene	24
9	K ₂ CO ₃	Ph ₃ P (0.5)	CH ₃ Cl	26
10	K ₂ CO ₃	Ph ₃ P (0.5)	THF	14
11	K ₂ CO ₃	Ph ₃ P (0.5)	MeCN	10
12	Na ₂ CO ₃	Ph ₃ P (0.5)	toluene	40
13	КОН	Ph ₃ P (0.5)	toluene	34
14	LiOH	Ph ₃ P (0.5)	toluene	30
15	NaHCO ₃	Ph ₃ P (0.5)	toluene	15

^a Reaction conditions: **1a** (1.0 mmol), **2a** (1.1 mmol), base (1.0 mmol), solvent (5 mL), r.t., 1.5 h.

^b Isolated yield.

With the optimized conditions in hands, the scope and generality for the synthesis of 1,2,4-trisubstituted furans was investigated.¹¹ It turned out that both 1-aryl (Table 3, entries 1–10, 13, and 14) and 1-benzyl- (Table 3, entries 11 and 15) or 1-phenylethyl-substituted (Table 3, entries 12 and 16) 1,2-allenic ketones underwent this tandem re-

action smoothly to afford the desired furan in moderate to good yields. Functional groups such as F, Cl, Br, CH₃O, and CF₃ are well tolerated. Clearly, the electronic nature of substituents on the aromatic ring shows an obvious effect on the yield of **4aa**. Substrates with an electron-donating group gave better yields (Table 3, entries 6, 7, 9, and 10) than that with an electron-withdrawing group (Table 3, entries 2–5, 8). Promisingly, this transformation could be extended to 3-chloropentane-2,4-dione (**2b**), though the yields of the corresponding products were lower (Table 3, entries 14–16).

 Table 3
 Synthesis of Substituted Furans 4^a

R ¹		K_2CO_3 (1 equiv) Ph_3P (0.5 equiv) toluene, r.t. R^{17}	
Entry	R ¹	R ²	Yield of $4 (\%)^{b}$
1	1 - Dh	2 - OEt	A == (5
1	la Ph	2a OEt	4aa 05
2	1b 4-FC ₆ H ₄	2a OEt	4ba 58
3	1c 4-ClC ₆ H ₄	2a OEt	4ca 52
4	$1d \text{ 4-BrC}_6 H_4$	2a OEt	4da 53
5	1e 4-CNC ₆ H ₄	2a OEt	4ea 40
6	$1f 4-MeC_6H_4$	2a OEt	4fa 82
7	1g 4-MeOC ₆ H ₄	2a OEt	4ga 80
8	1h 3-BrC ₆ H ₄	2a OEt	4ha 45
9	1i 3-MeC ₆ H ₄	2a OEt	4ia 74
10	1ј 2-МеОС ₆ Н ₄	2a OEt	4ja 72
11	1k Bn	2a OEt	4ka 83
12	11 PhCH ₂ CH ₂	2a OEt	4la 88
13	1m furan-2-yl	2a OEt	4ma 42
14	1ј 2-МеОС ₆ Н ₄	2b Me	4jb 40
15	1k Bn	2b Me	4kb 42
16	11 PhCH ₂ CH ₂	2b Me	4lb 44

^a Reaction conditions: 1 (1.5 mmol), 2 (1.65 mmol), Ph₃P (0.75 mmol), K₂CO₃ (1.5 mmol), toluene (5 mL), r.t., 1.5 h. ^b Isolated yield.

Based on the above observations, a plausible mechanistic pathway for the formation of **4** is proposed in Scheme 3. Firstly, nucleophilic addition of triphenylphosphine onto allenic ketone **1** results in a phosphonium intermediate **A**. Then, **A** undergoes an intermolecular C-nucleophilic substitution with **2** to afford **B**, which is then deprotonated to give a zwitterionic intermediate **C**. Intermediate **C** can readily isomerize to its tautomer **D**. Compound **D** undergoes a 5-*exo-trig* process to produce the furan intermediate **E**. Subsequent expulsion of the phosphine catalyst from **E** furnishes **4**.

Scheme 3 Plausible pathway for the formation of 4

In summary, we have established a highly selective, convenient, and practical method to synthesize 2,3-dihydrofurans or 1,2,4-trisubstituted furans from the tandem reaction of 1,2-allenic ketones with α -chloro β -keto esters or ketones under the promotion of potassium carbonate or a combination of triphenylphosphine and potassium carbonate at room temperature. With advantages such as readily available acyclic substrates, free of expensive catalysts/reagents, and extremely mild reaction conditions, the methods developed herein should be important applications in heterocyclic chemistry and related areas.

Acknowledgment

We thank the National Natural Science Foundation of China (21172057, 21272058 and 21307028), Postdoctoral Science Foundation of Henan Province (2012058), STRPHP (14A150048), RFDP (20114104110005), PCSIRT (IRT 1061) and BCTRP (132300410293) for financial support.

Supporting Information for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.

References and Notes

- (1) (a) Ma, S. Chem. Rev. 2005, 105, 2829. (b) Winter, N. K. C. Chem. Rev. 2011, 111, 1994. (c) Ma, S. Li L., Xie H. 1999, 64, 5325. (d) Fan, X.; Wang, Y.; Qu, Y.; Xu, H.; He, Y.; Zhang, X.; Wang, J. J. Org. Chem. 2011, 76, 982. (e) Zhang, X.; Jia, X.; Fang, L.; Liu, N.; Wang, J.; Fan, X. Org. Lett. 2011, 13, 5024. (f) Fan, X.; He, Y.; Cui, L.; Zhang, X.; Wang, J. Green Chem. 2011, 13, 3218. (g) Sabbasani, V. R.; Lee, D. Org. Lett. 2013, 15, 3954. (h) Streit, U.; Birbaum, F.; Quattropani, A.; Bochet, C. G. J. Org. Chem. 2013, 78, 6890. (i) Wang, Y.; Zhang, W.; Ma, S. J. Am. Chem. Soc. 2013, 135, 11517. (j) Zhao, Q.; Han, X.; Wei, Y.; Shi, M.; Lu, L. Chem. Commun. 2012, 48, 970. (k) Zheng, J.; Huang, Y.; Li, Z. Org. Lett. 2013, 15, 5064. (1) Takizawa, S.; Arteaga, F. A.; Yoshida, Y.; Suzuki, M.; Sasai, H. Org. Lett. 2013, 15, 4142. (m) Xiao, H.; Chai, Z.; Yao, R.; Zhao, G. J. Org. Chem. 2013, 78, 9781. (n) Zhang, R.; Xu, Q.; Chen, K.; Gu, P.; Shi, M. Eur. J. Org. Chem. 2013, 7366. (o) Yang, L.; Wang, S.; Nie, J.; Li, S.; Ma, J. Org. Lett. 2013, 15, 5214.
- (2) Wang, Q.; Xu, Z.; Fan, X. RSC Adv. 2013, 3, 4156.

- (3) (a) Katagiri, K.; Tori, K.; Kimura, Y.; Yoshida, T.; Nagasaki, T.; Minato, H. J. Med. Chem. 1967, 10, 1149.
 (b) Schuda, P. F. Top. Curr. Chem. 1980, 91, 75. (c) Miski, M.; Jakupovic, J. Phytochemistry 1990, 29, 1995. (d) Zdero, C.; Bohlmann, F.; King, R. M.; Robinson, H. Phytochemistry 1986, 25, 509. (e) Michael, J. P. Nat. Prod. Rep. 2000, 17, 603.
- (4) (a) Liu, R.; Zhang, M.; Zhang, J. Chem. Commun. 2011, 47, 12870. (b) Ma, S.; Zheng, Z.; Jiang, X. Org. Lett. 2007, 9, 529. (c) Shang, Y.; Ju, K.; He, X.; Hu, J.; Yu, S.; Zhang, M.; Liao, K.; Wang, L.; Zhang, P. J. Org. Chem. 2010, 75, 5743. (d) Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2008, 130, 12598. (e) Meng, X.; Huang, Y.; Chen, R. Org. Lett. 2009, 11, 137. (f) Wang, T.; Ye, S. Org. Biomol. Chem. 2011, 9, 5260. (g) Xie, P.; Lai, W.; Geng, Z.; Huang, Y.; Chen, R. Chem. Asian J. 2012, 7, 1533. (h) Saunders, L. B.; Miller, S. J. ACS Catal. 2011, 1, 1347.
- (5) Typical Procedure for the Preparation of Compounds 3aa-da,na,ab – Exemplified with 3aa (Table 1, Entry 1) To a flask containing 1-phenylbuta-2,3-dien-1-one (1a, 1 mmol) and ethyl 2-chloroacetoacetate (2, 1.1 mmol) in MeCN (3 mL) were added anhydrous K₂CO₃ (1.0 mmol). The solution was stirred at r.t. for 1 h. The reaction then was quenched with aq NH₄Cl and extracted with EtOAc (3 × 5 mL). The combined organic phases were dried, filtered, and concentrated under vacuum. The residue was purified by column chromatography over silica gel using EtOAc–PE (1:15, v/v) as eluent to give 3aa (68%).

2-Acetyl-3-methylene-5-phenyl-2,3-dihydrofuran-2carboxylate (3aa, Table 1, Entry 1)

Eluent: EtOAc–PÉ (1:15), yellow oil; yield: 85%. ¹H NMR (400 MHz, CDCl₃): δ = 7.71–7.68 (m, 2 H), 7.42–7.38 (m, 3 H), 6.07 (s, 1 H), 5.18 (s, 1 H), 5.12 (s, 1 H), 4.29 (q, *J* = 6.8 Hz, 2 H), 2.31 (s, 3 H), 1.30 (t, *J* = 7.2 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ = 200.0, 166.1, 161.1, 144.7, 129.9, 129.1, 128.8, 128.6, 125.6, 104.9, 101.9, 94.1, 62.5, 25.1, 14.013. ESI-HRMS: *m/z* calcd for C₁₆H₁₇O₄ [M + H]⁺: 273.1127; found: 273.1137.

Ethyl 2-Acetyl-5-(4-bromophenyl)-3-methylene-2,3dihydrofuran-2-carboxylate (3ba, Table 1, Entry 2) Eluent: EtOAc–PE (1:15); yellow oil; yield: 82%. ¹H NMR (400 MHz, CDCl₃): δ = 7.54–7.53 (m, 4 H), 6.06 (s, 1 H), 5.20 (s, 1 H), 5.14 (s, 1 H), 4.28 (q, *J* = 7.2 Hz, 2 H), 2.30 (s, 3 H), 1.30 (t, *J* = 7.2 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ = 199.7, 166.0, 160.0, 144.3, 131.9, 128.0, 127.1, 124.0, 105.7, 102.5, 94.1, 62.7, 25.1, 14.0. ESI-HRMS: *m/z* calcd for C₁₆H₁₆BrO₄ [M + H]⁺: 351.0232; found: 351.0237. Ethyl 2-Acetyl-3-methylene-5-*p*-tolyl-2,3-dihydrofuran-

2-carboxylate (3ca, Table 1, Entry 3)

Eluent: EtOAc–PE (1:15); yellow oil; yield: 86%. ¹H NMR (400 MHz, CDCl₃): δ = 7.59 (d, *J* = 8.4 Hz, 2 H), 7.21 (d, *J* = 8.0 Hz, 2 H), 6.02 (s, 1 H), 5.51 (s, 1 H), 5.08 (s, 1 H), 4.29 (t, *J* = 6.8 Hz, 2 H), 2.38 (s, 3 H), 2.31 (s, 3 H), 1.30 (t, *J* = 6.8 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ = 200.2, 166.2, 161.4, 144.8, 140.2, 129.3, 126.4, 125.6, 104.3,

101.1, 94.0, 62.5, 25.1, 25.5, 14.0. ESI-HRMS: m/z calcd for $C_{17}H_{19}O_4$ [M + H]⁺: 287.1283; found: 287.1280.

Ethyl 2-Acetyl-3-methylene-5-(3-oxo-3-phenylpropyl)-2,3-dihydrofuran-2-carboxylate (3da, Table 1, Entry 4) Eluent: EtOAc–PE (1:15); yellow oil; yield: 81%. ¹H NMR (400 MHz, CDCl₃): δ = 7.31–7.27 (m, 2 H), 7.22–7.20 (m, 3 H), 5.38 (s, 1 H), 4.99 (s, 1 H), 4.95 (s, 1 H), 4.31–4.25 (m, 2 H), 2.96–2.91 (m, 2 H), 2.70–2.66 (m, 2 H), 2.23 (s, 3 H), 1.38 (t, *J* = 7.6 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ = 199.6, 166.2, 165.1, 144.6, 140.4, 128.5, 128.4, 128.3, 126.4, 103.1, 102.9, 94.1, 62.5, 32.6, 30.0, 24.9, 14.0. ESI-HRMS: *m/z* calcd for C₁₉H₂₁O₅ [M + H]⁺: 329.1389; found: 329.1383.

1,1'-(3-Methylene-5-phenyl-2,3-dihydrofuran-2,2diyl)diethanone (3ab, Table 1, Entry 5)

Eluent: EtOAc–PE (1:15); yellow oil; yield: 83%. ¹H NMR (400 MHz, CDCl₃): δ = 7.71–7.69 (m, 2 H), 7.44–7.42 (m, 3 H), 6.08 (s, 1 H), 5.13 (s, 1 H), 5.03 (s, 1 H), 2.31 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ = 199.9, 160.9, 144.0, 130.0, 129.1, 128.8, 128.7, 127.0, 125.4, 104.4, 102.3, 99.0, 25.5. ESI-HRMS: *m/z* calcd for C₁₅H₁₅O₃ [M + H]⁺: 243.1021; found: 243.1027.

1,1'-(3-Ethylidene-5-phenyl-2,3-dihydrofuran-2,2diyl)diethanone (3na, Table 1, Entry 6)

Eluent: EtOAc–PE (1:15); yellow oil; yield: 54%. ¹H NMR (400 MHz, CDCl₃): δ = 7.71–7.69 (m, 2 H), 7.42–7.36 (m, 3 H), 6.18 (s, 1 H), 5.51 (q, *J* = 7.6 Hz, 1 H), 4.31–4.23 (m, 2 H), 2.29 (s, 3 H), 1.85 (d, *J* = 7.2 Hz, 3 H), 1.29 (t, *J* = 7.6 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ = 200.8, 166.7, 159.6, 136.9, 129.5, 128.6, 125.4, 116.2, 98.6, 93.8, 62.4, 25.1, 15.4, 14.0. ESI-HRMS: *m/z* calcd for C₁₆H₁₇O₃ [M + H]⁺: 257.1178; found: 257.1183.

- (6) (a) Zhang, C.; Lu, X. J. Org. Chem. 1995, 60, 2906. (b) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535. (c) Methot, J. L.; Roush, W. R. Adv. Synth. Catal. 2004, 346, 1035. (d) Nair, V.; Menon, R. S.; Sreekanth, A. R.; Abhilash, N.; Biju, A. T. Acc. Chem. Res. 2006, 39, 520. (e) Ye, L. W.; Zhou, J.; Tang, Y. Chem. Soc. Rev. 2008, 37, 1140. (f) Kwong, C. K.-W.; Fu, M. Y.; Lam, C. S.-L.; Toy, P. H. Synthesis 2008, 2307. (g) Allace, D. J.; Sidda, R. L.; Reamer, R. A. J. Org. Chem. 2007, 72, 1051. (h) Zhu, X.; Lan, J.; Kwon, O. J. Am. Chem. Soc. 2003, 125, 4716. (i) Tran, Y. S.; Kwon, O. J. Am. Chem. Soc. 2007, 129, 12632. (j) Wallace, D. L.; Sidda, R. L.; Reamer, R. A. J. Org. Chem. 2007, 72, 1051. (k) Lu, Z.; Zheng, S.; Zhang, X.; Lu, X. Org. Lett. 2008, 10, 3267. (l) Guo, H.; Xu, Q.; Kwon, O. J. Am. Chem. Soc. 2009, 131, 6318. (m) Wang, Y.; Yu, Z.; Zheng, H.; Shi, D. Org. Biomol. Chem. 2012, 10, 7739. (n) Hu, J.; Dong, W.; Wu, X.; Tong, X. Org. Lett. 2012, 14, 5530. (o) Lu, C.; Lu, X. Org. Lett. 2002, 4, 4677.
- (7) (a) Rodriguez, A. D. *Tetrahedron* 1995, *51*, 4571.
 (b) Marshall, J. A.; McNulty, L. M.; Zou, D. *J. Org. Chem.* 1999, *64*, 5193. (c) Hou, X. L.; Cheung, H. Y.; Hon, T. Y.; Kwan, P. L.; Lo, T. H.; Tong, S. Y.; Wong, H. N. C. *Tetrahedron* 1998, *54*, 1995.
- (8) (a) Bandurraga, M. M.; Fenical, W.; Donovan, S. F.; Clardy, J. J. Am. Chem. Soc. 1982, 104, 6463. (b) Sum, F. W.; Wong, V. S.; Largis, H. E.; Malvey, R. Bioorg. Med. Chem. Lett. 2003, 13, 2191. (c) Flynn, B. L.; Hamel, E.; Jung, M. K. J. Med. Chem. 2002, 45, 2670. (d) Helder, L.; Hemerly, J. P.; Pauletti, P. M. Nat. Prod. Res. 2005, 19, 319. (e) Reichstein, A.; Vortherms, S.; Bannwitz, S.; Tentrop, J.; Prinz, H.; Müller, K. J. Med. Chem. 2012, 55, 7273.
- (9) (a) Lipshutz, B. H. Chem. Rev. 1986, 86, 795. (b) Katritzky,
 A. R. In Comprehensive Heterocyclic Chemistry III; Elsevier: Amsterdam/New York, 2008.
- (10) (a) Brown, R. C. D. Angew. Chem. Int. Ed. 2005, 44, 850.
 (b) Keay, B. A. Chem. Soc. Rev. 1999, 28, 209. (c) Kirsch, S. F. Org. Biomol. Chem. 2006, 4, 2076. (d) Liu, W.; Jiang, H.; Zhang, M.; Qi, C. J. Org. Chem. 2010, 75, 966. (e) Hu, J.; Wei, Y.; Tong, X. Org. Lett. 2011, 13, 3068. (f) He, C.; Guo, S.; Ke, J.; Hao, J.; Xu, H.; Chen, H.; Lei, A. J. Am. Chem. Soc. 2012, 134, 5766. (g) Li, E.; Cheng, X.; Wang, C.; Shao, Y.; Li, Y. J. Org. Chem. 2012, 77, 7744. (h) Ge, G.; Mo, D.; Ding, C.; Dai, L.; Hou, X. Org. Lett. 2012, 14, 5756. (i) Hou, C.; Xu, X.; An, J.; Jia, X.; Wang, X.; Wang, C. J. Org. Chem. 2012, 77, 8310. (j) Cao, H.; Zhang, H.; Cen, J.; Lin, J.; Zhu, Q.; Fu, M.; Jiang, H. Org. Lett. 2013, 15, 1080.

(11) **Typical Procedure for the Preparation of Compounds 4aa-ma,jb-kb** – **Exemplified with 4aa (Table 3, Entry 1)** To a flask containing 1-phenylbuta-2,3-dien-1-one (**1a**, 1 mmol) and triphenylphosphine (0.5 mmol) in toluene (5 mL) were added ethyl 2-chloroacetoacetate (**2**, 1.1 mmol) and anhydrous K_2CO_3 (1.0 mmol). The solution was stirred at r.t. for 1.5 h. The reaction then was quenched with aq NH₄Cl and extracted with EtOAc (3 × 5 mL). The combined organic phases were dried, filtered, and concentrated under vacuum. The residue was purified by column chromatography over silica gel using EtOAc-PE (1:30, v/v) as eluent to give **4aa** (65%).

Ethyl 2-Methyl-5-(2-oxo-2-phenylethyl)furan-3carboxylate (4aa, Table 3, Entry 1)

Eluent: EtOAc–PE (1:30); yellow syrup; yield: 65%. ¹H NMR (400 MHz, CDCl₃): δ = 7.98 (d, *J* = 8.0 Hz, 2 H), 7.57 (t, *J* = 7.2 Hz, 1 H), 7.46 (t, *J* = 8.0 Hz, 1 H), 6.49 (s, 1 H), 4.24 (s, 2 H), 4.24 (q, *J* = 7.6 Hz, 2 H), 2.52 (s, 3 H), 1.30 (t, *J* = 7.6 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ = 194.6, 164.0, 158.8, 146.2, 136.0, 133.6, 128.8, 128.5, 114.5, 109.3, 60.1, 38.0, 14.4, 13.8. ESI-HRMS: *m/z* calcd for C₁₆H₁₇O₄ [M + H]⁺: 273.1127; found: 273.1130. Ethyl 5-[2-(4-Fluorophenyl)-2-oxoethyl]-2-methylfuran-3-carboxylate (4ba, Table 3, Entry 2)

Eluent: EtOAc–PE (1:30); yellow solid; yield: 58%. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.03-8.00$ (m, 2 H), 7.313– 7.308 (m, 1 H), 7.15–7.11 (m, 2 H), 6.49 (s, 1 H), 4.24 (q, J = 7.6 Hz, 2 H), 4.21 (s, 2 H), 2.52 (s, 3 H), 1.30 (t, J = 7.2Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.1$, 167.2, 164.7, 164.0, 158.9, 146.0, 133.8, 133.6, 132.4, 132.4, 132.1, 131.3, 131.2, 128.8, 128.6, 128.6, 128.5, 116.0, 115.8, 114.5, 109.4, 60.1, 38.0, 14.4, 13.8. ESI-HRMS: m/z calcd for C₁₆H₁₆FO₄ [M + H]⁺: 291.1033; found: 291.1037. Ethyl 5-[2-(4-Chlorophenyl)-2-oxoethyl]-2-methylfuran-3-carboxylate (4ca, Table 3, Entry 3)

Eluent: EtOAc–PE (1:30); yellow solid; yield: 52%. ¹H NMR (400 MHz, CDCl₃): δ = 7.96 (d, *J* = 8.8 Hz, 2 H), 7.44 (d, *J* = 8.8 Hz, 2 H), 6.49 (s, 1 H), 4.24 (q, *J* = 7.2 Hz, 2 H), 4.22 (s, 2 H), 2.52 (s, 3 H), 1.31 (t, *J* = 6.8 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ = 193.5, 164.0, 159.0, 145.8, 140.1, 134.3, 123.0, 129.1, 114.5, 109.5, 60.1, 38.1, 14.4, 13.8. ESI-HRMS: *m/z* calcd for C₁₆H₁₆ClO₄ [M + H]⁺: 307.0737; found: 307.0742.

Ethyl 5-[2-(4-Bromophenyl)-2-oxoethyl]-2-methylfuran-3-carboxylate (4da, Table 3, Entry 4)

Eluent: EtOAc–PE (1:30); yellow solid; yield: 53%. ¹H NMR (400 MHz, CDCl₃): δ = 7.83 (d, *J* = 8.4 Hz, 2 H), 7.58 (d, *J* = 8.4 Hz, 2 H), 6.47 (s, 1 H), 4.23 (q, *J* = 6.8 Hz, 2 H), 4.20 (s, 2 H), 2.51 (s, 3 H), 1.29 (t, *J* = 6.8 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ = 193.6, 163.9, 158.9, 145.8, 134.7, 132.1, 130.1, 128.8, 114.5, 109.5, 60.1, 38.0, 14.4, 13.8. ESI-HRMS: *m/z* calcd for C₁₆H₁₆BrO₄ [M + H]⁺: 351.0232; found: 351.0237.

Ethyl 5-[2-(4-Cyanophenyl)-2-oxoethyl]-2-methylfuran-3-carboxylate (4ea, Table 3, Entry 5)

Eluent: EtOAc–PE (1:10); white solid; yield: 40%. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.08$ (d, J = 8.4 Hz, 2 H), 7.79 (d, J = 8.4 Hz, 2 H), 6.51 (s, 1 H), 4.27 (s, 2 H), 4.25 (q, J = 7.2 Hz, 2 H), 2.53 (s, 3 H), 1.32 (t, J = 7.2 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.3$, 163.9, 159.1, 145.0, 138.9, 132.7, 129.0, 117.8, 116.8, 114.6, 109.8, 60.2, 38.4, 14.4, 13.8. ESI-HRMS: *m/z* calcd for C₁₇H₁₆NO₄ [M + H]⁺: 298.1079; found: 298.1083.

Ethyl 2-Methyl-5-(2-oxo-2-*p*-tolylethyl)furan-3carboxylate (4fa, Table 3, Entry 6)

Eluent: EtOAc–PE (1:15); white solid; yield: 82%. ¹H NMR (400 MHz, CDCl₃): δ = 7.87 (d, *J* = 8.2 Hz, 2 H), 7.24 (d,

$$\begin{split} J &= 8.0 \, \text{Hz}, 2 \, \text{H}), 6.47 \, (\text{s}, 1 \, \text{H}), 4.23 \, (\text{q}, J &= 7.2 \, \text{Hz}, 2 \, \text{H}), 4.20 \\ (\text{s}, 2 \, \text{H}), 2.51 \, (\text{s}, 3 \, \text{H}), 2.38 \, (\text{s}, 3 \, \text{H}), 1.29 \, (\text{t}, J &= 7.6 \, \text{Hz}, 3 \, \text{H}). \\ ^{13}\text{C} \, \text{NMR} \, (100 \, \text{MHz}, \text{CDCl}_3): \delta &= 194.3, 164.1, 158.8, 146.4, \\ 144.5, 133.5, 129.4, 128.7, 114.4, 109.2, 60.0, 37.9, 21.7, \\ 14.4, 13.8. \, \text{ESI-HRMS}: m/z \, \text{calcd for } \text{C}_{17}\text{H}_{19}\text{O}_4 \, [\text{M} + \text{H}]^+: \\ 287.1283; \, \text{found}: 287.1289. \end{split}$$

Ethyl 5-[2-(4-Methoxyphenyl)-2-oxoethyl]-2methylfuran 3 corboxylete (4co. Table 3 Entry

methylfuran-3-carboxylate (4ga, Table 3, Entry 7) Eluent: EtOAc–PE (1:10); white solid; yield: 80%. ¹H NMR (400 MHz, CD₃OD and DMSO- d_6): δ = 8.07 (d, J = 8.8 Hz, 2 H), 7.09 (d, J = 8.8 Hz, 2 H), 6.53 (s, 1 H), 4.38 (s, 2 H), 4.28 (q, J = 6.8 Hz, 2 H), 3.92 (s, 3 H), 2.55 (s, 3 H), 1.35 (t, J = 6.8 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ = 193.8, 164.1, 163.8, 158.4, 148.0, 130.9, 129.1, 114.2, 114.0, 108.9, 60.0, 55.2, 37.3, 13.8, 12.3. ESI-HRMS: *m/z* calcd for

 $C_{17}H_{19}O_5$ [M + H]⁺: 303.1232; found: 303.1236.

Ethyl 5-[2-(3-Bromophenyl)-2-oxoethyl]-2-methylfuran-3-carboxylate (4ha, Table 3, Entry 8)

Eluent: EtOAc–PE (1:30); white solid; yield: 40%. ¹H NMR (400 MHz, CDCl₃): δ = 8.12 (s, 1 H), 7.91 (d, *J* = 7.6 Hz, 1 H), 7.71 (d, *J* = 8.4 Hz, 1 H), 7.36 (t, *J* = 8.4 Hz, 1 H), 6.50 (s, 1 H), 4.26 (q, *J* = 7.6 Hz, 2 H), 4.23 (s, 2 H), 2.54 (s, 3 H), 1.32 (t, *J* = 7.6 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ = 193.3, 164.0, 159.0, 145.5, 137.7, 136.4, 131.6, 130.4, 127.1, 123.1, 114.5, 109.6, 60.1, 38.1, 14.4, 13.8. ESI-HRMS: *m/z* calcd for C₁₆H₁₆BrO₄ [M + H]⁺: 351.0232; found: 351.0237.

Ethyl 2-Methyl-5-(2-oxo-2-*m*-tolylethyl)furan-3carboxylate (4ia, Table 3, Entry 9)

Eluent: EtOAc–PE (1:15); yellow oil; yield: 74%. ¹H NMR (400 MHz, CDCl₃): δ = 7.79–7.77 (m, 2 H), 7.37–7.26 (m, 2 H), 6.48 (s, 1 H), 4.25 (q, *J* = 7.2 Hz, 2 H), 4.22 (s, 2 H), 2.53 (s, 3 H), 2.40 (s, 3 H), 1.31 (t, *J* = 7.6 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃): δ = 194.7, 164.0, 158.7, 146.3, 138.6, 136.2, 134.3, 129.0, 128.6, 125.8, 114.5, 109.3, 60.0, 38.0, 21.3, 14.3, 13.7. ESI-HRMS: *m/z* calcd for C₁₇H₁₉O₄ [M + H]⁺: 287.1283; found: 287.1289.

Ethyl 5-[2-(2-Methoxyphenyl)-2-oxoethyl]-2-

methylfuran-3-carboxylate (4ja, Table 3, Entry 10) Eluent: EtOAc–PE (1:10); white solid, yield 72%. ¹H NMR (400 MHz, CDCl₃): δ = 7.73–7.71 (m, 1 H), 7.47–7.42 (m, 1 H), 6.99–6.93 (m, 2 H), 6.43 (s, 1 H), 4.26 (s, 2 H), 4.23 (q, J = 6.8 Hz, 2 H), 3.89 (s, 3 H), 2.51 (s, 3 H), 1.29 (t, J = 6.8 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃): δ = 196.5, 164.1, 158.7, 158.4, 147.3, 134.1, 130.8, 127.2, 120.8, 114.3, 111.6, 108.8, 59.9, 55.5, 42.6, 14.3, 13.7. ESI-HRMS: *m/z* calcd for C₁₇H₁₉O₅: [M + H]⁺: 303.1232; found: 303.1236. Ethyl 2-Methyl-5-(2-oxo-3-phenylpropyl)furan-3carboxylate (4ka, Table 3, Entry 11)

Eluent: EtOAc–PE (1:15); white solid; yield: 83%. ¹H NMR (400 MHz, CDCl₃): δ = 7.33–7.25 (m, 3 H), 7.17–7.15 (m, 2 H), 6.43 (s, 1 H), 4.25 (q, *J* = 6.8 Hz, 2 H), 3.73 (s, 2 H), 3.67 (s, 2 H), 2.51 (s, 3 H), 1.32 (t, *J* = 7.2 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ = 202.8, 163.9, 158.8, 145.9, 133.6, 129.4, 128.8, 127.2, 114.5, 109.4, 60.0, 49.1, 41.2, 14.3, 13.7. ESI-HRMS: *m/z* calcd for C₁₇H₁₉O₄ [M + H]⁺: 287.1283; found: 287.1288.

Ethyl 2-Methyl-5-(2-oxo-4-phenylbutyl)furan-3carboxylate (4la, Table 3, Entry 12)

Eluent: EtOAc–PE (1:15); colorless oil; yield: 88%. ¹H NMR (400 MHz, CDCl₃): δ = 7.29–7.25 (m, 2 H), 7.20–7.15 (m, 3 H), 6.43 (s, 1 H), 4.26 (q, *J* = 7.2 Hz, 2 H), 2.89 (t, *J* = 7.2 Hz, 2 H), 2.79 (t, *J* = 7.2 Hz, 2 H), 2.53 (s, 3 H), 1.33 (t, *J* = 6.8 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ = 204.8, 164.0, 158.9, 146.0, 140.7, 133.9, 133.7, 128.5, 128.4, 126.2, 114.5, 109.3, 60.1, 43.5, 42.2, 29.6, 14.4, 13.8. ESI-HRMS: *m/z* calcd for C₁₈H₂₁O₄ [M + H]⁺: 301.1440; found: 301.1446.

Ethyl 5-[2-(Furan-2-yl)-2-oxoethyl]-2-methylfuran-3carboxylate (4ma, Table 3, Entry 13)

Eluent: EtOAc–PE (1:10); yellow solid; yield: 42%. ¹H NMR (400 MHz, CDCl₃): δ = 7.61 (d, *J* = 1.2 Hz, 1 H), 7.26–7.25 (m, 1 H), 6.56–6.55 (m, 1 H), 6.50 (s, 1 H), 4.25 (q, *J* = 6.8 Hz, 2 H), 4.10 (s, 2 H), 2.52 (s, 3 H), 1.31 (t, *J* = 6.8 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ = 183.5, 164.1, 158.9, 151.9, 147.0, 145.6, 118.3, 114.5, 112.6, 109.4, 60.1, 37.8, 14.4, 13.8. ESI-HRMS: *m/z* calcd for C₁₄H₁₅O₅ [M + H]⁺: 263.0919; found: 263.0915.

2-(4-Acetyl-5-methylfuran-2-yl)-1-(2-methoxyphenyl)ethanone (4jb, Table 3, Entry 14)

Eluent: EtOAc–PE (1:30); white solid; yield: 40%. ¹H NMR (400 MHz, CDCl₃): δ = 7.78–7.76 (m, 1 H), 7.51–7.47 (m, 1 H), 7.03–6.97 (m, 2 H), 6.43 (s, 1 H), 4.30 (s, 2 H), 3.93 (s, 3 H), 2.54 (s, 3 H), 2.36 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ = 196.6, 194.4, 158.8, 157.8, 147.3, 134.3, 130.9, 126.9, 122.2, 120.9, 111.6, 108.7, 59.9, 55.6, 42.6, 29.2, 14.5. ESI-HRMS: *m/z* calcd for C₁₆H₁₇O₄ [M + H]⁺:

273.1127; found: 273.1125.

1-(4-Acetyl-5-methylfuran-2-yl)-3-phenylpropan-2-one (4kb, Table 3, Entry 15)

Eluent: EtOAc–PE (1:10) yellow oil; yield: 42%. ¹H NMR (400 MHz, CDCl₃): δ = 7.33–7.26 (m, 3 H), 7.18–7.17 (m, 2 H), 6.39 (s, 1 H), 3.76 (s, 2 H), 3.70 (s, 2 H), 2.52 (s, 3 H), 2.36 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ = 203.0, 194.1, 158.1, 145.8, 133.4, 129.5, 128.9, 127.3, 122.3, 109.2, 49.4, 41.0, 29.2, 14.4. ESI-HRMS: *m/z* calcd for C₁₆H₁₇O₃ [M + H]⁺: 257.1178; found: 257.1184.

1-(4-Acetyl-5-methylfuran-2-yl)-4-phenylbutan-2-one (4lb, Table 3, Entry 16)

Eluent: EtOAc–PE (1:10); yellow oil; yield: 44%. ¹H NMR (400 MHz, CDCl₃): δ = 7.29–7.25 (m, 2 H), 7.21–7.15 (m, 3 H), 6.38 (s, 1 H), 3.64 (s, 2 H), 2.90 (t, *J* = 7.6 Hz, 2 H), 2.81 (t, *J* = 8.0 Hz, 2 H), 2.53 (s, 3 H), 2.36 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ = 204.7, 194.1, 158.1, 145.9, 140.7, 128.6, 128.4, 126.3, 122.3, 109.1, 43.7, 42.1, 29.6, 29.2, 14.4. ESI-HRMS: *m/z* calcd for C₁₇H₁₉O₃ [M + H]⁺: 271.1334; found: 271.1341. Copyright of Synlett is the property of Georg Thieme Verlag Stuttgart and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.