

View Article Online View Journal

RSC Advances

This article can be cited before page numbers have been issued, to do this please use: J. Du, S. Yu, Z. Huang, L. Chen, Y. Xu, G. Zhang, Q. Chen, X. Yu and L. Pu, *RSC Adv.*, 2016, DOI: 10.1039/C6RA03724K.

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Published on 02 March 2016. Downloaded by UNIVERSITY OF OTAGO on 03/03/2016 09:08:38.

Highly selective ratiometric fluorescent recognition of histidine by tetraphenylethene-terpyridine-Zn(II) complexes

Jiao Du,^a Shanshan Yu,^{*a} Zeng Huang,^a Liming Chen,^a Yimang Xu,^a Guanyu Zhang,^a Qi Chen,^a Xiaoqi Yu,^{*a} Lin Pu^{*a,b}

Abstract: The TPE-monoTpy and TPE-diTpy compounds (TPE = tetraphenylethene. Tpy = 2,2':6',2''-terpyridine) were prepared which showed significant red shifts in fluorescence upon coordination to $Zn(NO_3)_2$ in THF:HEPES (1:4) solutions. These in situ prepared Zn(II) complexes have achieved highly selective ratiometric fluorescent recognition of histidine even in the presence of other natural amino acids and metal cations. This fluorescent recognition of histidine is visually observable with distinctive color changes under UV irradiation. The mechanism for the interaction of the Zn(II) complexes with histidine was studied by UV-Vis absorption, NMR and MS.

1. Introduction

Histidine is an indispensable amino acid for humans and other mammals. It is not only essential for human growth but ¹⁵ also acts as a neurotransmitter in the central nervous system of mammals.^[1] Abnormal level of histidine in biological system could indicate a variety of diseases. Therefore, detection of histidine in biological fluids has become an important goal and a number of methods have been developed for this ²⁰ purpose.^[2-4] Among these methods, using molecular fluorescent sensors has attracted extensive attention due to the high sensitivity of fluorescence, the easy availability of instruments and the potential for remote observation.^[4]

Terpyridine (Tpy) is a tridentate chelating ligand capable ²⁵ of binding a variety of metal cations^[5] and this binding ability has been utilized in sensing.^[6] We have studied the use of the Tpy metal complexes in the fluorescent recognition of histidine. In our previous work, we have found that the classical TpyCuCl₂ complex **1** exhibited greatly enhanced fluorescence when treated with histidine or cysteine (Figure 1).^[7a,b] It was shown that coordination of Cu(II) with Tpy quenched its fluorescence which can be turned on upon interaction with histidine or cysteine. We further designed a crown ether-Tpy compound **2** and found that its *in situ* ³⁵ generated Zn(II) complex can distinguish histidine from

- cysteine as well as other amino acids by showing significant fluorescence enhancement with histidine only.^[7c] In addition, this fluorescent sensor can also differentiate histidine from
- J. Du, Dr. S. Yu, Dr. Z. Huang, L. Chen, Y. Xu, G. Zhang, Q. Chen, Prof. Dr. X. Yu, and Prof. Dr. L. Pu Key Laboratory of Green Chemistry and Technology Ministry of Education, College of Chemistry Sichuan University, Chengdu, 610064 (P. R. China) E-mail: yushanshan@scu.edu.cn, xqyu@scu.edu.cn
 Prof. Dr. L. Pu Department of Chemistry, University of Virginia

Charlottesville, Virginia 22904-4319 (USA) E-mail: lp6n@virginia.edu

Supporting information for this article is given via a link at the end of the document.

other imidazole derivatives. This high selectivity is attributed 40 to the cooperative interaction of both the crown ether and the Tpy sites.

Figure 1. Tpy-based fluorescent sensors 1 and $2+Zn^{2+}$ for histidine.

When the complexes 1 and $2+Zn^{2+}$ were used to recognize ⁴⁵ histidine, the fluorescent enhancements were observed at $\lambda \leq$ 400 nm. It would be desirable that if the fluorescent response could be observed at longer wavelengths in the visible region under aqueous conditions. In order to shift the fluorescent response to the longer wavelength, we propose to incorporate ⁵⁰ the Tpy ligand with fluorophores of longer wavelength emission.

Since 2001, Tang and many research groups have conducted extensive studies on the aggregation-induced emission of organic materials.^[8] For example, the propeller-55 shaped molecules such as tetraphenylethene (TPE) exhibit greatly enhanced emission in the visible region when water is added to its THF solution.^[9] That is, addition of water promotes the aggregation of the TPE molecules, leading to the fluorescent enhancement. In order to utilize the unique 60 fluorescent properties of the TPE molecules under aqueous conditions for the Tpy-based fluorescent recognition, we have synthesized the TPE-Tpy conjugates 3 and 4 and explored their fluorescent response toward metal cations and amino acids (Figure 2). We have demonstrated that the Zn^{2+} 65 complexes of these compounds are highly selective ratiometric fluorescent sensors toward histidine. The fluorescent responses are visually observable with distinctive color changes. Herein these results are reported.

Figure 2. TPE-monoTpy and TPE-diTpy compounds.

2. Results and Discussion

Published on 02 March 2016. Downloaded by UNIVERSITY OF OTAGO on 03/03/2016 09:08:38

2.1. Synthesis of the TPE-monoTpy and -diTpy compounds $s 3^{[10]}$ and 4.

The synthesis of the TPE-monoTpy compound **3** is shown in Scheme 1. Deprotonation of diphenylmethane with *n*-BuLi followed by addition of the diaryl ketone **5** gave the alcohol **6**.^[11] Dehydration of **6** in the presence of *p*-toluensulfonic ¹⁰ acid (p-TSA) in refluxing toluene gave the brominated TPE compound **7**.^[11] This compound was then converted to the boronic ester **8** by reaction with *n*-BuLi and then B(OCH₃)₃.^[12] The Suzuki coupling of **8** with 4-bromoTpy **9** gave the desired TPE-monoTpy compound **3**.

Scheme 1. Synthesis of the TPE-monoTpy compound 3

Scheme 2 gives the synthesis of the TPE-diTpy compound **4**. The McMurry coupling of the diarylketone **5** in the presence of TiCl_4 and Zn gave the dibrominated TPE ²⁰ compound **10**.^[13]

Scheme 2. Synthesis of the TPE-diTpy compound 4

This compound was found to be a 1:1 mixture of the *cis* and *trans* isomers.^[14] Treatment of **10** with *n*-BuLi followed ²⁵ by addition of B(OCH₃)₃ produced the TPE-diboronic ester **11**,^[13] which was then couple with the 4-bromoTpy **9** in the presence of a palladium catalyst to give the desired compound **4** as a 1:1 mixture of the *cis* and *trans* isomers.

2.2. Study of the interaction of the TPE-diTpy compound **4** 30 with metal ions and amino acids

2.2.1. Fluorescence Study

The TPE-diTpy compound **4** $(1.0 \times 10^{-5} \text{ M})$ showed very weak emission in pure THF. When we increased the water fraction of the solvent from 0–70%, very little change in the ³⁵ fluorescence was observed (Figure 3). As we further increased the water fraction, the fluorescence of compound **4** showed a sharp increase (near 100 fold) and reached maximum in THF/H₂O = 1:4. Then the fluorescence showed some decrease when the water fraction was more than 80%. ⁴⁰ The fluorescent responses of **4** in the THF/water mixed solvents suggest that compound **4** is AIE active.

Solvents baggest that composing 1 in THE tarted. Compound 4 (1.0×10^{-5} M in THE:H₂O = 1: 4) showed strong green emission at $\lambda = 495$ nm. We studied its interaction with various metal ions, including Zn²⁺, Cd²⁺, Cr³⁺, 45 Al³⁺, Fe³⁺, Ag⁺, Mg²⁺, Li⁺, Ni²⁺, Co²⁺, Cu²⁺, Cu²⁺, K⁺, Mn²⁺ and Ca²⁺ and different fluorescent responses were observed (Figure 4). Addition of 5 equiv of Cu²⁺, Ni²⁺ or Co²⁺ completely quenched its fluorescence. Treatment of 4 with 5 equiv of Fe²⁺, Mn²⁺, Fe³⁺, Zn²⁺ and Ag⁺ significantly ⁵⁰ quenched its fluorescence with I/I₀ < 0.1 for Fe²⁺, Mn²⁺, Fe³⁺ and Zn²⁺, and I/I₀ = 0.25 for Ag⁺. Other metal ions such as Cr³⁺, Cd²⁺, Ca²⁺, Na⁺, Hg⁺ and Pb²⁺ caused much smaller fluorescence changes to 4. Notably, addition of 5 equiv of Zn²⁺ to 4 caused red shift of the maximum emission from 495 ⁵⁵ nm to 560 nm with significantly decreased fluorescence intensity. The plot of the fluorescence intensity ratio I₅₆₀/I₄₉₅ of various metals clearly demonstrates the high selectivity for Zn²⁺ (Figure 4c). This ratio for Zn²⁺ is 4.0 while those for all the other metals are lower than 0.8. Thus, the TPE-diTpy ⁶⁰ compound 4 shows highly ratiometric selective fluorescent

15

View Article Online DOI: 10.1039/C6RA03724K

Published on 02 March 2016. Downloaded by UNIVERSITY OF OTAGO on 03/03/2016 09:08:38.

Figure 3. (a) Fluorescent spectra of 4 (1.0×10^{-5} M) in THF/H₂O mixed ¹⁰ solvents. (b) The fluorescent intensity of 4 at 495 nm versus the THF fraction. (λ_{exc} = 355 nm, slits: 2 nm/2 nm)

¹⁵ **Figure 4.** Responses of **4** (1.0×10^{.5} M in THF:H2O = 1: 4) toward various metal ions (5.0 eq): (a) fluorescent spectra, (b) fluorescent intensity ratio l_{495}/l_{0} , (c) fluorescent intensity ratio l_{560}/l_{495} . (λ_{exc} = 355 nm, slits: 2 nm/2 nm)

RSC Advances Accepted Manuscript

Fluorescent titration of 4 $(1.0 \times 10^{-5} \text{ M in THF:HEPES} = 1:$ 4) with Zn(NO₃)₂.6H₂O was studied.^[15] As shown in Figure ²⁰ 5a, the fluorescent intensity of 4 gradually decreased with addition of Zn²⁺. When more than 1.5 equiv of Zn²⁺ was added, the emission maximum was observed to undergo red shift. When more than 2 equiv of Zn²⁺ was added, no significant fluorescent change was observed and the emission ²⁵ maximum was at 560 nm. Figure 5b plots the fluorescent intensity ratio I₅₆₀/I₄₉₅ versus the stoichiometry of the Zn²⁺ added. When more than 2 equiv of Zn²⁺ was added, the I₅₆₀/I₄₉₅ ratio stabilized at around 3.7.

Figure 5. (a) Fluorescence titration of **4** (1.0×10^{-5} M in THF: HEPES = 1: 4) with Zn(NO₃)₂.6H₂O. (b) Fluorescence intensity ratio I_{560}/I_{495} for the fluorescence titration. (λ exc= 355 nm, slits: 2 nm/2 nm)

In order to determine the stoichiometry for the complexation of **4** with Zn^{2+} , we studied the fluorescent response while maintaining a constant total molar concentration of $4 + Zn^{2+}$ and varying their mole fractions. The maximum emission wavelength was employed to make the job plot (Figure 6). When the Zn^{2+} fraction increased from 0.1 to 0.5, the fluorescence emission maximum underwent red shift to 538 nm. Further increase of the Zn^{2+} concentration caused no more shift in the peak position. The corresponding binding ratio is thus given as 1:1 for **4** to Zn^{2+} .

We then studied the fluorescent response of the in situ prepared complex 4+Zn²⁺ (2.5 equiv) toward amino acids and biological amino thiols. In the mixed solvents of THF and water (1:4), 4 has poor solubility and emits very strong fluorescence, but its Zn^{2+} complex can be completely 25 dissolved and emits weaker and red-shifted fluorescence. We thus used THF:HEPES (1:4) as the solvent for the amino acid study while maintaining the pH at 7.4. The fluorescent responses of the $4+Zn^{2+}$ (2.5 equiv) complex in the presence of 16 equiv of various amino acids and biological amino thiols ³⁰ including Hcy and GSH were examined (Figure 7a). Of all the tested amino acids and amino thiols, none of them caused significant fluorescent change except histidine which greatly enhanced the fluorescence and shifted the emission from $\lambda =$ 560 nm back to $\lambda = 495$ nm. The fluorescent intensity ratio ₃₅ I_{495}/I_{560} of the 4+Zn²⁺ complex in the presence of 16 equiv of histidine is 2.6 and that for all the other amino acids and amino thiols is around 0.3 (Figure 7b). As shown in Figure 8, the highly selective fluorescent response of the $4+Zn^2$ complex toward histidine can also be detected visually under 40 UV irradiation (365 nm). That is, only the addition of histidine turned the solution to emit blue-greenish light while the addition of all other amino acids caused no change in the

Figure 7. Responses of 4+Zn²⁺ (2.5 equiv) (1.0 × 10⁻⁵ M in THF:HEPES = 1: 4) toward 16 equiv of various amino acids: (a) fluorescence spectra, (b) fluorescence intensity ratio I_{495}/I_{560} . (λ_{exc} = 355 nm, slits: 2 nm/2 nm)

Published on 02 March 2016. Downloaded by UNIVERSITY OF OTAGO on 03/03/2016 09:08:38

Figure 8. Photos of $4+Zn^{2+}$ (2.5 equiv) (1.0×10⁻⁵ M in THF:HEPES= 1: 4) in the presence of various amino acids (20 equiv) under UV irradiation (365 s nm).

We then conducted a fluorescent titration of the $4+Zn^{2+}$ (2.5 equiv) complex $(1.0 \times 10^{-5} \text{ M in THF:HEPES} = 1:4)$ with histidine at 2 equiv increments. As shown in Figure 9a, the emission of this Zn²⁺ complex at 560 nm was first slightly ¹⁰ quenched with 2 equiv histidine. With an additional 2 equiv histidine, the maximum emission underwent significant blue shift. Large fluorescent enhancement was observed with further increased amount of histidine while the emission maximum was shifted to 495 nm. With the addition of more 15 than 16 equiv of histidine, no more change in fluorescence was observed. Formation of white precipitate was observed with the clear solution gradually turning into a white slurry. Under UV irradiation, it was clearly observed that the yellow solution gradually turned blue greenish. We plotted the $_{20}$ fluorescent intensity ratio I_{495}/I_{560} versus the equiv of histidine in Figure 9b. This ratio shows a sharp increase from 0.3 to 2.2 in the range of 2-8 equiv of histidine, which demonstrates a ratiometric fluorescent response of the $4+Zn^{2+}$ complex toward histidine.

We tested the fluorescence recovery of the 4+Zn²⁺ complex in the presence of the mixtures of histidine with other species in biological systems including the common metal ions Mg²⁺, Fe³⁺, K⁺, Ca²⁺ and Na⁺, the natural amino acids and amino thiols. The results are summarized in Figure 10 and Table 1.
All the tested metal ions (20 equiv) except Fe³⁺ had little effect on the fluorescent recognition of histidine by the Zn²⁺ complex. Addition of 20 equiv of Fe³⁺ partially quenched the fluorescence and the emission wavelength remained. The interference caused by Fe³⁺ might be attributed to its strong 40 coordination to Tpy. All the other natural amino acids and amino thiols, including the commonly interfering amino acids such as serine and arginine, had little effect on the fluorescent recognition of histidine by the 4+Zn²⁺ complex.

 $_{45}$ Figure 10. Fluorescence spectra of the 4+Zn²⁺ (2.5 equiv) complex solution (1.0 \times 10⁻⁵ M in THF: HEPES = 1: 4) in the presence of 16 equiv of histidine and 20 equiv of various metal ions (Mg²⁺, Fe³⁺, K⁺, Ca²⁺ and Na⁺) or 16 equiv of the natural amino acids. (λ_{exc} = 355 nm, slits: 2 nm/2 nm)

Table 1. Fluorescence recovery of $4+Zn^{2+}$ (2.5 equiv) (1.0 × 10⁻⁵ M in THF: ⁵⁰ HEPES = 1: 4) in the presence of the mixtures of 16 equiv of histidine with metal ions or other natural amino acids. (λ_{exc} = 355 nm, slits: 2 nm/2 nm)

Added species	Conc. (µM)	Recovery (%)	Added species	Conc. (µM)	Recovery (%)
Asp	160	110	Val	160	110
Lys	160	115	Arg	160	107
Gly	160	101	Cys	160	109
lle	160	111	Met	160	103
Asn	160	108	Ala	160	102
GIn	160	109	Нсу	160	109
Tyr	160	109	GSH	160	116
Phe	160	102	MgCl ₂	200	105
Thr	160	104	FeCl ₃	200	69
Pro	160	102	KCI	200	105
Leu	160	106	CaCl ₂	200	102

Glu	160	100	NaCl	200	102
Ser	160	106.47			

2.2.2. UV-Vis study

The UV–Vis spectrum of **4** $(1.0 \times 10^{-5}$ M in THF: HEPES= 1: 4) showed a sharp peak at 218 nm, broad peaks at 255 nm ⁵ and 295 nm, and a shoulder at 366 nm. Upon addition of 2.5 equiv of Zn²⁺ the broad peaks at 255 nm and 295 nm disappeared and a new peak at 283 nm showed up (Figure 11). When the **4**+Zn²⁺ (2.5 equiv) complex $(1.0 \times 10^{-5}$ M in THF:HEPES = 1: 4) was titrated with histidine, this new peak ¹⁰ at 283 nm gradually decreased and the characteristic absorption of **4** at 255 nm appeared (Figure 12). This suggests the displacement of the coordinated Zn²⁺ from the **4**+Zn²⁺ complex by the amino acid.

 $_{15}$ Figure 11. UV–Vis spectra of 4 (1.0×10 5 M in THF:HEPES = 1:4) in the absence and presence of 2.5 equiv. of Zn^{2+} .

Figure 12. UV–Vis titration of $4+Zn^{2+}$ (2.5 equiv) (1.0 × 10⁻⁵ M in THF: HEPES = 1: 4) with histidine.

20 2.2.3. NMR and MS study

In order to gain further understanding on the interaction of the $4+Zn^{2+}$ complex with histidine, we conducted ¹H NMR and mass spectroscopic analyses. Figure 13 shows the ¹H NMR spectra when 4 (3 mM) was treated with 2.5 equiv. of $25 Zn(OAc)_2$ in THF- $d_8:D_2O$ (4:1) solution. Broadened peaks and changes in the chemical shifts were observed, indicating coordination of Zn^{2+} as well as possible formation of multiple complexes. When histidine was added to this system, characteristic singlet peak at δ 9.39 and two doublet peaks at δ ³⁰ 7.91 and 7.85 of **4** gradually reappeared, indicating the release of **4** from its Zn²⁺ complex.

Figure 13. 1H NMR spectra of 4 with the addition of $Zn(NO_3)_2$ (2.5 equiv) $_{35}$ and histidine in THF-d_8:D_2O (4:1).

In the mass spectrum obtained for the $4+Zn^{2+}$ (1.5 equiv.) complex in CH₃CN:H₂O (4:1), a base peak at m/z = 827.28 is assigned to the 2:1 complex $(12+2H)^{2+}$. A peak at 1716.58 can be assigned to that of $(12+Zn)^+$, a 2:2 complex. A peak at $_{40}$ m/z = 1891.65 can be assigned to the 2:3 complex $(13-2H)^+$. A peak at 1335.45 can be assigned to a 3:4 complex of $(34+4Zn+2OH)^{2+}$ (calc: 2670.65/2). A peak at 920.24 is assigned to the 1:1 complex 14. A peak at m/z = 1095.35 is proposed for that of the 1:2 complex $(15-H)^+$. With the $_{45}$ addition of histidine, the relative intensity of the peak at m/z = 795.32 $(4+H^+)$ gradually increased. A new peak at m/z = 1012.32 assigned to the ternary complex 16 $(4+Zn^{2+}+His)$ was also observed with increasing intensity.

6

Published on 02 March 2016. Downloaded by UNIVERSITY OF OTAGO on 03/03/2016 09:08:38.

Published on 02 March 2016. Downloaded by UNIVERSITY OF OTAGO on 03/03/2016 09:08:38

Figure 14. Proposed structures of the Zn^{2+} complexes of 4 before and after the addition of histidine.

- ⁵ The observations of the mass, ¹H NMR and UV spectroscopic analyses substantiate the hypothesis that addition of histidine to the $4+Zn^{2+}$ complex initially coordinate to the Zn^{2+} center to form the ternary complex 16 which upon further reaction with histidine displaces the Zn^{2+}
- ¹⁰ ion off the TPE-diTpy ligand **4**. The observed formation of white slurry can be attributed to the formation of **4** which has poor solubility in the reaction media without Zn^{2+} coordination and exhibits the aggregation induced emission.

2.3. Study of the interaction of the TPE-monoTpy compound 15 3 with metal ions and amino acids

The TPE-monoTpy compound **3** $(1.0 \times 10^{-5} \text{ M in THF}:$ HEPES = 1: 4) shows strong blue-green emission at $\lambda = 485$ nm, 10 nm shorter than that of **4** due to the less conjugation. We also studied its interaction with various metal ions (Figure ²⁰ 15). Similar to **4**, addition of 3 equiv of Cu²⁺, Ni²⁺, Co²⁺ completely quenched its fluorescence. Partial fluorescent quenching was observed for the addition of 3 equiv of Cd²⁺ (I₄₈₅/I₀ = 0.32), Cr³⁺ (I₄₈₅/I₀ = 0.51), Al³⁺ (I₄₈₅/I₀ = 0.89), Fe³⁺ (I₄₈₅/I₀ = 0.32), Ag⁺ (I₄₈₅/I₀ = 0.79), Mn²⁺ (I₄₈₅/I₀ = 0.68) and ²⁵ Ca²⁺ (I₄₈₅/I₀ = 0.79). Addition of Mg²⁺ caused no change to the fluorescence of **3** and Li^+ slightly increased its fluorescence. It is notable that addition of 3 equiv. of Zn^{2+} caused red shift of the emission maximum from 485 nm to 530 nm with significantly decreased fluorescence intensity. ³⁰ Figure 15c plots the fluorescence intensity ratio I_{530}/I_{485} of **3** upon addition of various metal ions. This ratio for Zn^{2+} is as high as 1.7 while that for all the other metals is in the range of 0.5 to 0.7. As shown in Figure 16, under UV irradiation (365 nm), addition of 3 equiv Zn^{2+} to **3** changed the solution from ³⁵ the blue-green emission to a weak yellow emission that was visually observable.

⁴⁰ **Figure 15.** (a) Fluorescent spectra of **3** (1.0×10^{-5} M in THF:HEPES = 1:4) in the presence of various metal ions (3.0 equiv). (b) The fluorescent intensity ratio I_{485}/I_0 of compound **3** (1.0×10^{-5} M in THF:HEPES = 1:4) in the presence of various metal ions (3.0 equiv). (c) The fluorescent intensity ratio I_{530}/I_{485} of compound **3** (1.0×10^{-5} M in THF:HEPES = 1:4) in the presence of ⁴⁵ various metal ions (3.0 equiv). ($\lambda_{exc} = 354$ nm, slits: 3 nm/3 nm)

3	3+Zn(II)
-	-

Figure 16. Fluorescence of compound **3** (1.0×10^{-5} M in THF:HEPES = 1:4) in the absence or presence of 3 equiv of Zn²⁺ under UV irradiation (365 nm).

⁵ We then titrated **3** $(1.0 \times 10^{-5} \text{ M} \text{ in THF: HEPES} = 1: 4)$ with Zn^{2+} in 0.25 equiv increment and monitored its fluorescence after each addition.^[15] As shown in Figure 17a, the fluorescence of **3** decreased with addition of Zn^{2+} . When 1.5 equiv of Zn^{2+} was added, the fluorescence stabilized with ¹⁰ the emission maximum shifted to 530 nm. Figure 17b plots the fluorescence intensity ratio I₅₃₀/I₄₈₅ of compound **3** versus the concentration of Zn^{2+} . This ratio first increased and then reached a plateau after 1.5 equiv of Zn^{2+} .

Figure 17. (a) Fluorescence titration of compound 3 (1.0×10⁻⁵ M in THF:HEPES = 1:4) with Zn²⁺. (b) Fluorescence intensity ratio I₅₃₀/I₄₈₅ for the fluorescence titration. (λ_{exc} = 354 nm, slits: 3 nm/3 nm)

We then studied the fluorescent response of the $3+Zn^{2+}$ ²⁰ (1.5 equiv) complex (1.0 × 10⁻⁵ M in THF:HEPES = 1:4, prepared in situ) with 20 equiv of various natural amino acids. As shown in Figure 18a, this Zn(II) complex exhibited very high selectivity for the fluorescent recognition of histidine. Histidine greatly enhanced the fluorescence of the complex and shifted the emission maximum from 530 nm back to 485 nm while all the other amino acids caused little effect on the fluorescence of the $3+Zn^{2+}$ complex. Figure 18b shows the color change of the $3+Zn^{2+}$ complex under UV irradiation upon treatment with histidine. Thus, the $3+Zn^{2+}$ complex can 30 also be used for the fluorescent recognition of histidine, similar to that observed for the $4+Zn^{2+}$ complex.

Figure 18. (a) Fluorescence spectra of $3+Zn^{2+}$ (1.5 equiv) (1.0 × 10⁻⁵ M in ³⁵ THF: HEPES= 1: 4) in the presence of 20 equiv of various amino acids. (b) $3+Zn^{2+}$ (1.5 equiv.) complex solution (1.0 × 10⁻⁵ M in THF:HEPES = 1:4) in the absence and presence of 20 equiv of histidine under UV irradiation (365 nm).

(b)

Previously, we reported that the Tpy+CuCl₂ complex **1** ⁴⁰ exhibits large fluorescent enhancement in the presence of histidine and cysteine but not with other amino acids and is useful for the fluorescent recognition of the two amino acids.^{7a,b} Therefore, we also prepared the **3**+CuCl₂ complex and studied its fluorescent response toward amino acids. We ⁴⁵ found that unlike **1** which is highly selective toward histidine and cysteine, the **3**+CuCl₂ complex shows poor selectivity in its fluorescent response since many amino acids can turn on its fluorescence without shift in the emission wavelength (Figure 19). Thus the Cu(II) complex of **3** cannot be used for ⁵⁰ the fluorescent recognition of histidine. The TPE unit of **3** has greatly altered the fluorescent response of the Tpy-Cu(II) complex in the presence of the amino acids.

15

RSC Advances Accepted Manuscript

Figure 19. Fluorescence enhancement ratio I/I₀ at 475 nm of 3+CuCl₂ complex (1.0 × 10^{-5} M in H₂O:THF = 99:1) in the presence of 10 equiv. of various amino acids. (λ_{exc} = 354 nm, slits: 2 nm/2 nm)

5 3. Conclusions

We have synthesized two TPE-Tpy compounds 3 and 4 which show significant red shift in emission upon coordination to Zn(NO₃)₂ in THF:HEPES (1:4) solution. This change is visually observable from blue greenish color to ¹⁰ yellow upon UV irradiation. The *in situ* prepared Zn(II) complexes $3+Zn^{2+}$ and $4+Zn^{2+}$ in THF:HEPES (1:4) have achieved highly selective ratiometric fluorescent recognition of histidine even in the presence of other natural amino acids, amino thiols and metal cations. Comparison of Figure 7a with 15 Figure 18a indicates that the diTpy compound 4 in combination with Zn²⁺ should be a more sensitive fluorescent sensor because of higher fluorescent intensity upon histidine binding than the monoTpy complex $3+Zn^{2+}$. The ratiomertic fluorescent response and the high selectivity of these 20 complexes make them useful for the fluorescent detection of histidine. On the basis of the UV, ¹H NMR and mass spectroscopic analyses, it is proposed that the observed highly selective fluorescent response of the $4+Zn^{2+}$ complex toward histidine should be due to the coordination of histidine to the $_{25}$ Zn²⁺ center of the complex followed by displacement of 4 off to restore its aggregation induced emission.

4. Experimental Section

4.1. General Data:

Unless otherwise noted, materials were obtained from 30 commercial suppliers and were used without further purification. All the solvents were dried according to the standard methods prior to use. In the optical spectroscopic studies, all the solvents were either HPLC or spectroscopic grade. In the syntheses of compounds 3 and 4, THF was 35 distilled over sodium and benzophenone under nitrogen atmosphere and stored over 4 Å molecular sieves.

¹H and ¹³C NMR spectra were measured on a Bruker AM400 NMR spectrometer. ¹H chemical shifts of NMR spectra were given in ppm relative to internals reference TMS ⁴⁰ (1H, 0.00 ppm). ESI-MS and HRMS spectral data were recorded on a Finnigan LCQ^{DECA} and a BrukerDaltonics Bio

TOF mass spectrometer, respectively. UV-Vis absorption spectra were recorded on a Hitachi U1900 spectrometer. Fluorescence emission spectra were obtained using 45 FluoroMax-4 Spectrofluorophotometer (HORIBA JobinYvon) at 298 K. pH was taken on an ARK PHS-2C pH meter.

4.2. Synthesis and Characterization of 3.

(a) Under nitrogen, to a THF (100 mL) solution of diphenylmethane (2.0 g, 12.0 mmol) was added n-BuLi (6.0 50 mL, 2.5 M in hexane solution, 15.0 mmol) dropwise. After the mixture was stirred at room temperature for 3 h, a THF (20 mL) solution of 5 (3.1 g, 12.0 mmol) was added dropwise to the reaction mixture. The resulting solution was stirred at room temperature for 8 h, and then quenched with saturated 55 NH₄Cl solution (10 mL). After extraction with CH₂Cl₂ (50 mL \times 3), the combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. Filtration followed by evaporation of the solvent and purification of the residue by flash column chromatography on silica gel eluted with 60 petroleum/ethyl acetate (10/1) gave 6 as a white solid. (b) Compound 6 was then dissolved in toluene (50 mL) to which p-toluensulfonic acid (3.0 g, 17.4 mmol) was added. The reaction mixture was heated at reflux for 8 h. After cooled down to room temperature, the reaction mixture was extracted 65 with CH₂Cl₂ (3 x 30 mL). The organic layer was collected and concentrated. The crude product was purified by column chromatography on silica gel using hexane as eluent to give product 7 as a white solid (1.1 g). The combined yield of the two steps was 24%. (c) Under nitrogen, 7 (500 mg, 1.2 70 mmol) was dissolved in THF (50 mL) and the temperature was lowered to -78 °C. n-BuLi (0.58 mL, 2.5 M in hexane, 1.45 mmol) was slowly added to the mixture and after 1 h B(OCH₃)₃ (0.2 mL, 1.8 mmol) was added slowly. The reaction mixture was stirred at -78 °C for 1 h and then the 75 temperature was increased to room temperature. After stirred for 8 h, the reaction was quenched with saturated NH₄Cl solution (5 mL) and extracted with CH₂Cl₂ (3 x 30 mL). The combined organic layer was washed with brine (30 mL) and dried over anhydrous Na₂SO₄. After evaporation of the 80 solvent, the residue was purified by flash column chromatography on silica gel eluted with petroleum ether/ethyl acetate (5/1) to afford **8** as a white solid (201.1) mg) in 41% yield. (d) Under nitrogen, compound 8 (200 mg, 0.5 mmol) was dissolved in DMF (20 mL) and water (3.6 mL) 85 was added as a cosolvent. Compound 9 (185 mg, 0.6 mmol), K_2CO_3 (1.0 g, 7.2 mmol) and Pd(PPh₃)₄ (110 mg, 0.1 mmol) were added to the solution. Then the reaction mixture was heated to 80 °C and stirred for 8 h. The reaction was extracted with CH_2Cl_2 (3 x 30 mL) The combined organic layer was ⁹⁰ washed with brine (30 mL) and dried over anhydrous Na₂SO₄. After evaporation of the solvent, the residue was purified by flash column chromatography on silica gel eluted with petroleum ether/ethyl acetate (3/1) to afford **3** as a light yellow solid (92 mg) in 33% yield. ¹H NMR (CDCl₃, 400 ₉₅ MHz) δ 8.09 (d, 2H, J = 4.8 Hz), 8.67-8.65 (m, 4H), 7.87 (td , 2H, J = 7.8, 1.6 Hz), 7.65 (d, 2H, J = 8.4 Hz), 7.36-7.33 (m, 2H), 7.17-7.04 (m, 17H). ¹³C NMR (CDCl₃, 100 MHz) δ 156.27, 155.82, 150.00, 149.11, 144.75, 143.53, 143.49,

123.81, 121.34, 118.72. HR-MS (ES+) calculated for $C_{41}H_{29}N_3$ (M+H) 564.2434 and (M+Na) 586.2254, found 564.2430 and 586.2272.

4.3. Synthesis and Characterization of 4.

(a) Under nitrogen, to a THF (100 mL) solution of 5 (5.0 g, 19.0 mmol) were added TiCl₄ (2.1 mL, 19.0 mmol) and Zn (3.1 g, 47.7 mmol). The mixture was heated at reflux for 20 h and then filtered. The filtrate was evaporated and purified by column chromatography on silica gel eluted with petroleum ¹⁰ ether to afford **10** as a white solid in 95% yield (4.5 g). ¹H NMR (CDCl₃, 400 MHz) δ 7.25 (d, J = 8.2 Hz, 4H), 7.21 (d, J = 8.2 Hz, 4H), 7.14 (t, J = 3.2 Hz, 6H), 7.10 (t, J = 3.2 Hz, 6H), 6.97–7.02 (m, 8H), 6.89 (d, J = 8.4 Hz, 4H), 6.87 (d, J = 8.4 Hz, 4H). ¹³C NMR (CDCl₃, 100 MHz) 142.92, 142.82, 15 142.38, 142.29, 140.27, 132.90, 132.88, 131.22, 131.20, 131.10, 130.90, 128.02, 127.82, 126.95, 126.84, 120.78, 120.65. (b) Under nitrogen, a THF (50 mL) solution of 10 (0.99 g, 2.0 mmol) was dissolved in THF (50 mL) and the temperature was lowered to -78 °C. n-BuLi (2.4 mL, 2.5 M in 20 hexane, 6.0 mmol) was slowly added to the mixture. After 1 h, B(OCH₃)₃ (1.15 mL, 10.0 mmol) was added slowly. The reaction mixture was stirred at -78 °C for 1 h and then warmed up to room temperature. After stirred for 8 h, the reaction mixture was quenched with saturated NH₄Cl solution (5 mL) 25 and extracted with CH₂Cl₂ (3 x 30 mL). The combined organic layer was washed with brine (30 mL) and dried over anhydrous Na₂SO₄. After filtration and evaporation of the solvent, the residue was purified by flash column chromatography on silica gel eluted with petroleum/ethyl 30 acetate (5/1) to afford 11 as a white solid (0.47 g) in 49% yield. (c) Under nitrogen, compound 11 (500 mg, 1.05 mmol) was dissolved in DMF (20 mL) and water (6 mL). Compound 9 (660 mg, 2.1 mmol), K₂CO₃ (1.6 g, 11.6 mmol) and Pd(PPh₃)₄ (150 mg, 0.13 mmol) were added to the 35 solution. After the reaction mixture was heated at 80 °C with stirring for 8 h, it was extracted with CH₂Cl₂ (3 x 30 mL). The combined organic layer was washed with brine (30 mL) and dried over anhydrous Na₂SO₄. After filtration and evaporation of the solvent, the residue was purified by flash 40 column chromatography on silica gel eluted with petroleum/ethyl acetate (5/1) to afford 4 as a light yellow solid in 27% yield (0.215 g). ¹H NMR (CDCl₃, 400 MHz) & 8.72-8.62 (m, 12H), 7.89-7.82 (m, 4H), 7.72-7.66 (m, 4H), 7.35-7.26 (m, 4H), 7.24-7.09 (m, 14H). ¹³C NMR (CDCl₃, 100 45 MHz) 156.31, 156.28, 155.85, 155.83, 149.99, 149.88, 149.13, 149.10, 144.67, 144.60, 143.45, 143.34, 140.94, 140.92, 136.89, 136.80, 136.54, 136.38, 131.98, 131.96, 131.45, 131.44, 127.99, 127.80, 126.91, 126.88, 126.72, 126.67, 123.82, 123.71, 121.35, 121.31, 118.84, 118.75. HR-50 MS (ES+) calculated for C₅₆H₃₈N₆ (M+H) 795.3231 and (M+Na) 817.3050, found 795.3235 and 817.30355.

4.4. Preparation of Samples of $4+Zn^{2+}$ (2.5 equiv) complex (1.0 × 10⁵ M in THF:HEPES = 1:4)

A portion (0.5 mL) of a stock solution of **4** (1.6 mg/1.0 mL, 2.0 mM in THF) was transferred to a 100 mL volumetric flask, to which was added a solution (100 μ L) of Zn(NO₃)₂ (c = 74.4 mg/10 mL, 0.025 M in H₂O). Then, 20 mL THF was added and the flask was filled to 100 mL with a HEPES buffer solution.

A stock solution of **4** (1.0 mg/1.0 mL, 1.25 mM in THF)and a stock solution of Zn(NO₃)₂ (1.5 mg/10.0 mL, 0.50 mM)in HEPES) were prepared. These two stock solutions were ⁶⁵ mixed in 10 mL test tubes according to Table 2. Then 2.5 mL THF and 2.5 mL HEPES were added to the test tubes.

Table 2. Preparation of samples for Job Plot.

Sample No.	4(µL)	Zn(NO ₃) ₂ .6H ₂ O(μL)
1	40	0
2	36	10
3	32	20
4	28	30
5	24	40
6	20	50
7	16	60
8	12	70
9	8	80
10	4	90

4.6. Preparation of samples for mass spectral analyses

⁷⁰ A stock solution of **4** (1.6 mg/10.0 mL, 0.20 mM in CH₃CN) was prepared. A portion of this solution (5.0 mL) was transferred to another 10.0 mL volumetric flask to which was added a solution (300 μ L) of Zn(NO₃)₂ (c = 15.0 mg/10 mL, 5.0 mM in H₂O). Then CH₃CN (3.0 mL) was added and ⁷⁵ the flask was filled with H₂O. Four potions of this solution (1.0 mL each) were combined with 0, 50, 100 and 150 μ L of a histidine solution (c = 16.0 mg/10.0 mL, 10.0 mM in H₂O) respectively. The mass spectra of these solutions were then analyzed.

80 Acknowledgements

This work was financially supported by the National Program on Key Basic Research Project of China (973 Program, 2013CB328900), and the National Science Foundation of China (No. 21502127, 21321061 and ⁸⁵ J1103315).

Keywords: Histidine• Aggregation Induced Emission • Tetraphenylethene • Zn(II) • Fluorescence • Amino Acid

References and notes

- a) S. E. Snyderman, A. Boyer, E. Roitman, L. E. Holt, Jr., P. H. Prose, Pediatrics 1963, 31, 786-801; b) J. D. Kopple, M. E. Swendseid, J. Clin. Invest. 1975, 55, 881-891; c) Y. Kusakari, S. Nishikawa, S. Ishiguro, M. Tamai, Curr. Eye Res. 1997, 16, 600-604.
- Selected references for detection of histidine: a) T. Grawe, T. Schrader, P. Finocchiaro, G. Consiglio, S. Failla, *Org. Lett.* 2001, 3, 1597-1600; b)
 Z. H. Zhang, H. P. Liao, H. Li, L. H. Nie, S. Z. Yao, *Anal. Biochem.*
- Z. H. Zhang, H. P. Liao, H. Li, L. H. Nie, S. Z. Yao, Anal. Biochem.
 2005, 336, 108-116; c) G. Patel, S. Menon, Chem. Commun. 2009, 3563-3565; d) B. B. Prasad, S. Srivastava, K. Tiwari, P. S. Sharma, Mater. Sci. Eng. C Mater. Biol. Appl. 2009, 29, 1781-1789; e) G.

10

15

85

110

Spiro, J. Phys. Chem. B 2012, 116, 9387-9395; f) A. Kugimiya, E. Takamitsu, Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 4867-4870; g) A. Contino, G. Maccarrone, M. Zimbone, P. Musumeci, A. Giuffrida, L. Calcagno, Anal. Bioanal. Chem. 2014, 406, 481-491; h) J. Zhou, K. Xu, P. Zhou, O. Zheng, Z. Lin, L. Guo, B. Qiu, G. Chen, Biosens. Bioelectron. 2014, 51, 386-390.
[3] For fluorescent sensing of histidine: a) M. A. Hortala, L. Fabbrizzi, N. Marcotte, F. Stomeo, A. Taglietti, J. Am. Chem. Soc. 2003, 125, 20-21; b) Y. Fu, H. Li, W. Hu, Sensor. Actuat. B-Chem. 2008, 131, 167-173; c) R.-M. Kong, X.-B. Zhang, Z. Chen, H.-M. Meng, Z.-L. Song, W. Tan, G.-L. Shen, R.-Q. Yu, Anal. Chem. 2011, 83, 7603-7607; d) L. Xu, Y. Xu, W. Zhu, B. Zeng, C. Yang, B. Wu, X. Qian, Org. Biomol. Chem. 2011, 9, 8284-8287; e) R. K. Pathak, K. Tabbasum, A. Rai, D. Panda, C. P. Rao, Analyst 2012, 137, 4069-4075; f) I. A. Azath, K. Pitchumani, Sensor. Actuat. B-Chem. 2013, 188, 59-64; g) H.-Z. He, M. Wang, D.

Balakrishnan, A. A. Jarzecki, Q. Wu, P. M. Kozlowski, D. Wang, T. G.

- S.-H. Chan, C.-H. Leung, J.-W. Qiu, D.-L. Ma, *Methods* 2013, *64*, 205-211; h) S.-Y. Jiao, L.-L. Peng, K. Li, Y.-M. Xie, M.-Z. Ao, X. Wang, X.-Q. Yu, *Analyst* 2013, *138*, 5762-5768; i) E. Oliveira, C. Santos, P.
 Poeta, J. L. Capelo, C. Lodeiro, *Analyst* 2013, *138*, 3642-3645; j) G. Xiang, S. Lin, W. Cui, L. Wang, L. Zhou, L. Li, D. Cao, *Sensor. Actuat. B-Chem.* 2013, *188*, 540-547; k) N. B. Amaral, S. Zuliani, V. Guieu, C. Ravelet, S. Perrier, E. Peyrin, *Anal. Bioanal. Chem.* 2014, *406*, 1173-
- 1179; I) X. Wang, Q. Miao, T. Song, Q. Yuan, J. Gao, G. Liang,
 Analyst 2014, 139, 3360-3364; m) Q.-H. You, A. W.-M. Lee, W.-H.
 Chan, X.-M. Zhu, K. C.-F. Leung, Chem. Commun. 2014, 50, 6207-6210; n) U. G. Reddy, H. Agarwalla, N. Taye, S. Ghorai, S.
 Chattopadhyay, A. Das, Chem. Commun. 2014, 50, 9899-9902; o) P.
 G. Sutariya, A. Pandya, A. Lodha, S. K. Menon, Analyst 2014, 139,
- M. Licchelli, G. Rabaioli, A. Taglietti, Coord. Chem. Rev. 2000, 205, 85-108; b) J. W. Bell, N. M. Hext, Chem. Soc. Rev. 2004, 33, 589-598; c) I. L. Medintz, Trends Biotechnol. 2006, 24, 539-542; d) G. J. Mohr, Anal. Bioanal. Chem. 2006, 386, 1201-1214; e) X. Chen, Y. Zhou, X. Peng, J. Yoon, Chem. Soc. Rev. 2010, 39, 2120-2135; f) R. M. Duke, B. Veale, F. M. Pfeffer, P. E. Kruger, T. Gunnlaugsson, Chem. Soc.
 - Peng, J. Yoon, *Chem. Soc. Rev.* 2010, *39*, 2120-2135; f) R. M. Duke,
 E. B. Veale, F. M. Pfeffer, P. E. Kruger, T. Gunnlaugsson, *Chem. Soc. Rev.* 2010, *39*, 3936-3953; g) Y. Zhou, J. Yoon, *Chem. Soc. Rev.* 2012, *41*, 52-67; h) M. Dutta, D. Das, *J. Indian Chem. Soc.* 2013, *90*, 9-25.
- [5] For reviews on terpyridine metal complexes: a) E. C. Constable, Adv. Inorg. Chem. 1986, 30, 69-121; b) P. R. Andres, U. S. Schubert, Adv.
 45 Mater. 2004, 16, 1043-1068; c) E. Baranoff, J. P. Collin, L. Flamigni, J. P. Sauvage, Chem. Soc. Rev. 2004, 33, 147-155; d) H. Hofmeier, U. S. Schubert, Chem. Soc. Rev. 2004, 33, 373-399; e) I. Eryazici, C. N. Moorefield, G. R. Newkome, Chem. Rev. 2008, 108, 1834-1895; f) L. Flamigni, J.-P. Collin, J.-P. Sauvage, Acc. Chem. Res. 2008, 41, 857-
- 50 871; g) S. D. Cummings, *Coord. Chem. Rev.* 2009, 253, 449-478; h) U. S. Schubert, H. Hofmeier and G. R. Newkome, *Modern Terpyridine Chemistry*, Wiley-VCH, Weinheim, 2006; i) E. C. Constable, *Chem. Soc. Rev.*, 2007, 36, 246–253; k) A. Wild, A. Winter, F. Schlütter and U. S. Schubert, *Chem. Soc. Rev.*, 2011, 40, 1459–1511.
- Selected references on Tpy-based sensors: a) S. M. Brombosz, A. J. Zucchero, R. L. Phillips, D. Vazquez, A. Wilson and U. H. F. Bunz, Org. Lett., 2007, 9, 4519–4522; b) B. Tang, F.-B. Yu, P. Li, L. Tong, X. Duan, T. Xie and X. Wang, J. Am.Chem. Soc., 2009, 131, 3016–3023; (c) K. M. -C. Wong. And V. W. -W. Yam, Coord. Chem. Rev., 2007, 60 251, 2477–2488; d) H. Aiet-Haddou, S. L. Wiskur, V. M. Lynch and E. V. Anslyn, J. Am. Chem. Soc., 2001, 123, 11296–11297; e) T. J.
- 127, 12351–12356; (g) M. Schmittel, V. Kalsani, P. Mal and J. W. Bats, Inorg. Chem., 2006, 45, 6370–6377.
 [7] a) Z. Huang, J. Du, J. Zhang, X.-Q. Yu, L. Pu, Chem. Commun. 2012, 48, 3412-3414; b) X. –Y. Zhou, Z. Huang, Z.; Y. Cao, S. –S. Yu, X, -Q,
- 48, 3412-3414; b) X. –Y. Zhou, Z. Huang, Z.; Y. Cao, S. –S. Yu, X, -Q, 125 Yu, G. Zhao, L. Pu, *RSC Advances* **2015**, 5, 53905-53910; c) J. Du, Z.
- Huang, X.-Q. Yu, L. Pu, *Chem. Commun.* 2013, 49, 5399-5401.
 [8] For reviews on aggregation induced emission, see: a) Y. Hong, J. W. Y. Lam, B. Z. Tang, *Chem. Commun.* 2009, 4332-4353; b) Y. Hong, J. W. Y. Lam, B. Z. Tang, *Chem. Soc. Rev.* 2011, 40, 5361-5388; c) D. Ding,
- ⁷⁵ K. Li, B. Li, B. Z. Tang, *Otem. Soc. New.* 2017, *40*, 3501-3565, 012. Ding,
 ⁷⁵ K. Li, B. Liu, B. Z. Tang, *Acc. Chem. Res.* 2013, *46*, 2441-2453; d) R.
 ⁷⁶ Hu, N. L. C. Leung, B. Z. Tang, *Chem. Soc. Rev.* 2014, *43*, 4494-4562;
 ⁷⁷ e) J. Mei, Y. Hong, J. W. Y. Lam, A. Qin, Y. Tang, B. Z. Tang, *Adv. Mater.* 2014, *26*, 5429-5479.
- [9] Selected references on the TPE-based fluorescent materials: a) H. ⁸⁰ Tong, Y. Hong, Y. Dong, M. Haeussler, Z. Li, J. W. Y. Lam, Y. Dong, H.
- H. Y. Sung, I. D. Williams, B. Z. Tang, J. Phys. Chem. B 2007, 111, 11817-11823; b) M. Wang, G. Zhang, D. Zhang, D. Zhu, B. Z. Tang, J. Mater. Chem. 2010, 20, 1858-1867; c) Y. Liu, C. Deng, L. Tang, A. Qin,

- R. Hu, J. Z. Sun, B. Z. Tang, J. Am. Chem. Soc. 2011, 133, 660-663; d)
 J. Wang, J. Mei, R. Hu, J. Z. Sun, A. Qin, B. Z. Tang, J. Am. Chem.
 Soc. 2012, 134, 9956-9966; e) Y. Hong, S. Chen, C. W. T. Leung, J. W.
 Y. Lam, J. Liu, N.-W. Tseng, R. T. K. Kwok, Y. Yu, Z. Wang, B. Z.
 Tang, ACS Applied Materials & Interfaces 2011, 3, 3411-3418.
- a) H. Xu, Y. Zhang, P. Jiao, J. Deng, H. Huang, China Patent. 2013: CN102964366A. p. 14pp; b) Y. Zhang, H. Xu, P. Jiao, J. Deng, China Patent, 2014: CN104177389A. p. 23pp.
- [11] M. Banerjee, S. J. Emond, S. V. Lindeman, R. Rathore, J. Org. Chem. 2007, 72, 8054-8061.
- [12] W. Z. Yuan, P. Lu, S. Chen, J. W. Y. Lam, Z. Wang, Y. Liu, H. S. Kwok, Y. Ma, B. Z. Tang, *Adv. Mater.* **2010**, *22*, 2159-2163.
- [13] a) Y. Hong, S. Chen, C. W. T. Leung, J. W. Y. Lam, J. Liu, N.-W. Tseng, R. T. K. Kwok, Y. Yu, Z. Wang, B. Z. Tang, Acs Appl. Mater. Interfaces 2011, 3, 3411-3418; b) Y. Xu, L. Chen, Z. Guo, A. Nagai, D. Jiang, J. Am. Chem. Soc. 2011, 133, 17622-17625.
- 100 [14] a) R. Daik, W. J. Feast, A. S. Batsanov, J. A. K. Howard, New J. Chem. 1998, 22, 1047-1049.
- [15] References on the fluorescent response of Tpy derivatives toward Zn²⁺: a) G. Albano, V. Balzani, E. C. Constable, M. Maestri and D. R. Smith, *Inorg. Chim. Acta*, **1998**, 277, 225–231; b) C. Goze, G. Ulrich, L. Charbonnière, M. Cesario, T. Prangè and R. Ziessel, *Chem.-Eur. J.*, **2003**, 9, 3748–3755; c) F. Barigelletti, L. Flamigni, G. Calogero, L. Hammarström, J. P. Sauvage and J. P. Collin, *Chem. Commun.*, **1998**, 2333–2334; d) W. Goodall and J. A. Williams, *Chem. Commun.*, **2001**, 2514–2515.

This journal is © The Royal Society of Chemistry [year]

RSC Advances

TOC Graphic

lower fluorescence at λ = 560 nm

enhanced fluorescence shifted from 560 to 495 nm

highly selective ratiometric fluorescent response (I₄₉₅/I₅₆₀)

RSC Advances Accepted Manuscript