Tetrahedron Letters 57 (2016) 1379-1381

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Stereoselective synthesis of iodofluoroalkenes by iodofluorination of alkynes using IF₅-pyridine-HF

ABSTRACT

Hitoshi Ukigai, Shoji Hara*

Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan

ARTICLE INFO

Article history: Received 8 January 2016 Revised 12 February 2016 Accepted 16 February 2016 Available online 16 February 2016

Keywords: Iodofluorination Iodofluoroalkene Fluoroalkene Stereoselective synthesis IF5-pyridine-HF

Introduction

The iodofluorination reaction of alkynes has been conveniently used for the stereoselective synthesis of iodofluoroalkenes,¹ key intermediates for the synthesis of di- or trisubstituted fluoroalkenes.² Generally, iodofluorination reaction is performed using the 'IF' species generated in situ from I⁺ and F⁻ sources, and various types of I⁺ and F⁻ sources have been used. The conventional iodofluorination reaction has been successfully applied to internal alkyne, however, terminal alkynes afforded the expected iodofluorination products in low yields, because of the formation of byproducts such as 1-iodo-1-alkyne.¹ⁱ Therefore, more convenient and effective reagents are required for iodofluorination of alkynes. Recently, we reported a stable hypervalent iodine reagent, IF₅-pyridine-HF, and its application to fluorination reactions.³ We also reported the iodofluorination of alkenes using the 'IF' species generated from IF₅-pyridine-HF and a reductant.⁴ In this study, the iodofluorination of alkynes was investigated using IF₅-pyridine-HF and a reductant to develop a more convenient and effective method for the synthesis of iodofluoroalkenes (Scheme 1).

Results and discussion

Initially, the iodofluorination of 1-dodecyne (1a) with IF₅-pyridine-HF was carried out in the presence of various reductants

The iodofluorination of alkynes was carried out using IF₅-pyridine-HF and hydroquinone. The iodofluori-

nation of an internal alkyne and a terminal alkyne proceeded stereoselectively to give the corresponding

iodofluoroalkenes. An unsymmetrically substituted internal alkyne and electron deficient alkyne also

afforded the corresponding iodofluoroalkenes stereoselectively. The iodofluoroalkenes thus obtained

were used in the stereoselective synthesis of di- and trisubstituted fluoroalkenes.

(Table 1). When KI was used as the reductant, 1,2-diiododo-1dodecene (3a) and 1-iodo-1-dodecyne (4a) were formed instead of the desired *trans*-1-iodo-2-fluoro-1-dodecene (2a). When I₂ was used as the reductant, 2a was formed in 48% yield, however, 3a and 4a were also formed. On the other hand, when catechol was used as the reductant, 2a was formed selectively in 75% yield. The best result was obtained when hydroquinone was used, and 2a was obtained in 82% yield.

The iodofluorination of the various alkynes was carried out using IF₅-pyridine-HF and hydroquinone (Table 2). From terminal alkynes, the desired (E)-1-iodo-2-fluoro-1-alkenes were obtained stereo- and regioselectively (entries 1, 2, 4, 7, and 8). In the reaction with internal alkynes, both symmetrically substituted alkynes (1c, e) and unsymmetrically substituted alkynes (1f, i-k), gave the corresponding iodofluoroalkenes stereo- and regioselectively (entries 3, 5, 6, and 9-11). The iodofluorination of electron deficient alkynes such as 1j and 1k was previously unknown. Nevertheless, their iodofluorination using IF₅-pyridine-HF and hydroquinone successfully afforded the corresponding iodofluoroalkenes (2j) and (2k) stereo- and regioselectively⁵ (entries 10 and 11).

© 2016 Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Tel./fax: +81 11 7066556. E-mail address: shara@eng.hokudai.ac.jp (S. Hara).

Table 1

lodofluorination of 1a using IF₅-pyridine-HF and various reductants^a

	IF ₅ -pyric	dine-HF	
C ₁₀ H ₂₁ C 1a	reductan	t, CH_2Cl_2	
	C ₁₀ H ₂₁ + F H	C ₁₀ H ₂₁ I	H ₂₁ C≡C-I
	2a	3a	4a
Reductant	Yield of 2a ^b (%)	Yield of $3a^{c}$ (%)	Yield of $4a^{c}$ (%)
KI	0	30	70
I ₂	48	31	12
Catechol	75	0	0
Hydroquinone	82	0	0

^a The reaction was carried out at room temperature for 12 h using 2.0 equiv of IF_5 -pyridine-HF and reductant to **1a**.

^b ¹⁹F NMR yield.

^c GC yield.

In the present reaction, IF₅-pyridine-HF was reduced by hydroquinone to give IF species which added to alkyne as shown in Scheme 2. Formation of *p*-quinone was confirmed in the reaction mixture. As the IF species is unstable in solution, it is difficult to decide the real active species which caused the selectivity of the present reaction. However, it was reported that the reactivity of the IF species is dependent on the reagents used.⁷ Therefore, choice of the reducing reagent is important to realize the desired selectivity.

Table 2
Iodofluorination reaction of alkynes using IF5-pyridine-HF and hydroquinone ^a

The iodofluoroalkenes thus obtained can be used for the stereoselective synthesis of di- and trisubstituted fluoroalkenes. The Suzuki–Miyaura coupling reaction of (E)-1-iodo-2-fluorododec-1ene **2a** with organoboranes afforded disubstituted fluoroalkenes (**5**) and (**6**) stereoselectively⁸ (Scheme 3).

Next, we attempted to synthesize trisubstituted fluoroalkene (**7**) by the cross-coupling reaction of ethyl (*E*)-2-iodo-1-fluoro-1-phenylpent-1-ene (**2f**) with phenylboronic acid.⁹ However, the cross-coupling reaction of **2f** with phenylboronic acid was sluggish, and **2f** decomposed during the reaction without the formation of **7**. This problem could be overcome using phenyltriolborate (**8**)¹⁰ instead of phenylboronic acid, and the desired **7** was obtained in 92% yield. Moreover, trisubstituted fluoroalkenes having three different substituents were also synthesized. Thus, the Sonogashira reaction of **2f** with 1-hexyne, and Suzuki–Miyaura coupling of **2j** with **8** afforded the corresponding trisubstituted fluoroalkenes (**9**) and (**10**) stereoselectively (Scheme 4).

Entry	Alkyne	Reaction time (h)	Product	Yield ^b (%)
1	C ₁₀ H ₂₁ C≡CH 1a	12	$\overset{C_{10}H_{21}}{\underset{F}{}H} \mathbf{2a}$	65 (82)
2	CH₂C≡CH 1b	20	F H 2b	(67)
3	PrC≡CPr 1c	15	Pr≻≕ F Pr 2c	71 (87)
4	PhC≡CH 1d	11	Ph ⊢ ⊢ H 2d	(68)
5	PhC≡CPh 1e	15	Ph ⊢⊂l 2e F Ph	72 (90)
6	PhC≡CMe 1f	12	Ph ⊢ ⊢ Me 2f	71 (99)
7	AcO⁻(CH₂) ₉ C≡CH 1g	19	$\stackrel{\text{AcO-(CH}_2)_9}{\mathop{\vdash}_{F}} \stackrel{\text{I}}{_{H}} 2g$	60 (73)
8	i-PrOOC⁻(CH ₂₎₈ C≡CH 1h	20	i-PrOOC(CH ₂) ₈ , F H 2h	60 (72)
9 ^c	PhSC≡CMe 1i	14	PhS ⊢ I 2i	(65)
10 ^d	MeC=C-COOEt 1j	24	Me F⊂COOEt 2j	67 (78)
11	PhC≡C-C-Me 1k ⊖	17	Ph F COMe 2k	81 (87)

^a If otherwise not mentioned, the reaction was carried out at room temperature in CH₂Cl₂ using 2 equiv of IF₅-pyridine-HF and hydroquinone.

 $^{\rm b}\,$ Isolated yield based on alkyne used. In parentheses, $^{19}{\rm F}\,{\rm NMR}$ yield.

^c 1.2 equiv of IF₅-pyridine-HF and hydroquinone were used.

^d The reaction was carried out in (CH₂Cl)₂ at 60 °C using 4 equiv of IF₅-pyridine-HF and hydroquinone.

Scheme 4.

Acknowledgments

We are grateful to prof. Yasunori Yamamoto (Hokkaido University) for his helpful advice on the Suzuki–Miyaura coupling using triolborate, and Daikin industries, Ltd for their donation of IF₅.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2016.02. 063.

References and notes

- (a) Olah, G. A.; Nojima, M.; Kerekes, I. Synthesis 1973, 780; (b) Zupan, M. Synthesis 1976, 473; (c) Olah, G. A.; Welch, J. T.; Vankar, Y. D.; Nojima, M.; Kerekes, I.; Olah, J. A. J. Org. Chem. 1979, 44, 3872; (d) Barluenga, J.; Rodríguez, M. A.; González, J. M.; Campos, P. J.; Asensio, G. Tetrahedron Lett. 1986, 27, 3303; (e) Gregorcic, A.; Zupan, M. Bull. Chem. Soc. Jpn. 1987, 60, 3083; (f) Eddarir, S.; Francesch, C.; Mestdagh, H.; Rolando, C. Bull. Soc. Chim. Fr. 1997, 134, 741; (g) Shelhamer, D. F.; Jones, B. C.; Pettus, B. J.; Pettus, T. L.; Stringer, J. M.; Heasley, V. L. J. Fluorine Chem. 1998, 88, 37; (h) Kobayashi, S.; Savaguchi, M.; Ayuba, S.; Fukuhara, T.; Hara, S. Synlett 2001, 1938; (i) Conte, P.; Panunzi, B.; Tingoli, M. Tetrahedron Lett. 2006, 47, 273.
- 2. As for the review and book, see: (a) Hara, S. In Fluorine-Containing Synthons; Soloshonok, V. A., Ed.; American Chemical Society: Washington, DC, 2005; pp 120–134; (b) Yanai, H.; Taguchi, T. Eur. J. Org. Chem. 2011, 5939; (c) Landelle, G.; Bergeron, M.; Turcotte-Savard, M.-O.; Paquin, J.-F. Chem. Soc. Rev. 2011, 40, 2867; (d) Hara, S. In Top. Curr. Chem.; Wang, J., Ed.; Springer: Berlin, Heidelberg, 2012; Vol. 327, pp 59–86.
- (a) Hara, S.; Monoi, M.; Umemura, R.; Fuse, C. *Tetrahedron* 2012, 68, 10145; (b) Kunigami, M.; Hara, S. J. *Fluorine Chem.* 2014, 167, 101; (c) Kunigami, M.; Hara, S. *Carbohydr. Res.* 2015, 417, 78; (d) Inoue, T.; Fuse, C.; Hara, S. J. *Fluorine Chem.* 2015, 179, 48.
- 4. Yano, S.; Hara, S. Synthesis 2015, 47, 2839.
- 5. *Typical procedure:* To a CH₂Cl₂ solution (5 mL) of IF₅-pyridine-HF (321 mg, 1 mmol) and 1-dodecyne (83 mg, 0.5 mmol) in a Teflon[™] vessel was added hydroquinone (110 mg, 1 mmol) at 0 °C, and the mixture was stirred at 0 °C for 30 min and at room temperature overnight. The solid materials was removed by filtration through a celite, and the filtrate was washed with aqueous Na₄So₂, and aqueous Na₂So₂, successively. The organic layer was dried over MgSO₄ and concentrated under reduced pressure. Purification by column chromatography (silica gel, hexane) gave 2a in 65% yield (101 mg, 0.33 mmol). ¹⁹F NMR yield was obtained using fluorobenzene as an internal standard. IR (neat) 2925, 1651, 1086 cm⁻¹; ¹H NMR (400 MHz) δ 5.66 (d, *J* = 17.6 Hz, 1H), 2.54-2.45 (m, 2H), 1.57-1.54 (m, 2H), 1.27 (br s, 14H), 0.88 (t, *J* = 6.4 Hz, 3H); ¹⁹F NMR (376 MHz) δ -82.15 to 82.32 (m, 1F) [lit.⁶ -82.25 (dt, *J* = 23.0, *J* = 17.7 Hz, 1F)]; ¹³C NMR (100 MHz) δ 164.6 (d, ¹*J*_{C-F} = 265.4 Hz), 55.0 (d, ²*J*_{C-F} = 40.2 Hz), 32.2, 31.3 (d, ²*J*_{C-F} = 25.8 Hz), 30.0, 29.9, 29.7, 29.6, 29.1, 26.1, 23.0, 14.5
- 6. Yoshida, M.; Ota, D.; Fukuhara, T.; Yoneda, N.; Hara, S. J. Chem. Soc., Perkin Trans. 1 2002, 384.
- Shellhamer, D. F.; Jones, B. C.; Pettus, B. J.; Pettus, T. L.; Stringer, J. M.; Heasley, V. L. J. Fluorine Chem. **1988**, 88, 37.
- 8. Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
- As for the synthesis of trisubstituted fluoroalkenes, see: (a) Chen, C.; Wilcoxen, K.; Zhu, Y.-F.; Kim, K.; McCarthy, J. R. J. Org. Chem. 1999, 64, 3476; (b) Tsai, H.-J.; Lin, K.-W.; Ting, T.; Burton, D. J. Helv. Chem. 1999, 82, 2231; (c) Landelle, G.; Champagne, P. A.; Barbeau, X.; Paquin, J.-F. Org. Lett. 2009, 11, 681; (d) Cao, C.-R.; Ou, S.; Jiang, M.; Liu, J.-T. Org. Biomol. Chem. 2014, 12, 467.
- (a) Yamamoto, Y.; Takizawa, M.; Yu, X.-Q.; Miyaura, N. Angew. Chem., Int. Ed. 2008, 47, 928; (b) Li, G.-Q.; Yamamoto, Y.; Miyaura, N. Tetrahedron 2011, 67, 6804; (c) Li, G.-Q.; Yamamoto, Y.; Miyaura, N. Synlett 2011, 1769; (d) Yamamoto, Y. Heterocycles 2012, 85, 799; (e) Sakashita, S.; Takizawa, M.; Sugai, J.; Ito, H.; Yamamoto, Y. Org. Lett. 2013, 15, 4308.