

Regio- and Stereoselective Synthesis of Dithiocarbonates under Ambient and Solvent-Free Conditions

Johannes Diebler, Anke Spannenberg, and Thomas Werner^{*[a]}

Herein, we report on the utilization of readily available lithium *tert*-butoxide as an efficient catalyst for the addition of carbon disulfide to terminal and internal epoxides under ambient conditions. Notably, the reaction proceeds regio- and stereoselectively. By applying the optimized conditions, 14 terminal and internal epoxides were converted. The desired cyclic dithiocarbonates were isolated in yields up to 95% after simple filtration over silica. NMR spectroscopy experiments to identify the mode of activation were performed, and they indicated activation of carbon disulfide by the catalyst. The reaction of *cis*-2,3-butyleneoxide gave only the *trans*-dithiocarbonate, whereas the conversion of (*R*)-propylen oxide gave the respective thiocarbonate stereoselectively as one enantiomer (>99% *ee*) in 87% yield.

In recent years, efforts have been intensified to utilize carbon dioxide as a C₁ building block, because it is regarded as readily available, inexpensive, and an abundant carbon source.^[1] In this context, atom-efficient carbon dioxide fixation and valorization into cyclic carbonates is an elegant and frequently studied reaction.^[2] Carbon disulfide is an isoelectronic analogue of carbon dioxide. It can be produced through the reaction of, for example, charcoal from plants and sulfur from power plant fuel gases, and thus, carbon disulfide can also be considered as a sustainable and inexpensive C1 building block. In contrast to the coupling of carbon dioxide with epoxides 1, the atomeconomic reaction with carbon disulfide leads to complex reaction mixtures, especially at elevated temperatures owing to oxygen/sulfur scrambling (Scheme 1).^[3] This phenomenon was observed in the pioneering works of this field by Endo, North, and co-workers.^[3,4]

Scheme 1. Products obtained by the cycloaddition of epoxides with CS₂.

 [a] J. Diebler, Dr. A. Spannenberg, Dr. T. Werner Leibniz-Institut f
ür Katalyse an der Universit
ät Rostock e.V. Albert-Einstein Str. 29a, 18059 Rostock (Germany) E-mail: thomas.werner@catalysis.de

Supporting Information and the ORCID identification number(s) for the author(s) of this article can be found under http://dx.doi.org/10.1002/cctc.201600242.

Notably, cyclic dithiocarbonates 2 have attracted much attention owing to their radioprotective activity^[5] and utilization in polymer synthesis.^[6] Despite the complexity of this reaction, there have been several excellent accounts on the development of catalytic systems for the conversion of epoxides 1 with carbon disulfide. This includes reports on catalysts based on Lewis and Brønsted bases,^[7] alkali metal salts,^[3] as well as transition-metal complexes.^[4,8] Even though advances have been made, those catalysts often require cocatalysts, solvents, long reaction times, and/or elevated temperatures. The latter leads to unwanted byproducts, for example, trithio- or poly(thio)carbonates. Thus, the selective synthesis of cyclic dithiocarbonates 2 from epoxides 1 and carbon disulfide under mild and solvent-free conditions is still a challenging task. Recently, we reported on various efficient one- and two-component catalytic systems for the conversion of carbon dioxide with epoxides.^[9] As an extension of this work, we were interested in the selective addition of carbon disulfide to epoxides 1 to yield dithiocarbonates 2. Notably, the carbon center of CS₂ is more electrophilic than the carbon center of carbon dioxide and is, therefore, more reactive. Thus, the coupling of CS₂ with epoxides 1 might be conducted under comparatively milder reaction conditions. As a test reaction, we chose the addition of CS_2 to 1,2-butyleneoxide (1 a), which was studied at room temperature with a reaction time of 5 h to identify suitable catalysts for this reaction (Table 1). Initially, we utilized catalysts that are known to facilitate the conversion of CO₂ with epoxides (Table 1, entries 1-3).^[9c-e,g] These bifunctional onium salts proved to be very active in CO₂ coupling reactions at elevated temperatures.^[9d,g] However, the application of tri-*n*-butyl-(2-hydroxyethyl)ammonium iodide and tri-n-butyl-(2-hydroxyethyl)phosphonium iodide at room temperature did not result in the formation of desired cyclic dithiocarbonate 2a (Table 1, entry 1). Similar results were obtained with the two-component catalyst system consisting of triethanolamine and potassium iodide, which showed high activity in the coupling of CO₂ to epoxides (Table 1, entry 2).^[9e] In the presence of tetra-n-butylphosphonium bromide and tetra-n-butylammonium bromide, again no conversion to desired product 2a was observed (Table 1, entry 3). Given that the conversion of 1a into cyclic dithioester 2a was not possible in the presence of those catalysts under the test conditions, we envisioned CS₂ activation by applying potassium tert-butoxide, which subsequently enabled the conversion with 1 a.^[10] Unfortunately, no conversion was observed in the presence of 5 mol% of the alkoxide (Table 1, entry 4). LiBr, which was reported by Endo et al. as a catalyst for this reaction, gave 21% conversion and desired product 2a with 76% selectivity (Table 1, entry 5).^[3] We conceived the dual activation of epoxide **1a** by LiBr and CS₂ by an

Table 1. Catalyst screening for the addition of CS_2 to 1 a as a test reaction. ^[a]						
Et 1a	$+$ CS ₂ $\xrightarrow{2.5-}{r.t}$	5 mol% cat.	S + S S + Et			
Entry	Catalyst	Conversion of 1 a [%] ^[b]	Selectivity to 2 a [%] ^[b]			
1 ^[c]	[HO(CH ₂) ₂ PBu ₃]I	11 (11)	0 (0)			
2	[HO(CH ₂) ₂] ₃ N/KI	0	0			
3 ^[c]	[Bu ₄ P]Br	0 (4)	0 (0)			
4	KO <i>t</i> Bu	3	0			
5	LiBr	21	76			
6	LiOtBu, LiBr	> 99	81			
7	LiOtBu	>99	78			
8 ^[d]	LiOtBu	>99	88 ^[e]			
9 ^[d,f]	LiOtBu	> 99	80 ^[g]			
10 ^[d,h]	LiOtBu	>99	90			
[a] Reactic THF (2.5 n determine	on conditions: 1 a (2. nL), RT, 5 h. [b] Conv ed by GC with <i>n</i> -hexa	5 mmol), catalyst (5 m ersions (of 1 a) and se adecane as an interna	nol%), CS ₂ (1.2 equiv.), electivity (to 2 a) were I standard. [c] For the			

THF (2.5 mL), RT, 5 h. [b] Conversions (of 1a) and selectivity (to 2a) were determined by GC with *n*-hexadecane as an internal standard. [c] For the conversion and selectivity in parentheses the respective ammonium salt was used. [d] Solvent-free. [e] Thiirane 3a was observed as the only by-product in 8% yield. [f] Catalyst (2.5 mol%). [g] Besides a 5% yield of 3a, an oligomeric byproduct was obtained. [h] CS₂ (2 equiv.).

alkoxide. Thus, we combined LiBr and lithium *tert*-butoxide and observed a significant improvement in selectivity to 81% (Table 1, entry 6). Notably, similar results were obtained in the absence of LiBr (Table 1, entry 7). The selectivity was further improved by performing the reaction under solvent-free conditions by utilizing 5 mol% of lithium *tert*-butoxide (Table 1, entry 8). Thiocarbonate **2a** was obtained with 88% selectivity, whereas the only observed byproduct was thiirane **3a**. Even though full conversion was achieved in the presence of 2.5 mol% of lithium *tert*-butoxide, the formation of considerable amounts of an oligomeric byproduct was observed (Table 1, entry 9). Nevertheless, the best result was achieved by utilizing 5 mol% of lithium *tert*-butoxide as the catalyst and 2 equivalents of CS₂, which yielded 90% of desired product **2a** (Table 1, entry 10).

Subsequently, we evaluated the substrate scope for terminal and internal epoxides 1 a-l (Table 2). Under the optimized reaction conditions, desired products **2a-I** were isolated by simple filtration over silica gel. Terminal alkyl-substituted epoxides 1a-c were efficiently converted with CS₂ into corresponding dithiocarbonates 2a-c in high yields up to 92% (Table 2, entries 1-4). Full conversions of 1,2-epoxybutane (1a) and 1,2-epoxyhexene (1 b) were achieved after 5 h and yields of 86% for 2a and 92% for 2b were obtained (Table 2, entries 1 and 2). In both cases, corresponding thiirane 3 was observed in 7% yield. The application of propylene oxide (1 c) as the substrate yielded 2c in only 16% yield after 5 h (Table 2, entry 3). However, prolonging the reaction time from 5 to 24 h resulted in full conversion of 1c, and 2c was isolated in 84% yield (Table 2, entry 4). In this case, byproduct 3c was formed in only 1% yield. However, respective trithiocarbonate 4c, which was presumably obtained by the conversion of 3c with CS_{2r} CHEMCATCHEM Communications

R ³ R ¹	R^2 + CS	5 mol% LiO ^t Bu r. t., 5 h	R^{3} R^{2} R^{2} R^{2}	
	1		2	3
Entry	Substrate	Product	Yield of 2 [%] ^[b]	Yield of [%] ^[c]
1	1 a		86	7
2	1 b	o-√° ″Bu∕_∕_S	92	7
3		S	16	-
4 ^[d]	1 c	Me	84	1
5	1 d	o-(³ BnS	93	4
6	1 e	^t BuO	92	-
7	1 f	o-(s //2 s	93	5
8	1 g		S S 89	_
9	1 h	Me S S	90	4
10	1i	Me S Me	95	1
11	1j	s S	65	24
12 ^[e]	1 k	Me Me	48 (23)	37 (65)
13 14 ^[f]	11	o↓S Me```)↓(″Me	- 69	- 6

[a] Reaction conditions: 1 (2.5 mmol), LiOtBu (5 mol%), CS₂ (2 equiv.), RT, 5 h. [b] Yield of isolated product. [c] Determined by ¹H NMR spectroscopy. [d] t=24 h, yield of trithiocarbonate: 5%. [e] *cis*-2,3-Butyleneoxide (*cis*-1 k); the values in parentheses were obtained for the *trans* isomer (*trans*-1 k). [f] T=90 °C, t=24 h.

was obtained in 5% yield. The reaction of benzyl-substituted oxirane 1d with CS₂ showed high selectivity towards respective dithiocarbonate 2d, which was isolated in 93% yield (Table 2, entry 5). Furthermore, *tert*-butyl glycidyl ether (1e) was converted with excellent selectivity into 2e (Table 2, entry 6). In this case, the formation of thiirane 3e was not observed. Moreover, unsaturated substrates 1 f-h were converted, and desired unsaturated cyclic dithiocarbonates 2 f-h were obtained in yields \geq 89% (Table 2, entries 7–9). Glycidyl methacrylate derivative 2g is of particular interest, because it might be an interesting monomer for novel polymers and materials

(Table 2, entry 8).^[11] Yet, sterically more demanding substrates 1h and 1i, that is, those disubstituted at the α -carbon atom, were converted to give 2h in 90% yield and 2i in 95% yield, respectively (Table 2, entries 9 and 10). Furthermore, we employed internal oxiranes 1j and 1k to gain insight into the mechanism and the stereochemistry of the reaction (Table 2, entries 11 and 12). Cyclohexene oxide (1j) was fully converted within 5 h to give cyclic xanthogenate 2j in 65% yield and thiirane 3j in 24% yield (Table 2, entry 11). Additionally, small amounts of oligomeric byproducts were observed. The configuration of product 2j is, in accordance with literature and spectroscopic data of the isolated compound, identified as trans-2j.^[3,8a] Upon employing cis-2,3-butylene oxide (cis-1k), desired product 2k was isolated as the trans stereoisomer in 48% yield (Table 2, entry 12). Respective byproduct 3k was obtained as the cis isomer in 37% yield. Notably, trans-1k gave cis-2k and trans-3k in yields of 23 and 65%, respectively. The inversion of the configuration of one of the two stereogenic carbon centers by applying cis-2,3-butylene oxide (cis-1 k) indicates nucleophilic attack of an in situ formed xanthogenate at the oxirane. Finally, we studied the conversion of highly substituted substrate 11. By applying the standard reaction conditions, no conversion to the desired product was observed. However, at a higher temperature and with a longer reaction time (90 °C, 24 h), 21 was isolated in 69% yield. After recrystallization of 21, crystals suitable for X-ray crystallographic analysis were obtained (Figure 1). Owing to strong ring strain, the newly fused heterocycle of 21 differs clearly from planarity.

Figure 1. Molecular structure of **21** in the crystal. Only one of the four molecules of the asymmetric unit is depicted. Displacement ellipsoids are drawn at the 30% probability level. (See the Supporting Information for crystallographic data).

The activation of CS_2 in this reaction by various nucleophiles, for example, amines,^[8a] amidines,^[12] and carbenes,^[13] has been reported. Thus, we assume initial activation of CS_2 by nucleophilic attack of *tert*-butyl alkoxide and thus the in situ formation of xanthogenate **8** (see also Scheme 3). To obtain evidence for this hypothesis, we initially converted lithium *tert*-butoxide with equimolar amounts of CS_2 to yield **8**. Unfortunately, all attempts to isolate lithium xanthogenate **8** were not successful. Furthermore, we performed ¹³C NMR spectroscopy experiments with equimolar mixtures of CS_2 and lithium *tert*-butoxide as well as non-nucleophilic LiClO₄ in [D₆]DMSO (Figure 2). Figure 2 A shows the ¹³C NMR spectrum of neat CS_2 with a charac-

CHEMCATCHEM Communications

Figure 2. Sections of the ^{13}C NMR spectra in [D_6]DMSO: A) neat CS₂, B) LiClO₄/CS₂ (1:1), C) neat LiOtBu, and D) LiOtBu/CS₂ (1:1).

teristic chemical shift of the quaternary carbon atom at $\delta = 192.5$ ppm. As expected, no shift occurred in the presence of the non-nucleophilic lithium salt LiClO₄ compared to pure CS₂ in [D₆]DMSO (Figure 2B). Those observations are in accordance with the literature.^[3] Figure 2C depicts the ¹³C NMR spectrum of neat LiOtBu. The resonances at $\delta = 35.3$ and 65.9 ppm are assigned to the primary carbon atoms and the quaternary carbon atom of the *tert*-butyl group, respectively. A significant downfield shift in the ¹³C NMR spectra for the resonances of CS₂ and the $-C(CH_3)$ moiety as well as an upfield shift for the resonances of the methyl groups $-C(CH_3)$ for a 1:1 mixture of LiOtBu/CS₂ is observed. This distinctly indicates the in situ activation of CS₂ by the alkoxide.

We postulate that the reaction proceeds through an $S_N 2$ mechanism. Thereby, nucleophilic attack of in situ formed xanthogenate **8** occurs most probably at the sterically less hindered carbon atom of epoxide **1**. Consequently, the conversion of enantiomerically pure (*R*)-**1**c gave product *ent*-**2**c with >99% enantiomeric excess (*ee*) (Scheme 2). This suggests an $S_N 2$ mechanism, as an $S_N 1$ reaction at the higher substituted carbon atom would lead to partial racemization and, thus, to a lower enantiomeric excess value of the product.

Scheme 2. Stereo- and regioselective conversion of (R)-1 b with CS₂.

On the basis of the conversion of *cis*-2,3-butyleneoxide (*cis*-1 k), we propose the mechanism depicted in Scheme 3. The initial step is activation of CS_2 by LiOtBu. Subsequent nucleophilic attack of formed xanthogenate 8 leads to 9. This step might also be facilitated by additional Lewis acid activation of the oxirane by the lithium ion, similar to the activation by bimetallic aluminum(salen) complexes reported by North and co-workers.^[8a] However, the attack occurs from the backside of the oxirane ring, and as a result, 9 is formed with the relative stereo-

Scheme 3. Postulated mechanism for the conversion of $1 \, k$ in the presence of LiOtBu and CS₂ as an illustrative example.

chemistry illustrated by the Newman projection in Scheme 3. Rotation around the internal carbon–carbon σ bond and subsequent ring closure leads to **10**. Elimination of LiOtBu regenerates the catalyst and gives rise to desired product **2k**. The proposed mechanism is in accordance with the observation that in the conversion of *cis*-2,3-butylene oxide (*cis*-1k) only *trans*-2k is formed. The stereoselective formation of *cis*-3k can be explained by ring opening of **10** to thiolate **11**. Rotation around the internal carbon–carbon σ bond gives rise to a conformation that permits an intramolecular S_N2 reaction to yield *cis*-3k and OCS, which has been detected by GC–MS. Thus, the double inversion in the overall process yields selectively only the *cis* isomer of **3**k.

In summary, we report on the utilization of lithium *tert*-butoxide as an efficient catalyst for the addition of carbon disulfide to terminal and internal epoxides under ambient and solvent-free conditions. Twelve epoxides were converted into the respective cyclic dithiocarbonates, and the desired products were obtained in yields up to 95%. NMR spectroscopy experiments revealed that carbon disulfide was activated by the alkoxide. On the basis of those spectroscopy investigations and the regio- and stereoselectivity of the reaction, a mechanism was proposed. Extension of the substrate scope, for example, to other substrate classes, is currently under investigation.

Acknowledgements

T.W. is grateful to the Federal Ministry of Research and Education (BMBF) for financial support (Chemische Prozesse und stoffliche

Nutzung von CO_2 : Technologien für Nachhaltigkeit und Klimaschutz, grant 01RC1004A).

Keywords: carbon disulfide · cycloaddition · dithiocarbonate · homogenous catalysis · stereoselectivity

- a) B. M. Bhanage, M. Arai, *Transformation and Utilization of Carbon Dioxide*, Springer, Berlin-Heidelberg, **2014**; b) M. Aresta, *Carbon Dioxide as Chemical Feedstock*, Wiley-VCH, Weinheim, **2010**; c) M. Aresta, A. Dibenedetto, A. Angelini, *Chem. Rev.* **2014**, *114*, 1709–1742; d) G. A. Olah, G. K. S. Prakash, A. Goeppert, J. Am. Chem. Soc. **2011**, *133*, 12881–12898; e) M. Peters, B. Köhler, W. Kuckshinrichs, W. Leitner, P. Markewitz, T. E. Müller, *ChemSusChem* **2011**, *4*, 1216–1240.
- [2] a) B.-H. Xu, J.-Q. Wang, J. Sun, Y. Huang, J.-P. Zhang, X.-P. Zhang, S.-J. Zhang, Green Chem. 2015, 17, 108–122; b) J. W. Comerford, I. D. V. Ingram, M. North, X. Wu, Green Chem. 2015, 17, 1966–1987; c) M. Cokoja, M. E. Wilhelm, M. H. Anthofer, W. A. Herrmann, F. E. Kühn, Chem-SusChem 2015, 8, 2436–2454; d) Q. He, J. W. O'Brien, K. A. Kitselman, L. E. Tompkins, G. C. T. Curtis, F. M. Kerton, Catal. Sci. Technol. 2014, 4, 1513–1528; e) M. North, R. Pasquale, C. Young, Green Chem. 2010, 12, 1514–1539; f) J. Sun, S.-i. Fujita, M. Arai, J. Organomet. Chem. 2005, 690, 3490–3497.
- [3] N. Kihara, Y. Nakawaki, T. Endo, J. Org. Chem. 1995, 60, 473-475.
- [4] M. North, P. Villuendas, Synlett 2010, 623-627.
- [5] Y. Robbe, J. P. Fernandez, R. Dubief, J. P. Chapat, H. Sentenacroumanou, M. Fatome, J. D. Laval, *Eur. J. Med. Chem.* **1982**, *17*, 235–243.
- [6] a) W. Choi, F. Sanda, T. Endo, *Macromolecules* **1998**, *31*, 2454–2460;
 b) M. Luo, Y. Li, Y.-Y. Zhang, X.-H. Zhang, *Polymer* **2016**, *82*, 406–431.
- [7] a) A. Z. Halimehjani, F. Ebrahimi, N. Azizi, M. R. Saidi, J. Heterocycl. Chem. **2009**, 46, 347–350; b) S. Hayashi, M. Furukawa, Y. Fujino, T. Nakao, K. Nagato, Chem. Pharm. Bull. **1971**, 19, 1594–1597; c) I. Yavari, M. Ghazanfarpour-Darjani, Z. Hossaini, M. Sabbaghan, N. Hosseini, Synlett **2008**, 889–891; d) I. A. Dotsenko, Q. L. Zhao, A. H. Franz, P. Batoon, N. M. Samoshina, V. V. Samoshin, ARKIVOC **2014**, v, 16–41; e) Y. Taguchi, K. Yanagiya, I. Shibuya, Y. Suhara, Bull. Chem. Soc. Jpn. **1988**, 61, 921–925.
- [8] a) W. Clegg, R. W. Harrington, M. North, P. Villuendas, J. Org. Chem.
 2010, 75, 6201–6207; b) Y.-M. Wang, B. Li, H. Wang, Z.-C. Zhang, X.-B. Lu, Appl. Organomet. Chem. 2012, 26, 614–618; c) C. Beattie, M. North, ChemCatChem 2014, 6, 1252–1259; d) S. Motokucho, D. Takeuchi, F. Sanda, T. Endo, Tetrahedron 2001, 57, 7149–7152.
- [9] a) C. Kohrt, T. Werner, ChemSusChem 2015, 8, 2031–2034; b) J. Großeheilmann, H. Büttner, C. Kohrt, U. Kragl, T. Werner, ACS Sustainable Chem. Eng. 2015, 3, 2817–2822; c) H. Büttner, J. Steinbauer, T. Werner, ChemSusChem 2015, 8, 2655–2669; d) H. Büttner, K. Lau, A. Spannenberg, T. Werner, ChemCatChem 2015, 7, 459–467; e) T. Werner, N. Tenhumberg, H. Büttner, ChemCatChem 2014, 6, 3493–3500; f) T. Werner, N. Tenhumberg, J. CO2 Util. 2014, 7, 39–45; g) T. Werner, H. Büttner, ChemSusChem 2014, 7, 3268–3271.
- [10] F. Dumur, C. R. Mayer, *Helv. Chim. Acta* **2013**, *96*, 889–896.
- [11] S. Al-Ahmad (The Lubrizol Corporation, Wickliffe) WO2009026201A1, 2009.
- [12] M. T. C. Ang, L. Phan, A. K. Alshamrani, J. R. Harjani, R. Wang, G. Schatte, N. J. Mosey, P. G. Jessop, *Eur. J. Org. Chem.* **2015**, 7334–7343.
- [13] L. Delaude, A. Demonceau, J. Wouters, Eur. J. Inorg. Chem. 2009, 1882– 1891.

Received: February 29, 2016 Revised: March 29, 2016 Published online on May 25, 2016