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ABSTRACT: The design and a gram-scale synthesis of a bench-stable cyclohexa-1,4-diene-based surrogate of gaseous hydrogen iodide 
are described. By initiation with a moderately strong Brønsted acid, hydrogen iodide is transferred from the surrogate onto C‒C multiple 
bonds such as alkynes and allenes without the involvement of free hydrogen iodide. The surrogate fragments into toluene and ethylene, 
easy-to-remove volatile waste. This hydroiodination reaction avoids precarious handling of hydrogen iodide or hydroiodic acid. By this, a 
broad range of previously unknown or difficult-to-prepare vinyl iodides can be accessed in stereocontrolled fashion. 

INTRODUCTION 

Hydrogen iodide (HI) is a toxic and corrosive gas that is com-
monly handled in the form of an equally corrosive, concentrated 
aqueous solution called hydroiodic acid. It can be used directly, 
and the Cativa™ process is an example of an industrial applica-
tion,1 but in-situ generation of hydrogen iodide is often more 
practical on the laboratory scale. Representative procedures make 
use of alkali metal iodides,2 also together with Me3SiCl,3 or 
Me3SiI directly,4 as well as elemental iodine5‒10 as the iodine 
source; activation of Me3SiI, I2, and PI3 on alumina was especially 
investigated.5,6 Recently, Lautens and co-workers introduced 
Et3N·HI and primary alkyl iodides as safe surrogates of HI.11 
Their elegant approach is based on oxidative addition of HI to 
palladium(0) or palladium(0)-catalyzed dehydrohalogenation of 
the alkyl iodide. Both methods arrive at the same H‒Pd(II)‒X 
intermediate that subsequently participates in the hydroiodination 
of 1,6-enynes. The overall process is a transition-metal-catalyzed 
transfer hydroiodination.12,13 

We have been engaged in the development of metal-free trans-
fer processes driven by aromatization of cyclohexa-1,4-dienes.14 
For example, cyclohexa-1,4-dienes I and II are surrogates of 
hydrosilanes and dihydrogen, respectively (Scheme 1, top). The 
strong boron Lewis acid B(C6F5)3 then promotes alkene transfer 
hydrosilylation14 with I as well as transfer hydrogenation16 with 
II;17 catalysis by several Brønsted acids was also demonstrated for 
II.18 An extension of this strategy to hydrohalic acid (HX) surro-
gates III is not realistic due to their innate chemical instability 
(Scheme 1, top). To prevent rapid aromatization, we designed 
stable systems IV with an additional ethylene unit where we 
deemed controlled release of HX feasible (Scheme 1, bottom left). 
We hoped that this measure would simply translate into the for-
mation of ethylene gas. However, we had to learn that derivatives 
of IV are either inert toward or do not react with B(C6F5)3 in the 
planned way. Hence, we turned toward Brønsted-acid catalysis,18 
cognizant that the nucleofuge/electrofuge situation in IV could 
now be reverse to that in I and II. Halide abstraction from IV by 
an assumed carbocation intermediate VI by way of an iodonium 
ion intermediate is probably favored over hydride abstraction18 
from IV (Scheme 1, bottom right). 

Scheme 1. Cyclohexa-1,4-diene-Based Surrogates (top) and 
Modified HX Surrogate and Assumed Catalytic Cycle of 

the Brønsted-Acid-Initiated Transfer Hydrohalogenation 
of Alkynes (bottom) (A‒ = Counteranion) 

 

We report here the gram-scale synthesis of an HI surrogate 
similar to the generic structure IV and its application to the 
Brønsted-acid-initiated transfer hydroiodination of alkynes,19 
alkenes20 and allenes21 (V→VII for X = I, Scheme 1, bottom 
right). 

RESULTS AND DISCUSSION 

Surrogate Identification and Preparation. Our investigation 
began with the identification and preparation of a robust surrogate 
(Figure 1). Parent compound 122 seemed an obvious choice but 
was not sufficiently stable. Aromatization was again the problem. 
A quaternary carbon atom in the ring would forestall aromatiza-
tion, and easy-to-access derivative 222 was indeed stable. Howev-
er, its high molecular weight and potential difficulties associated 
with removing the non-volatile biphenyl waste made it less attrac-
tive. We eventually arrived at low-molecular-weight structure 3 
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that would release toluene and ethylene as waste. Its synthesis was 
accomplished in seven routine synthetic operations with five 
purifications (Scheme 2). The ethylene unit was established by 
Wittig homologation (6→7) after Birch alkylation and adjustment 
of the oxidation level (4→5→6). The primary alkyl iodide was 
installed by an Appel reaction of the corresponding alcohol (8→3). 
The sequence was scalable, and the four-step chain extension 
5→8 was also possible on gram scale without purification of the 
intermediates (gray arrow, Scheme 2). 

 

Figure 1. Potential cyclohexa-1,4-diene-based surrogates (see the 
Supporting Information for details). 

Scheme 2. Synthesis of HI Surrogate 3 

 

Reaction conditions: a) Na (4.0 equiv), tBuOH (1.0 equiv), NH3, ‒78 
°C, 1 h; MeI (4.0 equiv), THF, ‒78 °C to RT, overnight; b) LiAlH4 (2.0 
equiv), THF, 0 °C; c) (COCl)2 (1.5 equiv), DMSO (2.0 equiv), CH2Cl2,  
‒78 °C, 30 min; Et3N (excess), ‒78 °C to RT, 30 min; d) 
[Ph3PCH2OMe]+Cl‒ (1.2 equiv), nBuLi (2.5 M in hexanes, 1.1 equiv), 0 
°C to RT, overnight; HCl in H2O (32%), 0 °C, 2 h; e) NaBH4 (2.0 equiv), 
THF, 0 °C to RT, overnight; f) Ph3P (1.3 equiv), I2 (1.3 equiv), imidazole 
(1.3 equiv), CH2Cl2, 0 °C to RT, overnight. 

Optimization and Byproduct Assignment. With gram quanti-
ties of HI surrogate 3 in hand, we tested various Brønsted acids in 
the transfer hydroiodination of phenylacetylene (9→10, Table 1). 
The outcome of this initial screening in benzene was mixed with 
regard to the pKa values (entries 1‒4). TfOH and 
[H(OEt2)2]

+[BArF
4]
−23 promoted the decomposition of 9 but 

Tf2NH and TsOH facilitated the desired HI transfer from 3 to 9. 
The fragmentation pieces of 3, that is toluene and ethylene, were 
detected in the 1H NMR spectrum (see the Supporting Information 
for details). Using the relatively weak acid TsOH is already highly 
attractive, and the use of its monohydrate would have been even 
more so. TsOH·H2O did initiate the reaction but the presence of 
water was detrimental (entry 5). No reaction was seen in the 
absence of added acid (entry 6). Substantial amounts of an unex-
pected compound, characterized as 11, were found in all of the 
successful examples. Its proportion increased in more polar arene 
solvents such as chloro- and 1,2-dichlorobenzene (entries 7 and 8). 
Conversely, the formation of 11 was fully suppressed in cyclo-
hexane but the yield was diminished (entry 9). By using benzene 
together with cyclohexane as co-solvent, that problem was over-

come, and α-iodostyrene was obtained chemoselectively in high 
yield (entry 10). 

Table 1. Optimization of the Brønsted-Acid-Initiated 
Transfer Hydroiodination of Alkynesa 

 

entry acid solvent 
T (°C)  
for t (h) 

yield of 
10 (%)b 

yield of 
11 (%)b 

1 Tf2NH C6D6 100  

for 12 

75 12 

2c TfOH C6D6 100  

for 6 

< 1 < 1 

3c [H(OEt2)2]
+ 

[BArF
4]

– 

C6D6 100  

for 12 

trace trace 

4 TsOH C6D6 100  

for 8 

87 13 

5 TsOH·H2O C6D6 100  

for 12 

47d 10 

6 none C6D6 100  

for 6 

< 1 < 1 

7 TsOH C6D5Cl 100  

for 12 

59 24 

8 TsOH 1,2-C6D4Cl2 100  

for 24 

63 32 

9 TsOH C6D12 80  

for 8 

50 < 1 

10 TsOH C6D6/C6D12
e 80  

for 8 

80 < 1 

11f TsOH C6D6 100  

for 18 

trace 48 

aUnless otherwise noted, reactions on a 0.030 mmol scale in 0.5 mL of the 
indicated solvent. bDetermined by 1H NMR spectroscopy by the addition 
of 1,4-dioxane as internal standard after the indicated time. cDecomposi-
tion of 9. dStyrene detected in significant amounts (14% yield). e2:1 ratio. 
fAddition of 9 after full consumption of 3. 

Exclusive formation of 11 was achieved when substrate 9 was 
added to the reaction after full consumption of surrogate 3 (entry 
11). This experiment supports the notion that no free HI is in-
volved in the transfer process. New compound 11 apparently 
originates from the HI surrogate 3. We assume that it is formed by 
alkene protonation followed by Wagner‒Meerwein rearrangement 
of either alkyl group; evidence for subsequent aromatization came 
from the detection of trace amounts of H2 in the 1H NMR spec-
trum (see the Supporting Information for details). An alternative 
way of the formation of 11 could be by hydride abstraction, that is 
one of the endocyclic methylene hydrogen atoms becoming the 
nucleofuge (see Scheme 1). Treatment of 3 with the trityl cation 
as hydride acceptor rapidly furnished 11, here through the inter-
mediacy of Wheland complex 12 that again undergoes a 1,2-alkyl 
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shift24 (Scheme 3). Finally, under the palladium(0)-catalyzed 
conditions reported by Lautens and co-workers for the dehydro-
halogenation of alkyl iodides,11a no productive reactivity occurred 
with only isomerization of HI surrogate 3 to the corresponding 
cyclohexa-1,3-diene observed (not shown). 

Scheme 3. Rearrangement of the HI Surrogate Initiated by 
Hydride Abstraction 

 

Substrate Scope. The scope of the TsOH-initiated transfer hy-
droiodination of C–C triple bonds was then examined. It quickly 
became clear though that purification of the obtained products is 
challenging. Its success was dependent on the procedure em-
ployed for the individual substrate as different procedures caused 
slightly different compositions of byproducts. We therefore con-
tinued with C6H6 at 100 °C (Method A as in Table 1, entry 4) and 
C6H6/C6H12 at 80 °C (Method B as in Table 1, entry 10) to sim-
plify product isolation. Nine terminal (Table 2) and four internal 
alkynes (Figure 2) were brought to reaction with HI surrogate 3. 
Yields were generally good for the synthesis of α-iodostyrenes 
and the functional-group tolerance acceptable. It is noteworthy 
that the reaction even works with electron-withdrawing substitu-
ents present at the aryl group as in 10f‒h (entries 6‒8). A delicate 
CHO group as in 10g was compatible (entry 7), as was a CN 
group as in 10h, albeit in lower yield (entry 8). The borylated 
derivative 10i was obtained in decent yield in view of the fact the 
reaction mixture is heated at 80 °C for 24 h (entry 9). Routes to 
formylated α-iodostyrenes are rare25 and to the best of our 
knowledge this is the first reported preparation of a borylated 
α-iodostyrene.26 This methodology therefore offers valuable 
access to these versatile building blocks. 

Table 2. Scope of the Brønsted-Acid-Initiated Transfer 
Hydroiodination of Terminal Alkynesa 

 

entry 9 with X method time (h) yield of 10 (%)b 

1 9a (X = H) A 8 81 (10a) 

2c 9b (X = 4-Me) B 24 65 (10b) 

3c 9c (X = 3-Me) B 12 61 (10c) 

4 9d (X = 2-Me) B 24 46 (10d) 

5 9e (X = 4-Cl) A 8 86 (10e) 

6 9f (X = 4-F) A 8 70 (10f) 

7 9g (X = 4-CHO) B 24 59 (10g) 

8 9h (X = 4-CN) A 24 23 (10h) 

9 9i (X = 4-Bpin) B 24 44 (10i) 

aReaction conditions: Method A: TsOH (10 mol %), C6H6, 100 °C; 
Method B: TsOH (10 mol %), C6H6/C6H12 2:1, 80 °C. bIsolated yield after 
flash chromatography on silica gel. 

Similar results were seen with internal alkyl/aryl-substituted 
triple bonds, and even a propargyl chloride was converted into the 
corresponding allylic system 10k in moderate yield. A tethered 
triple bond as in 10m remained untouched. Also, ar-
yl/aryl-substituted 10l formed in moderate yield. However, the 
reaction of purely alkyl-substituted substrates was not clean; e.g., 
oct-4-yne yielded the desired vinyl iodide in 28% NMR yield but 
could not be further purified (not shown). This is presumably due 
to the presence of an aliphatic rather than aromatic group at R1 of 
vinyl cation VI (cf. Scheme 1), leading to both poorer stabiliza-
tion of the cation and the availability of alternative reaction path-
ways. 

 

Figure 2. Examples of the Brønsted-acid-initiated transfer hydroio-
dination of internal alkynes. aReaction conditions: Method A: TsOH (10 
mol %), C6H6, 100 °C. 

The transfer hydroiodination of cycloalkenes to give secondary 
alkyl iodides was possible when using the stronger Brønsted-acid 
Tf2NH but the results were rather poor. Iodocyclopentane (20%), 
iodocyclohexane (40%), and iodocycloheptane (38%) were all 
formed in low to moderate yield (see the Supporting Information 
for details). The rearrangement of the HI surrogate (3→11; cf. 
Table 1, entry 11 and Scheme 3) outrivaled the transfer process in 
these reactions. We explain this by similar reactivity of the double 
bonds in the substrate and the surrogate. 

Interestingly, α,β-unsaturated acceptors were particularly suc-
cessful participants in the transfer hydroiodination (Scheme 4). 
Despite their intrinsically electron-poor nature, the use of the 
stronger acid Tf2NH overcame their lack of reactivity, and 14a 
was predominantly isolated as its E isomer. Methods for the E 
selective preparation of β-iodo acrylates are rare.27 Use of condi-
tions previously reported by Piers and co-workers (NaI/AcOH)28 
produced the Z isomer in 85% yield (see the Supporting Infor-
mation for details), highlighting the novel reactivity of HI surro-
gate 3. A variety of carbonyl functionalities were tolerated to 
produce carboxylic acid, amide, and ketone derivatives 14b–d in 
good to excellent yields predominantly with Z configuration. 
Routes to β-iodo acrylamides are scarce,29 and variation of the 
β-alkyne substitution revealed this to be a general route to this 
class of compounds. In all cases, the two geometrical isomers 
were either separable by flash column chromatography on silica 
gel or the Z isomer was formed exclusively. As before, elec-
tron-withdrawing substitutents such as those in 14e–h were toler-
ated but in this case electron-donating substituents as in 14i–j also 
demonstrated excellent reactivity. Heteroaromatic substituents as 
in 14l and 14m were also amenable to the reaction and, im-
portantly, aryl substitution was not a requirement for reactivity, 
allowing for the formation of acrylamides bearing aliphatic sub-
stituents as in 14n and 14o. We were also able to prepare diene 
14p from the corresponding enyne 13p (gray box). In this case, no 
reaction at the alkene site was observed. 

Scheme 4. Scope of the Brønsted-Acid-Initiated Transfer 
Hydroiodination of Activated Alkynesa 
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aThe geometrical isomers were separable by flash column chromatog-

raphy and were isolated individually. 

Interestingly, individual resubjection of the isolated Z and E 
isomers of amide 14i to the acidic conditions led to no observable 
isomerization. This suggests that the reaction operates under 
kinetic rather than thermodynamic control, and that prolonged 
heating would not result in changes to the isomer ratio. The rea-
son for the varying quantities of E and Z isomers is, however, 
unclear at this stage. 

HI surrogate 3 also proved proficient at the transfer hydroio-
dination of allene derivatives (Scheme 5). Previous work by Ma 
and co-workers had demonstrated the use of HI generated in situ 
from NaI and AcOH to form primarily β-iodo-β,γ-unsaturated 
esters from allenes.21f Under our reaction conditions, we instead 
formed β-iodo-α,β-unsaturated ester 16a exclusively in 61% yield 
from allene 15a, and with excellent control of the double bond 
geometry.30 Alternative routes to tetrasubstituted 
β-iodo-α,β-unsaturated carbonyl species either give the Z isomer 
as the major product31 or rely on specially designed substrates to 
deliver the E isomer.32,33 Exploring the scope of the reaction, a 
number of carbonyl derivatives were tolerated to provide a small 
collection of tetrasubstituted E-alkenes 16b‒f. Interestingly, the 
isopropyl ester moiety was cleaved in situ to give carboxylic acid 
16c in 83% yield. No hydrolysis was seen for ethyl or methyl 
ester derivatives 16a or 16b, suggesting that the transformation 
occurred via cleavage of the alkyl C–O bond and formation of the 
secondary isopropyl cation.34 Ester 16g, which lacks substitution 
at the α-position, was formed in high yield and as almost exclu-
sively the E isomer. Starting from the corresponding alkyne using 
the method outlined in Scheme 4 led to the same product but in 
lower yield and poorer stereoselectivity. Extended aliphatic or 
aromatic substitution at the α-position as in 16h and 16i was also 
tolerated, although the latter only in low yield. Adding substitu-
tion at the γ-position of the allene led to the formation of product 

mixtures as seen in the ca. 2:1 formation of 16j and 16j’ (gray 
box). Allenes lacking the electron-withdrawing carbonyl func-
tionality such as those bearing only aromatic substitution were not 
suitable substrates and decomposed under the reaction conditions. 

Scheme 5. Scope of the Brønsted-Acid-Initiated Transfer 
Hydroiodination of Activated Allenesa 

 
aObtained from 15d (R1 = OiPr). bTf2NH (10 mol %), 140 °C, 5 d. 

cTf2NH (10 mol %), 100 °C, 24 h. 

CONCLUSION 

To summarize, we introduced here a new transfer process that 
avoids handling of gaseous hydrogen iodide or its aqueous solu-
tion. Free HI is not even formed in this proton-initiated transfer 
hydroiodination of alkynes as well as allenes. Iodide abstraction, 
probably by way of an iodonium ion intermediate, from the eth-
ylene tether of the cyclohexa-1,4-diene-based surrogate leads to 
its almost traceless fragmentation into toluene and ethylene ac-
companied by release of a proton. The method provides access to 
a wide range of hydroiodinated species, many of which have 
either not be accessed previously or were difficult to prepare. 
Further investigations into the mechanistic details of the reaction 
and the extension of this strategy to other HX transfer reactions 
are currently underway in our laboratory.35 
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