Regioselective Nucleophilic Additions on Indenyl-Ruthenium(II)-Allenylidene Complexes. X-ray **Crystal Structure of the Alkynyl Complex** $[\mathbf{Ru}\{\mathbf{C} \equiv \mathbf{CC}(\mathbf{C} \equiv \mathbf{CH})\mathbf{Ph}_2\}(\eta^5 - \mathbf{C}_9\mathbf{H}_7)(\mathbf{PPh}_3)_2]^{\dagger}$

Victorio Cadierno,[‡] M. Pilar Gamasa,[‡] José Gimeno,^{*,‡} M. Carmen López-González,[‡] Javier Borge,[§] and Santiago García-Granda[§]

Departamento de Química Orgánica e Inorgánica and Departamento de Química Física y Analítica, Instituto Universitario de Química Organometálica "Enrique Moles" (Unidad Asociada al CSIC), Facultad de Química, Universidad de Oviedo, E-33071 Oviedo, Spain

Received April 28, 1997[®]

The diphenylallenylidene complexes $[Ru(=C=C=Ph_2)(\eta^5-C_9H_7)L_2][PF_6]$ (L = PPh₃; L₂ = 1,2-bis(diphenylphosphino)ethane (dppe), bis(diphenylphosphino)methane (dppm)) (1a-c)react with NaOMe to yield the methoxyalkynyl derivatives $[Ru{C \equiv CC(OMe)Ph_2}(\eta^5-C_9H_7) L_2$] (**3a**-c). Protonation of these species gives back the starting allenylidene derivatives. Regioselective additions on the C_{γ} are also observed when **1a**,**b** are treated with LiR (R = Me, ⁿBu), giving the alkynyl complexes $[Ru{C \equiv CC(R)Ph_2}(\eta^5 - C_9H_7)L_2]$ (4a,b, 5a,b). Vinylidene derivatives $[Ru{=C=C(H)C(R)Ph_2}(\eta^5-C_9H_7)(PPh_3)_2][BF_4]$ (6a, 7a) can be prepared by protonation of complexes 4a and 5a with HBF₄. The diphenylallenylidene compound 1c

reacts with Li^tBu to yield the metallacycle complex [Ru{($\kappa^3(C,P,P)$ -C=C=CPh_2(Ph_2PCHPPh_2)}- $(\eta^5 - C_9 H_7)$] (8c). The alkynyl complexes $[Ru\{C \equiv CC(C \equiv CR)Ph_2\}(\eta^5 - C_9 H_7)(PPh_3)_2]$ (R = Ph, ⁿPr, H) (9a–11a) have been obtained by reaction of 1a with lithium or sodium acetylides. Protonation of these derivatives yields the vinylidene complexes $[Ru{=}C=C(H)C(C=CR)$ -Ph₂}(η^5 -C₉H₇)(PPh₃)₂][BF₄] (**12a**-**14a**). The crystal structure of [Ru{C=CC(C=CH)Ph₂}(η^5 - C_9H_7)(PPh₃)₂] (**11a**) was determined by X-ray diffraction methods. In the structure the alkynyl chain is nearly linear $(Ru-C(1)-C(2) = 175.0(2)^\circ)$ with Ru-C(1) and C(1)-C(2)distances of 1.993(2) and 1.209(3) Å, respectively. The monosubstituted allenylidene complex $[Ru{=C=C=C(H)Ph}(\eta^5-C_9H_7)(PPh_3)_2][PF_6]$ (2a) reacts with PMe₃, PMe₂Ph, PMePh₂, and PPh₃ to yield the cationic alkynyl-phosphonio derivatives [Ru{C=CC(PR₃)(H)Ph}(η^{5} -C₉H₇)- $(PPh_3)_2$ [PF₆] (**17a-20a**) in a regioselective way. Similarly, allenylidene complexes **1a-c** add PMe₃ to give the corresponding alkynyl-phosphonio derivatives 15a-c. [Ru{C=CC- $(PMe_3)Ph_2$ $(\eta^5-C_9H_7)(dppm)$ [PF₆] (15c) undergoes an isomerization process to yield the thermodynamically more stable allenyl-phosphonio complex $[Ru{C(PMe_3)=C=CPh_2}(\eta^5 C_9H_7$)(dppm)][PF₆] (**21c**). [Ru{C(PMe_2Ph)=C=CPh_2}(\eta^5-C_9H_7)(dppm)][PF_6] (**22c**) can be obtained directly by addition of PMe₂Ph to the C_{α} atom of 1c. The behavior of the diphenylallenylidene complexes 1a-c toward sodium 2-methylthiophenolate is also discussed.

Introduction

Metallacumulenes $[M] = (C=)_n CR_2$ are a new class of unsaturated carbene complexes containing cumulative M=C and C=C double bonds. Metal-vinylidene (n =1) and metal-allenylidene (n = 2) derivatives are the first members of this family.¹ Even though the first allenylidene complexes have been known since 1976,²

their chemistry has not been so extensively studied compared with that of the vinylidene complexes.³ However, during the last few years the study of metalallenylidene complexes has notably increased, probably due to the discovery of a general synthetic method, based on the direct activation of propargyl alcohols.⁴ The high degree of unsaturation of the organic chain, which contains three activated carbon atoms, has provided potential utility as reagents in organic synthesis analogous with the well-known chemistry of metal-carbene complexes.⁵ Since the reactivity of the allenylidene chain still remains largely unexplored, the usefulness in chemical transformations has not been exploited yet. The involvement of allenylidene complexes in the cata-

[†] Dedicated to Prof. Pascual Royo (Universidad de Alcalá de Henares) on the occasion of his 60th birthday.

Departamento de Química Orgánica e Inorgánica.

 ⁸ Departamento de Química Física y Analítica.
 ⁸ Abstract published in Advance ACS Abstracts, August 15, 1997. (1) Isolation of pentatetraenylidene complexes $[M] = (C=)_4 CR_2$ has

to be a recently reported: (a) $[M] = trans [RuCl(dppe)_2]^+$: Touchard, D.; Haquette, P.; Daridor, A.; Toupet, L.; Dixneuf, P. H. *J. Am. Chem. Soc.* **1994**, *116*, 11157. (b) $[M] = [RuCl(\eta^6 \cdot C_6 Me_6)(PMe_3)]^+$: Peron, D.; Romero, A.; Dixneuf, P. H. *Gazz. Chim. Ital.* **1994**, *124*, 497. (c) [M] =romero, A.; Dixneur, P. H. Gazz, Chim. Ital. **1994**, 124, 497, (c) [M] = trans-[IrCl(PiPr₃)₂]: Lass, R. W.; Steinert, P.; Wolf, J.; Werner, H. Chem. Eur. J. **1996**, 2, 19, (d) [M] = Cr(CO₅ or W(CO)₅: Roth, G.; Fischer, H. Organometallics **1996**, 15, 1139. (2) (a) Fischer, E. O.; Kalder, H.-J.; Franck, A.; Köhler, F. H.; Huttner, G. Angew. Chem. Int. Ed. Engl. **1976**, 15, 623. (b) Berke, H. Angew. Chem. Int. Ed. Engl. **1976**, 15, 624.

Angew. Chem., Int. Ed. Engl. 1976, 15, 624.

^{(3) (}a) Bruce, M. I.; Swincer, A. G. Adv. Organomet. Chem. 1983, (a) Bruce, M. I., Swincer, A. G. Adv. Organomiet. Chem. 1965, 22, 59. (b) Bruce, M. I. Chem. Rev. 1991, 91, 197. (c) Antonova, A. B.; Johansson, A. A. Russ. Chem. Rev. (Engl. Trans.) 1989, 58, 693.
 (4) (a) Selegue, J. P. Organometallics 1982, 1, 217. (b) Le Bozec, H.; Dixneuf, P. H. Russ. Chem. Bull. 1995, 44, 801 and references cited

therein. (c) Werner H. J. Chem. Soc., Chem. Commun. 1997, 903 and references cited therein.

^{© 1997} American Chemical Society

L= PPh₃ (1a); L₂= dppe (1b), dppm (1c)

L= PPh₃ (**3a**); L₂= dppe (**3b**), dppm (**3c**)

lytic coupling of allylic alcohols and propargyl alcohols in the presence of $[RuCl(\eta^5-C_5H_5)(PPh_3)_2]$ has just been reported.6

Theoretical studies (MO) on the model [Mn(=C= C=CH₂)(η^{5} -C₅H₅)(CO)₂] showed⁷ that C_{α} and C_{γ} atoms of the allenylidene chain are electrophilic centers and that C_{β} is nucleophilic. The nucleophilic character of C_{β} has been experimentally confirmed by Kolovoba and co-workers8 on the neutral allenylidene complexes [Mn- $(=C=C=CR_2)(\eta^5-C_5H_5)(CO)_2]$ (R = Ph, ^tBu) which undergo C_{β} protonation additions to give the cationic alkenyl-carbyne derivatives $[Mn{=CC(H)=CR_2}(\eta^5-$ C₅H₅)(CO)₂]^{+.9} Although reactivity studies on neutral and cationic allenylidene complexes also confirm the electrophilic character of the C_{α} and C_{γ} atoms, the nucleophilic additions seem to be dependent on the metal fragment as well as on the C_{γ} substituents, as is shown in the regioselective additions of alcohols. Thus, alcohols can be added either at the C_{α} atom to give alkenyl-carbene derivatives¹⁰ [M]=C(OR)C(H)=CR₂ or at the C_{γ} to yield vinylidene complexes^{10f,11} [M]=C=C-(H)C(OR)R₂. In contrast, Dixneuf and co-workers and ourselves have demonstrated that the use of sterically hindered and/or electron rich metal fragments, such as *trans*-[RuCl(dppm)₂],¹² [Ru{N(CH₂CH₂PPh₂)₃],¹³ or [Ru(η^{5} -C₉H₇)L₂] (L₂ = 2PPh₃, dppe, dppm),^{10f,14} prevents the nucleophilic addition of alcohols on the allenylidene chain.15

As part of our continuing interest in investigating the reactivity patterns of vinylidene- and allenylideneruthenium(II) complexes here we report a general study

(8) Kolovoba, N. E.; Ivanov, L. L.; Zhavanko, O. S.; Khitrova, O. M.; Batsanov, A. S.; Struchkov, Y. T. *J. Organomet. Chem.* **1984**, *262*, 39.

(9) C_{β} protonations on neutral allenylidene-ruthenium complexes also have been reported: Werner, H.; Stark, A.; Steinert, G.; Grünwald,

G.; Wolf, J. Chem. Ber. **1995**, 128, 49. (10) $[M] = [RuCl(\eta^6-arene)(PR_3)]^+$: (a) Dussel, R.; Pilette, D.; Dixneuf, P. H. Organometallics 1991, 10, 3287. (b) Pilette, D.; Le Bozec, H.; Romero, A.; Dixneuf, P. H. J. Chem. Soc., Chem. Commun. 1992, 1220. $[M] = Cr(CO)_5$ or $W(CO)_5$: (c) Cosset, C.; del Rio, I.; Le Bozec, H. Organometallics 1995, 14, 1938. (d) Cosset, C.; del Rio, I.; Peron, V.; Windmüller, B.; Le Bozec, H. *Synlett* **1996**, 435. [M] = [Ru(η^5 , C₅H₅)(CO)(PⁱPr₃)]⁺: (e) Esteruelas, M. A.; Gómez, A. V.; Lahoz, F. J.; López, A. M.; Oñate, E.; Oro, L. A. Organometallics 1996, 15, 3423. $[M] = [Ru(\eta^5-C_9H_7)(PPh_3)_2]^+$: (f) Cadierno, V.; Gamasa, M. P.; Gimeno, J.; González-Cueva, M.; Lastra, E.; Borge, J.; García-Granda, S.; Pérez-Carreño, E. Organometallics 1996, 15, 2137.

of the reactivity of the complexes [Ru(=C=C=CRR')- $(\eta^5-C_9H_7)L_2]^+$ with a variety of nucleophiles. In particular we were interested in finding out to what extent the electronic density and the steric properties of these metal fragments affect the reactivity of the cumulene system. Recent theoretical calculations (EHMO) carried out on the model $[Ru(=C=C=CH_2)(\eta^5-C_9H_7)(PH_3)_2]^+$ show that the LUMO of the molecule is centered on C_{α} (25%) and C_{ν} (33%) of the unsaturated chain.^{16a} Part of this work has been previously communicated.¹⁷

Results and Discussion

Reaction of Allenylidene Complexes with Sodium Methoxide. The diphenylallenylidene complexes $[Ru(=C=C=CPh_2)(\eta^5-C_9H_7)L_2][PF_6]$ (L₂ = 2PPh₃, dppe, dppm) (1a-c) react with NaOMe in tetrahydrofuran, at room temperature, to give selectively the yellow methoxyalkynyl derivatives **3a**-c (90-96%) (Scheme 1). Under similar reaction conditions the monosubstituted allenvlidene complex $[Ru{=C=C=C(H)Ph}(\eta^5-C_9H_7) (PPh_3)_2[PF_6]$ (2a) also reacts with NaOMe to yield a mixture of products containing mainly the previously reported methoxyalkynyl complex [Ru{C=CC(OMe)(H)-Ph} $(\eta^{5}-C_{9}H_{7})(PPh_{3})_{2}$].^{10f}

The novel alkynyl complexes are air stable in the solid state. They have been characterized by microanalysis, mass spectra (FAB), infrared spectrometry, and NMR $(^{1}H, ^{31}P\{^{1}H\}, ^{13}C\{^{1}H\})$ spectroscopy (details are given in the Experimental Section and Tables 1 and 2). The formation of the alkynyl chain is clearly confirmed by the appearance in the IR spectra (KBr) of a ν (C=C) absorption in the range 2058–2086 cm⁻¹. The NMR data of 3a-c can be compared with those reported for similar indenyl-ruthenium-alkynyl complexes [Ru- $(C \equiv CR)(\eta^5 - C_9H_7)L_2$].¹⁸ Thus, the ³¹P{¹H} NMR spectra show a single resonance consistent with the chemical

(17) Cadierno, V.; Gamasa, M. P.; Gimeno, J.; Lastra, E. J. Organomet. Chem. 1994, 474, C27.

^{(5) (}a) Doyle, M. P. In Comprehensive Organometallic Chemistry II; Abel, E. W.; Stone, F. G. A., Wilkinson, G., Eds.; Pergamon Press: New York, 1995; Vol. 5, pp 387–420. (b) Wulff, W. D. In *Comprehensive Organometallic Chemistry II*; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon Press: New York, 1995; Vol. 5, pp 469–548. (c) Hegedus, L. S. In *Comprehensive Organometallic Chemistry II*; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon Press: New York, 1995; Vol. 5, pp 549–576.

^{(6) (}a) Trost, B. M.; Flygare, J. A. J. Am. Chem. Soc. 1992, 114, 5476.
(b) Trost, B. M. Chem. Ber. 1996, 129, 1313.
(7) Schilling, B. E. R.; Hoffmann, R.; Lichtenberger, D. L. J. Am. Chem. Soc. 1979, 101, 585.

⁽¹¹⁾ $[M] = [Ru(\eta^5.C_5H_5)L_2]^+$: Le Lagadec, R.; Román, E.; Toupet, L.; Müller, U.; Dixneuf, P. H. *Organometallics* **1994**, *13*, 5030.

⁽¹²⁾ Touchard, D.; Pirio, N.; Dixneuf, P. H. Organometallics 1995, 14, 4920

⁽¹³⁾ Wolinska, A.; Touchard, D.; Dixneuf, P. H.; Romero, A. J. Organomet. Chem. 1991, 420, 217.

⁽¹⁴⁾ Cadierno, V.; Gamasa, M. P.; Gimeno, J.; Lastra, E.; Borge, J.; García-Granda, S.; *Organometallics* **1994**, *13*, 745.

⁽¹⁵⁾ C-C coupling reactions on allenylidene complexes have been reported recently: (a) Wiedemann, R.; Steinert, P.; Gevert, O.; Werner, H. J. Am. Chem. Soc. **1996**, *118*, 2495. (b) Werner, H.; Laubender, M.; Wiedemann, R.; Windmüller, B. Angew. Chem., Int. Ed. Engl. **1996**, 35, 1237. (c) Braun, T.; Meuer, P.; Werner, H. Organometallics 1996, 15, 4075

^{(16) (}a) The absence of reactivity of these allenylidene-indenylruthenium(II) complexes toward alcohols seems to indicate an effective steric protection of the electrophilic sites in the allenylidene chain by the indenyl and the ancillary phosphine ligands: Pérez-Carreño, E. Ph.D. Thesis, University of Öviedo, 1996. (b) The trans conformation on the model [Ru(C= CCH_3)(η^5 -C₉H₇)(PH₃)₂] is 5.48 kcal/mol more stable than the cis: Pérez-Carreño, E. Ph.D. Thesis, University of Oviedo, 1996.

^{(18) (}a) Gamasa, M. P.; Gimeno, J.; Martín-Vaca, B. M.; Borge, J.; García-Granda, S.; Pérez-Carreño, E. Organometallics 1994, 13, 4045. (b) Cadierno, V.; Gamasa, M. P.; Gimeno, J.; Borge, J.; García-Granda, S. *J. Chem. Soc., Chem. Commun.* **1994**, 2495. (c) Gamasa, M. P.; Gimeno, J.; Godefroy, I.; Lastra, E.; Martín-Vaca, B. M.; García-Granda, S.; Gutiérrez-Rodríguez, A. J. Chem. Soc., Dalton Trans. 1995, 1901. (d) Houbrechts, S.; Clays, K.; Persoons, A.; Cadierno, V.; Gamasa, M. P.; Gimeno, J. Organometallics 1996, 15, 5266.

Table 1. ³¹P{¹H} and ¹H NMR Data for the Neutral Alkynyl Complexes^a

		ιΗ							
			η^5	-C ₉ H	7 ^c				
complex	$^{31}P\{^1H\}$	H-1,3	H-2	$J_{\rm HH}$	H-4,7, H-5,6	others			
$\frac{1}{[Ru\{C \equiv CC(OMe)Ph_2\}(\eta^5 - C_9H_7)(PPh_3)_2]} (3a)$	53.55 s	4.59 d	5.29 t	2.4	6.61 m, <i>b</i>	6.83–8.00 m (PPh ₃ and Ph)			
$[\operatorname{Ru}\{C \equiv CC(OMe)\operatorname{Ph}_2\}(\eta^5 - C_9H_7)(dppe)] (\mathbf{3b})$	87.93 s	4.89 d	5.12 t	2.5	<i>b</i> , <i>b</i>	1.75 m, 2.15 m (P(CH ₂) ₂ P); 3.05 s (OCH ₃); 6.69-7.68 m (PPh ₂ and Ph)			
$[\operatorname{Ru}\{C \equiv CC(OMe)\operatorname{Ph}_2\}(\eta^5 \cdot C_9H_7)(dppm)] (\mathbf{3c})$	20.05 s	5.48 d	5.42 t	2.6	<i>b</i> , <i>b</i>	3.34 s (OCH ₃); 3.98 m, 4.23 m (PCH _a H _b P); 7.15-7.81 m (PPh ₂ and Ph)			
$[Ru{C \equiv CC(Me)Ph_2}(\eta^5 - C_9H_7)(PPh_3)_2]$ (4a)	54.28 s	4.86 d	5.53 t	2.2	6.87 m, <i>b</i>	2.30 s (CH ₃); 7.00-8.07 m (PPh ₃ and Ph)			
$[Ru{C = CC(^{n}Bu)Ph_{2}}(\eta^{5}-C_{9}H_{7})(PPh_{3})_{2}] (5a)$	53.34 s	4.34 d	5.09 t	2.2	6.27 m, <i>b</i>	0.57 t (CH ₃ , J _{HH} = 3.3); 1.03 m, 1.22 m, 2.09 m (CH ₂); 6.53-7.45 m (PPh ₃ and Ph)			
$[Ru{C \equiv CC(Me)Ph_2}(\eta^5-C_9H_7)(dppe)]$ (4b)	88.77 s	4.95 d	5.08 t	2.3	b, b	1.52 s (CH ₃); 1.82 m, 2.16 m (P(CH ₂) ₂ P); 6.99-7.67 m (PPh ₂ and Ph)			
$[Ru{C = CC(^{n}Bu)Ph_{2}}(\eta^{5}-C_{9}H_{7})(dppe)] (5b)$	88.35 s	4.96 d	5.12 t	2.4	<i>b</i> , <i>b</i>	0.87 t (CH ₃ , <i>J</i> _{HH} = 5.7); 1.24 m, 1.82 m, 2.14 m (3CH ₂ and P(CH ₂) ₂ P); 7.00-7.39 m (PPh ₂ and Ph)			
$[\operatorname{Ru}\{C \equiv CC(C \equiv CPh)Ph_2\}(\eta^5 - C_9H_7)(PPh_3)_2] (9a)$	53.33 s	4.64 d	5.38 t	2.2	6.58 m, <i>b</i>	6.86-7.75 m (PPh ₃ and Ph)			
$[Ru{C=CC(C=C^{n}Pr)Ph_{2}}(\eta^{5}-C_{9}H_{7})(PPh_{3})_{2}]$ (10a)	53.90 s	4.34 d	5.10 t	2.4	6.50 m, 6.82 m	1.03 t (CH ₃ , <i>J</i> _{HH} = 7.3); 1.60 m (CH ₂); 2.34 t (CH ₂ , <i>J</i> _{HH} = 7.1); 6.92–7.68 m (PPh ₃ and Ph)			
$[Ru{C \equiv CC(C \equiv CH)Ph_2}(\eta^5 - C_9H_7)(PPh_3)_2]$ (11a)	54.52 s	4.57 d	5.29 t	2.4	b, b	2.45 s (≡CH); 6.65–8.03 m (PPh ₃ and Ph)			
$[\operatorname{Ru}\{C \equiv CC[S(o - C_6H_4Me)]Ph_2\}(\eta^5 - C_9H_7)(PPh_3)_2]$ (23a)	52.13 s	4.65 d	5.29 t	2.4	6.39 m, <i>b</i>	2.39 s (CH ₃); 6.77–7.89 m (PPh ₃ and Ph)			

^{*a*} Spectra recorded in C₆D₆; δ in ppm and *J* in Hz. Abbreviations: s, singlet; d, doublet; t, triplet; m, multiplet. ^{*b*} Overlapped by PPh₃, PPh₂, or Ph protons. ^{*c*} Legend for indenyl skeleton: $\int_{a}^{b} \frac{1}{2} e^{-\frac{1}{2}}$

Table 2. ¹³C{¹H} NMR Data for the Neutral Alkynyl Complexes^a

		$\eta^{\mathfrak{s}}$ -C $_{9}$ H $_{7}$								
complex	C-1,3	C-2	C-3a,7a	$\Delta \delta$ (C-3a,7a) ^b	C-4,7, C-5,6	$\text{Ru}C_{\alpha}$	$^{2}J_{\mathrm{CP}}$	\mathbf{C}_{eta}	\mathbf{C}_{γ}	others
3a	74.86	95.68	110.83	-19.87	124.56, 126.88	105.78 t	24.3	112.29	83.16	52.43 s (OCH ₃); 127.17–148.92 m (PPh ₃ and Ph)
3b	70.76	92.29	109.11	-21.59	124.65, 125.40	109.20 t	24.0	108.72	82.62	28.34 m (P(CH ₂) ₂ P); 51.70 s (OCH ₃); 126.84–148.48 m (PPh ₂ and Ph)
3c	68.64	89.20	С	С	124.16, <i>d</i>	С	С	С	82.61	49.54 t (PCH ₂ P, J _{CP} = 19.5); 51.79 s (OCH ₃); 126.03-148.61 m (PPh ₂ and Ph)
4a	73.09	93.13	108.21	-22.49	122.27, d	94.43 t	26.2	115.35	46.24	30.97 s (CH ₃); 124.20–137.57 m (PPh ₃ and Ph)
5a	72.66	93.92	108.78	-21.92	122.55, 124.08	92.48 t	24.1	114.10	50.78	13.20 s (CH ₃); 22.54 s, 27.10 s, 41.91 s (CH ₂); 124.50–149.21 m (PPh ₃ and Ph)
4b	69.94	91.88	108.84	-21.86	d, d	97.18 t	25.1	114.83	47.01	28.24 m (P(CH ₂) ₂ P); 31.74 s (CH ₃); 123.80–150.80 m (PPh ₂ and Ph)
5b	69.90	91.66	108.53	-22.17	d, d	97.28 t	24.5	112.32	51.64	14.79 s (CH ₃); 23.78 s, 28.25 s, 42.52 s (CH ₂); 27.75 m (P(CH ₂) ₂ P); 123.85– 149.87 m (PPh ₂ and Ph)
9a	74.68	95.20	110.54	-20.16	124.45, d	101.06 t	25.0	109.55	49.36	84.58 s, 95.49 s (C≡C); 126.87– 148.73 m (PPh ₃ and Ph)
10a	74.70	95.29	110.54	-20.16	124.41, <i>d</i>	99.12 t	23.9	110.54	48.85	14.70 s (CH ₃); 22.37 s, 23.72 s (CH ₂); 83.92 s, 85.82 s (C≡C); 126.77– 149.31 m (PPh ₃ and Ph)
11a	73.92	94.10	109.47	-21.23	123.43, <i>d</i>	100.34 t	23.4	108.57	47.71	71.33 s (≡CH); 88.17 s (≡C); 125.87– 147.24 m (PPh ₃ and Ph)
23a	74.58	96.90	110.97	-19.73	d, d	103.78 t	21.9	112.93	62.73	22.64 s (CH ₃); 124.50–146.77 m (PPh ₃ and Ph)

^{*a*} Spectra recorded in C₆D₆; δ in ppm and *J* in Hz. Abbreviations: s, singlet; t, triplet; m, multiplet. ^{*b*} $\Delta\delta$ (C-3a,7a) = δ (C-3a,7a(η -indenyl complex)) – δ (C-3a,7a(sodium indenyl)), δ (C-3a,7a) for sodium indenyl 130.70 ppm. ^{*c*} 108.37–110.30 ppm (m, C-3a,7a, RuC_{α}, C_{β}). ^{*d*} Overlapped by PPh₃, PPh₂, or Ph carbons.

equivalence of the two phosphorus atoms (Table 1). ¹H and ¹³C{¹H} NMR spectra exhibit resonances for aromatic, indenyl, and methylene ((CH₂)₂P₂ or CH₂P) groups, in accordance with the proposed structures (Tables 1 and 2). The methoxy group appears as a single resonance in both ¹H and ¹³C{¹H} NMR spectra at δ 3.05–3.50 and 51.70–52.43 ppm, respectively. In the ¹³C{¹H} NMR spectra the C_a resonance appears as a triplet due to coupling with the two equivalent phosphorus atoms (δ 105.78–110.20 ppm, ²*J*_{CP} *ca.* 24.0 Hz). The C_β and C_γ nuclei resonate as two singlets in the ranges δ 108.37–112.29 and 82.61–83.16 ppm, respectively.

Indenyl carbon resonances (Table 2) have been also assigned and are in accordance with the proposed η^{5-} coordination with values of $\Delta\delta$ (C-3a,7a),¹⁹ indicative of a slightly distorted η^{5-} indenyl coordination.²⁰

It is well-known that alkynyl derivatives react with electrophiles at the β position to afford vinylidene complexes.³ However, the treatment of **3a**–**c** with strong acids (HBF₄ or HPF₆) in diethyl ether or THF, even at -20 °C, gives back the precursor allenylidene

Scheme 2

L= PPh₃; R= Me (**6a**), ⁿBu (**7a**)

complexes 1a-c in almost quantitative yields (see Scheme 1). The elimination of methanol also occurs in the reactions of the methoxyalkynyl-ruthenium complex trans-[Ru{C=CC(OMe)Ph₂}Cl(dppm)₂] with acids.12

Reaction of Allenylidene Complexes with LiR (R = Me, ⁿBu, ^tBu). Allenylidene complexes [Ru(=C=C= $CPh_2(\eta^5-C_9H_7)L_2][PF_6]$ (L₂ = 2PPh₃, dppe) (**1a**,**b**) add selectively alkyl groups (Me, ⁿBu) at the C_{γ} atom to afford the neutral alkynyl derivatives [Ru{C=CC(Me)- $Ph_{2}(\eta^{5}-C_{9}H_{7})L_{2}$] (**4a**,**b**) and $[Ru{C=CC(^{n}Bu)Ph_{2}}(\eta^{5}-C_{9}H_{7})L_{2}]$ $C_9H_7L_2$] (5a,b) (Scheme 2). However, no reaction occurs with Li^tBu. The spectroscopic properties of 4a,b and 5a,b are similar to those of the methoxyalkynyl complexes 3a,b (see Experimental Section and Tables 1 and 2).

In contrast to the behavior of the methoxyalkynyl complexes 3a-c, protonation of alkynyl complexes 4aand 5a with HBF₄ in diethyl ether at room temperature yields the corresponding monosubstituted vinylidene derivatives 6a (83%) and 7a (79%) (Scheme 2). They have been isolated as air stable tetrafluoroborate salts and have been analytically and spectroscopically characterized (see Experimental Section). The most remarkable features of the NMR spectra are (i) (¹H NMR) the singlet resonance at δ 4.49 (6a) and 4.45 (7a) ppm of the Ru = C = CH proton and (ii) (¹³C NMR) the typical low-field resonance of the carbenic C_{α} , which appears as a triplet at δ 346.99 (${}^{2}J_{CP} = 16.7$ Hz, **6a**) and 344.64 $(^{2}J_{CP} = 17.3 \text{ Hz}, 7a)$ ppm, as well as the expected C_{β} singlet resonance (δ 123.48 (**6a**) and 119.16 (**7a**) ppm). The $\Delta\delta$ (C-3a,7a) values -14.32 (**6a**) and -13.12 (**7a**) are higher than that of the alkynyl complexes 4a and 5a (see Table 2), indicating a moderate distortion on the η^{5} -coordination of the indenyl ligand.

The reactions of LiMe and LiⁿBu with the allenylidene complex [Ru(=C=C=CPh₂)(η^5 -C₉H₇)(dppm)][PF₆] (1c) follow, however, a different pathway, resulting in a

mixture of complexes. ³¹P{¹H} NMR spectra of these solutions show two singlet resonances which reveal the formation of the expected alkynyl species [Ru{C=CC- $(R)Ph_{2}(\eta^{5}-C_{9}H_{7})(dppm)]$ (R = Me, ⁿBu) along with an additional species. The latter can be selectively obtained by treatment of a THF solution of 1c with LitBu at -20 °C and isolated (80% yield) as a yellow solid (Scheme 3). Complex 8c is identified on the basis of analytical and spectroscopic data (IR and ¹H, ³¹P{¹H}, and ${}^{13}C{}^{1}H$ NMR) as an allenyl metallacycle. Thus, the IR spectrum (KBr) shows a typical ν (C=C=C) absorption band at 1903 cm⁻¹. In the ³¹P{¹H} NMR spectrum appears a single signal at δ 4.78 ppm which indicates the chemical equivalence of the two phosphorus atoms. The most remarkable feature of the ¹H NMR spectrum is the presence of a triplet signal at δ 5.57 $(^{2}J_{\rm HP} = 2.3 \text{ Hz})$ ppm assigned to the $(Ph_{2}P)_{2}CH$ proton. The ¹³C{¹H} NMR spectrum exhibits triplet signals at δ 66.76 ($J_{CP} = 21.1$ Hz), 83.15 ($^2J_{CP} = 50.3$ Hz), 105.48 $({}^{4}J_{\rm CP} = 7.2$ Hz), and 209.39 $({}^{3}J_{\rm CP} = 15.2$ Hz) ppm corresponding to the $(Ph_2P)_2CH$, C_{α} , C_{γ} , and C_{β} carbon resonances, respectively. These chemical shifts and coupling constants can be compared to those observed

for the analogous indenyl-ruthenium complex [Ru-

 $\{\kappa^{2}(C,P)-C=C=CPh_{2}(CH(PPh_{2})C(=O)^{t}Bu\}(\eta^{5}-C_{9}H_{7})(P-C)^{t}Bu\}(\eta^{5}-C_{9}H_{7})(P-C)^{t}Bu\}(\eta^{5}-C_{9}H_{7})(P-C)^{t}Bu\}(\eta^{5}-C_{9}H_{7})(P-C)^{t}Bu\}(\eta^{5}-C_{9}H_{7})(P-C)^{t}Bu\}(\eta^{5}-C_{9}H_{7})(P-C)^{t}Bu\}(\eta^{5}-C_{9}H_{7})(P-C)^{t}Bu\}(\eta^{5}-C_{9}H_{7})(P-C)^{t}Bu\}(\eta^{5}-C_{9}H_{7})(P-C)^{t}Bu\}(\eta^{5}-C_{9}H_{7})(P-C)^{t}Bu\}(\eta^{5}-C_{9}H_{7})(P-C)^{t}Bu\}(\eta^{5}-C_{9}H_{7})(P-C)^{t}Bu\}(\eta^{5}-C_{9}H_{7})(P-C)^{t}Bu\}(\eta^{5}-C_{9}H_{7})(P-C)^{t}Bu\}(\eta^{5}-C_{9}H_{7})(P-C)^{t}Bu\}(\eta^{5}-C_{9}H_{7})(P-C)^{t}Bu\}(\eta^{5}-C)^{t}Bu$ (\eta^{5}-C)^{t}Bu}(\eta^{5}-C)^{t}Bu(\eta^{5}-C)^{t}Bu}(\eta^{5}-C)^{t}Bu(\eta^{5}-C)^{t}Bu}(\eta^{5}-C)^{t}Bu(\eta^{5}-C)^{t}Bu(\eta^{5}-C)^{t}Bu}(\eta^{5}-C)^{t}Bu(\eta^{5}-C)^{t}Bu(\eta^{5}-C)^{t}Bu}(\eta^{5}-C)^{t}Bu(\eta^{5}-C)^{t}Bu}(\eta^{5}-C)^{t}Bu(\eta^{5}-C)^{t}Bu}(\eta^{5}-C)^{t}Bu(\eta^{5}-C)^{t}Bu}(\eta^{5}-C)^{t}Bu(\eta^{5}-C)^{t}Bu}(\eta^{5}-C)^{t}Bu(\eta^{5}-C)^{t}Bu}(\eta^{5}-C)^{t}Bu(\eta^{5}-C)^{t}Bu}(\eta^{5}-C)^{t}Bu(\eta^{5}-C)^{t}Bu}(\eta^{5}-C)^{t}Bu(\eta^{5}-C)^{t}Bu}(\eta^{5}-C)^{t}Bu(\eta^{5}-C)^{t}Bu}(\eta^{5}-C)^{t}Bu(\eta^{5}-C)^{t}Bu}(\eta^{5}-C)^{t}Bu(\eta^{5}-C)^{t}Bu}(\eta^{5}-C)^{t}Bu(\eta^{5}-C)^{t}Bu}(\eta^{5}-C)^{t}Bu(\eta^{5}-C)^{t}Bu}(\eta^{5}-C)^{t}Bu(\eta^{5}-C)^{t}Bu}(\eta^{5}-C)^{t}Bu(\eta^{5}-C)^{t}Bu(\eta^{5}-C)^{t}Bu}(\eta^{5}-C)^{t}Bu(\eta^{5}-C)^{t}Bu}(\eta^{5}-C)^{t}Bu(\eta^{5}-C)^{t}Bu}(\eta^{5}-C)^{t}Bu(\eta^{5}-C)^{t}Bu}(\eta^{5}-C)^{t}Bu(\eta^{5}-C)^{t}Bu}(\eta^{5}-C)^{t}Bu(\eta^{5}-C)^{t}Bu}(\eta^{5}-C)^{t}Bu(\eta^{5}-C)^{t}Bu}(\eta^{5}-C)^{t}Bu(\eta^{5}-C)^{t}Bu}(\eta^{5}-C)^{t}Bu(\eta^{5}-C)^{t}Bu}(\eta^{5}-C)^{t}Bu(\eta^{5}-C)^{t}Bu}(\eta^{5}-C)^{t}Bu(\eta^{5}-C)^{t}Bu}(\eta^{5}-C)^{t}Bu(\eta^{5}-C)^{t}Bu}(\eta^{5}-C)^{t}Bu(\eta^{5}-C)^{t}Bu}(\eta^{5}-C)^{t}Bu(\eta^{5}-C)^{t}Bu}(\eta^{5}-C)^{t}Bu(\eta^{5}-C)^{t}Bu}(\eta^{5}-C)^{t}Bu(\eta^{5}-C)^{t}Bu}(\eta^{5}-C)^{t} Ph₃)₂].²¹

The formation of metallacycle 8c is probably the result of the competitive dppm deprotonation vs nucleophilic addition to the $C_{\boldsymbol{\gamma}}$ atom. It is apparent that the initial deprotonation of one of the methylenic protons on the coordinated dppm ligand is taking place followed by a favorable intramolecular addition of the resulting methanide carbon atom at the α position of the allenylidene group.²² It is possible that the more sterically demanding tert-butyl group compared to the methyl or *n*-butyl may prevent nucleophilic addition at the C_{γ}

⁽¹⁹⁾ As has been proven previously, the parameter $\Delta\delta$ (C-3a,7a) = δ (C-3a,7a(η -indenyl complex)) – δ (C-3a,7a(sodium indenyl)) can be used as an indication of the indenyl distortion: (a) Baker, R. T.; Tulip, T. H. Organometallics 1986, 5, 839. (b) Kohler, F. G. Chem. Ber. 1974, 107, 570

^{(20) (}a) Zhou, Z.; Jablonski, C.; Bridson, J. J. Organomet. Chem. 1993, 461, 215 and references therein. (b) Ceccon, A.; Elsevier, C. J.; Ernsting, J. M.; Gambaro, A.; Santi, S.; Venzo, A. Inorg. Chim. Acta 1993. 204. 15.

⁽²¹⁾ Crochet, P.; Demerseman, B.; Vallejo-Roales, M. I.; Gamasa, M. P.; Gimeno, J.; Borge, J.; García-Granda, S. Organometallics, in press

⁽²²⁾ We have reported similar intramolecular C-C coupling processes on cationic vinylidene–iron(II)–dppm complexes. Gamasa, M. P.; Gimeno, J.; Lastra, E.; Martín, B. M.; Aguirre, A.; García-Granda, S.; Pertierra, P. *J. Organomet. Chem.* **1992**, *429*, C19.

⁽²³⁾ Borge, J.; García-Granda, S. Unpublished results.

⁽²⁴⁾ Cadierno, V.; Gamasa, M. P.; Gimeno, J.; Borge, J.; García-Granda, S. Organometallics, in press.

Scheme 3

R= Ph (12a), ⁿPr (13a), H (14a)

position of the unsaturated chain. In accordance with this the allenylidene complexes **1a**,**b** do not react with Li^tBu.

The behavior of the monosubstituted allenylidene complex $[Ru{=}C=C=C(H)Ph{}(\eta^5-C_9H_7)(PPh_3)_2][PF_6]$ (2a) toward LiR (R = Me, ⁿBu, ^tBu) under different reaction conditions also has been examined; however, the reactions led to complex mixtures of compounds, which were not identified.

Reaction of Allenylidene Complexes with Acetylides. Regioselective additions to the C_{γ} of the allenylidene chain of the complex $[Ru(=C=C=CPh_2)(\eta^5-C_9H_7)(PPh_3)_2][PF_6]$ (**1a**) also take place when acetylides are used as nucleophiles. Thus, complex **1a** reacts in THF with an equimolar amount of LiC=CR (R = Ph, "Pr) at -20 °C or with a large excess of NaC=CH at room temperature to furnish yellow solutions, from which the alkynyl complexes **9a**-**11a** are isolated (67– 96% yield) (Scheme 4).

The analytical and spectroscopic data for 9a-11a are fully consistent with these formulations (see Experimental Section and Tables 1 and 2). Moreover, the structure of complex **11a** has been confirmed by an X-ray diffraction study. A drawing of the molecular structure is shown in Figure 1. Selected bond distances

Figure 1. ORTEP view of the structure of the alkynyl complex $[Ru{C=CC(C=CH)Ph_2}(\eta^5-C_9H_7)(PPh_3)_2]$ (**11a**). For clarity, aryl groups of the triphenylphosphine ligands are omitted (C* = centroid of the indenyl ring).

and angles are listed in Table 3. The molecule exhibits the usual allylene structure of the η^5 -indenyl ligand in the pseudooctahedral three-legged piano-stool geometry. The interligand angles P(1)-Ru-P(2), C(1)-Ru-P(1), and C(1)-Ru-P(2) and those between the centroid C* and the legs show values typical of a pseudooctahedron (Table 3). The alkynyl ligand, which is nearly linear (Ru-C(1)-C(2) angle of 175.0(2)°), is bound to ruthenium, showing bond lengths of Ru-C(1) of 1.993(2) Å and of C(1)-C(2) of 1.209(3) Å. These bonding parameters can be compared to those of the analogous alkynyl complex [Ru(C=CC{CH₂C(OMe)=W(CO)₅}Ph₂)(η^5 -C₉H₇)-(PPh₃)₂].^{18b} The C(4)-C(5) bond length (1.170(4) Å) shows a typical value of a C=C bond.

Although the indenyl group is η^5 -bonded to the metal atom, the structure shows a slight distortion of the fivecarbon ring from planarity with a hinge angle (HA) of $6.0(2)^\circ$ and a fold angle (FA) of $11.8(2)^\circ$ (Table 3). The characteristic slippage of the indenyl ring is also observed with a slip-fold (Δ) value of 0.168(2) Å, which is significantly lower than those shown by the analogous vinylidene derivatives (Table 4). The slight distortions toward an η^3 binding mode in the solid state appear to

Table 3. Selected Bond Distances and Slip Parameter Δ^a (Å) and Bond Angles and Dihedral Angles FA,^b HA,^c DA,^d and CA^e (deg) for Complex 11a

	-						
Distances							
Ru-C*	1.942(2)	P(2)-C(41)	1.844(2)				
Ru-P(1)	2.3145(9)	P(2)-C(51)	1.849(2)				
Ru-P(2)	2.292(1)	P(2)-C(61)	1.840(2)				
Ru-C(70)	2.376(2)	Ru-C(1)	1.993(2)				
Ru-C(71)	2.207(2)	C(1) - C(2)	1.209(3)				
Ru-C(72)	2.196(2)	C(2) - C(3)	1.484(3)				
Ru-C(73)	2.250(2)	C(3)-C(81)	1.549(3)				
Ru-C(74)	2.416(2)	C(3)-C(91)	1.550(3)				
P(1) - C(11)	1.842(2)	C(3)-C(4)	1.489(3)				
P(1) - C(21)	1.833(2)	C(4)-C(5)	1.170(4)				
P(1)-C(31)	1.836(2)	C(5)-H(5)	0.94(3)				
Δ	0.168(2)						
	An	øles					
$C^*-Ru-C(1)$	120.5(1)	C(2) - C(3) - C(81)	108.9(2)				
$C^*-Ru-P(1)$	125.6(1)	C(2) - C(3) - C(91)	113.4(2)				
$C^*-Ru-P(2)$	121.6(2)	C(2)-C(3)-C(4)	108.2(2)				
C(1) - Ru - P(1)	85.44(7)	C(81)-C(3)-C(4)	111.1(2)				
C(1) - Ru - P(2)	89.73(6)	C(91)-C(3)-C(4)	107.6(2)				
P(1)-Ru-P(2)	103.55(4)	C(3)-C(4)-C(5)	178.1(3)				
Ru - C(1) - C(2)	175.0(2)	C(4) - C(5) - H(5)	178.(2)				
C(1)-C(2)-C(3)	176.7(2)	-(-) -(-)(-)	,				
FA	11.8(2)	НА	6.0(2)				
DA	177.0(2)	CA	161.9(1)				

^{*a*} $\Delta = d(\text{Ru}-\text{C}(74),\text{C}(70)) - d(\text{Ru}-\text{C}(71),\text{C}(73)).$ ^{*b*} FA (fold angle) = angle between normals to least-squares planes defined by C(71), C(72), C(73) and C(70), C(74), C(75), C(76), C(77), C(78). ^{*c*} HA (hinge angle) = angle between normals to least-squares planes defined by C(71), C(72), C(73) and C(71), C(74), C(70), C(73). ^{*d*} DA (dihedral angle) = angle between normals to least-squares planes defined by C*, Ru, C(1) and C(1), C(2), C(3). ^{*e*} CA (conformational angle) = angle between normals to least-squares planes defined by C**, C*, Ru and C*, Ru, C(1). C* = centroid of C(70), C(71), C(72), C(73), C(74). C** = centroid of C(70), C(74), C(75), C(76), C(77), C(78).

be maintained in solution, according to the value of $\Delta\delta$ -(C-3a,7a) = -21.23 ppm obtained from the $^{13}C\{^{1}H\}$ NMR spectra.

We have previously reported that the orientation of the benzo ring of the indenyl ligand in vinylidene— and allenylidene—indenyl—ruthenium(II) complexes is clearly dependent on the nature of the unsaturated chain.^{10f,18a} Thus, while the preferred conformation of the indenyl ligand in vinylidene complexes is such that the benzo ring is oriented *trans* to the vinylidene group (CA \approx 180°), the preferred conformation is *cis* (CA \approx 0°) in allenylidene complexes (Table 4). The conformational angle (CA) in complex **11a** of 161.9(1)° (*trans* orientation) is in accordance with theoretical calculations (EHMO) carried out on the model [Ru(C=CCH₃)(η^5 -C₉H₇)(PH₃)₂] showing that the *trans* orientation is energetically more favored than the *cis*.^{16b}

As described above for complexes **4a** and **5a** the ruthenium–alkynyl complexes **9a–11a** can be also protonated with HBF₄ in diethyl ether to yield the vinylidene derivatives **12a–14a** (77–82% yield) (Scheme 4). Spectroscopic data of **12a–14a** are in accordance with the proposed structures (see Experimental Section).

Reaction of Allenylidene Complexes with Phosphines. Phosphines are added regioselectively to the allenylidene group, the position of the addition (C_{α} or C_{ν}) being controlled by the ancillary ligands on the ruthenium atom. Thus, PMe3 and PMe2Ph react with complex 1a, in THF at room temperature, to yield the air stable cationic alkynyl-phosphonio complexes 15a (86%) and 16a (65%) (Scheme 5). Similarly, alkynylphosphonio complexes 17a-20a are obtained from the addition of PMe₃, PMe₂Ph, PMePh₂, and PPh₃ to the monosubstituted allenylidene complex [Ru{=C=C=C- $(H)Ph_{(\eta^{5}-C_{9}H_{7})}(PPh_{3})_{2}[PF_{6}]$ (2a) in 52–98% yields (Scheme 5). However, the diphenylallenylidene complex 1a does not react with PMePh₂ or PPh₃ even under refluxing THF, probably due to the steric requirements of the two bulky phenyl substituents on the C_{γ} atom.

Complexes **15a**–**20a** have been analytically and spectroscopically (IR and ${}^{31}P{}^{1}H$, ${}^{1}H$, and ${}^{13}C{}^{1}H$ } NMR) characterized (see Experimental Section and Tables 5 and 6 for details). The ${}^{31}P{}^{1}H$ NMR spectra of **15a**–**16a** and **17a** exhibit the expected resonances of an A₂M and an ABM spin system, respectively (Table 5). The unequivalency of the PPh₃ ligands in complex

Table 4. Slip Parameter Δ and Dihedral Angles FA, HA, and CA for Indenyl Ruthenium(II) Complexes^a

complex	Ru-C* (Å)	Δ (Å)	FA (deg)	HA (deg)	CA (deg)	ref
$[{Ru}(=C=CMe_2)]^+$	1.97(9)	0.197(7)	13.1(6)	8.1(6)	157.8(4)	18a
$[{Ru}(=C=C(H)Ph)]^+$	1.964(6)	0.175(6)	11.9(5)	6.6(5)	164.6(3)	23
$[{Ru}(=C=C(Me)(C_6H_9))]^+$	1.970(9)	0.1974(1)	12.2(4)	7.5(4)	160.0(3)	24
$[{Ru}(=C=C=C(C_{13}H_{20}))]^+$	1.942(5)	0.0820(4)	5.1(5)	5.3(5)	12.2(6)	14
$[{Ru}(=C=C=CPh_2)]^+$	1.951(5)	0.121(5)	8.1(3)	6.2(4)	9.6(3)	10f
$(E)-[{Ru}(C(H)=C(PPh_3)(C_6H_9))]^+$	1.981(5)	0.217(5)	14.8(4)	8.4(4)	160.5(2)	24
$[{Ru}(C \equiv CC{CH_2C(OMe) = W(CO)_5}Ph_2)]$	1.942(8)	0.1320	7.7(7)	4.4(7)	120.7(6)	18b
$[\{Ru\}(C \equiv CC(C \equiv CH)Ph_2)]$	1.942(2)	0.168(2)	11.8(2)	6.0(2)	161.9(1)	b

^{*a*} $\Delta = d[\text{Ru}-\text{C}(74),\text{C}(70)] - d[\text{Ru}-\text{C}(71),\text{C}(73)];$ FA = C(71), C(72), C(73)/C(70), C(74), C(75), C(76), C(77), C(78); HA = C(71), C(72), C(73)/C(71), C(74), C(70), C(73); CA = C**, C*, Ru/C*, Ru, C(1); {Ru} = Ru(η^5 -C₉H₇)(PPh₃)₂, ^{*b*} This work.

$$R' = Ph (1a), H (2a)$$

 $\begin{array}{c} R'\\ Ph_{3}P''' Ru-C \equiv C - C - PR_{3} Ph_{6} \\ Ph_{3}P Ph_{7}P Ph_{7}P Ph_{7}P$

 $PR_{3}=PMe_{3}; R'=Ph (15a), H (17a)$ $PR_{3}=PMe_{2}Ph; R'=Ph (16a), H (18a)$ $PR_{3}=PMePh_{2}; R'=H (19a)$ $PR_{3}=PPh_{3}; R'=H (20a)$

Table 5. ³¹P{¹H} and ¹H NMR Data for the Alkynyl–Phosphonio Complexes^a

								$^{1}\mathrm{H}$		
					η ⁵ -C	₉ H ₇				
							H-4,7,			
complex	$^{31}P\{^1H\}$	$^{2}J_{\mathrm{PP}}$	$^{5}J_{\mathrm{PP}}$	H-1,3	H-2	$J_{\rm HH}$	H-5,6	others		
$[Ru{C \equiv CC(PMe_3)Ph_2}]-$	30.25 t (PMe ₃)		4.1	4.55 d	5.02 t	2.1	6.56 m, <i>d</i>	1.76 d (CH ₃ , ${}^{2}J_{\rm HP} = 12.6$);		
$(\eta^{5}-C_{9}H_{7})(PPh_{3})_{2}][PF_{6}]$ (15a) ^b	52.57 d (PPh ₃)							6.94–7.38 m (PPh ₃ and Ph)		
$[Ru{C \equiv CC(PMe_2Ph)Ph_2}]$ -	28.78 t (PMe ₂ Ph)		3.2	4.84 d	5.37 t	2.1	6.81 m, <i>d</i>	2.64 d (CH ₃ , ${}^{2}J_{\rm HP} = 12.8$);		
$(\eta^{5}-C_{9}H_{7})(PPh_{3})_{2}][PF_{6}]$ (16a) ^c	53.74 d (PPh ₃)							7.24–7.95 m (PPh ₃ , PPh, and Ph)		
$[Ru{C \equiv CC(PMe_3)(H)Ph}]$ -	29.23 m (PMe ₃)		3.6	4.68 bs	4.92 bs		6.64 m, <i>d</i>	1.79 d (CH ₃ , ${}^{2}J_{\text{HP}} = 13.5$); 5.01 d		
$(\eta^{5}-C_{9}H_{7})(PPh_{3})_{2}][PF_{6}]$ (17a) ^c	52.80 dd (PPh ₃)	29.1		4.71 bs				(CH, ${}^{2}J_{\text{HP}} = 18.5$); 7.08–7.60 m		
-	53.64 dd (PPh ₃)							(PPh ₃ and Ph)		
$[Ru{C \equiv CC(PMe_2Ph)(H)Ph}]$ -	27.09 s (PMe ₂ Ph)			4.54 bs	5.23 bs		6.33 m,	2.38 m (CH ₃); 5.38 d (CH, ${}^{2}J_{HP} = 18.6$);		
$(\eta^{5}-C_{9}H_{7})(PPh_{3})_{2}][PF_{6}]$ (18a) ^c	52.87 d (PPh ₃)	29.2		4.72 bs			6.92 m	6.95–7.98 m (PPh ₃ , PPh, and Ph)		
	53.33 d (PPh ₃)									
$[Ru{C \equiv CC(PMePh_2)(H)Ph}]$ -	23.08 s (PMePh ₂)			4.36 bs	5.16 bs		d, e	2.68 d (CH ₃ , ${}^{2}J_{HP} = 13.1$);		
$(\eta^5 - C_9 H_7)(PPh_3)_2][PF_6] (19a)^c$	51.36 d (PPh ₃)	30.6		4.57 bs				6.64-8.42 m (PPh ₃ , PPh and Ph)		
	52.61 d (PPh ₃)									
$[Ru{C \equiv CC(PPh_3)(H)Ph}]$ -	19.20 s (CPPh ₃)			4.47 bs	5.19 bs		6.00 m, <i>d</i>	6.05 d (CH, ${}^{2}J_{\rm HP} = 9.8$);		
$(\eta^5 - C_9 H_7)(PPh_3)_2 [PF_6] (20a)^c$	50.76 d (RuPPh ₃)	30.9		4.59 bs				6.80-7.97 m (PPh ₃ and Ph)		
.,	51.16 d (RuPPh ₃)									
$[Ru{C \equiv CC(PMe_3)Ph_2}]$ -	32.14 t (PMe ₃)		3.9	5.64 bs	5.20 bs		d, d	1.57 d (CH ₃ , ${}^{2}J_{\rm HP} = 13.1$); 2.52 m		
$(\eta^{5}-C_{9}H_{7})(dppe)][PF_{6}] (15b)^{c}$	88.51 d (dppe)							$(P(CH_2)_2P); 7.12-7.41 \text{ m}$		
								(PPh ₂ and Ph)		
$[Ru{C \equiv CC(PMe_3)Ph_2}]$ -	18.45 d (dppm)		2.8	5.78 bs	5.67 bs		d, d	1.68 d (CH ₃ , ${}^{2}J_{HP} = 13.0$); 4.11 m,		
$(\eta^{5}-C_{9}H_{7})(dppm)][PF_{6}] (15c)^{c}$	32.05 t (PMe ₃)							5.03 m (P(CH _a H _b)P); 6.97-7.86 m		
								(PPh ₂ and Ph)		

 $a \delta$ in ppm and *J* in Hz. Abbreviations: s, singlet; bs, broad singlet; d, doublet; t, triplet; m, multiplet. b Spectra recorded in CD₂Cl₂. c Spectra recorded in (CD₃)₂CO. d Overlapped by PPh₃, PPh₂, PPh, or Ph protons. e 5.93–6.06 ppm (m, CH, H-4,7 or H-5,6).

Table 6.	¹³ C{ ¹	\mathbf{H}	NMR	Data f	or	the	Alkyn	yl–I	Phose	ohonio	Compl	exes ^a

	η^{5} -C $_{9}$ H $_{7}$										
complex	C-1,3	C-2	C-3a,7a	$\Delta \delta$ (C-3a,7a) ^d	C-4,7, C-5,6	$Ru{-}C_{\alpha}$	\mathbf{C}_{eta}	$^{2}J_{\rm CP}$	\mathbf{C}_{γ}	$J_{\rm CP}$	others
15a ^b	72.66	94.99	109.86	-20.84	е, е	117.82 m	103.27 d	12.3	53.24 d	54.0	7.97 d ($J_{CP} = 53.8$, CH ₃); 123.91–139.27 m (PPh ₃ and Ph)
15 b ^c	73.45	96.31	111.21	-19.49	125.07, 127.55	120.68 m	104.98 d	9.3	56.67 d	47.6	8.24 d (<i>J</i> _{CP} = 58.6, CH ₃); 128.27–139.37 m (PPh ₃ , PPh, and Ph)
17a ^c	75.44	92.94	108.62 109.00	-21.89	123.85, 124.20 126.67, 126.99	114.75 m	96.53 d	10.9	39.55 d	50.3	6.51 d (<i>J</i> _{CP} = 54.4, CH ₃); 127.74–138.51 m (PPh ₃ and Ph)
18a ^c	73.68 74.81	93.32	108.56 109.47	-21.68	123.48, 124.03 126.48, 126.93	115.97 m	96.47 d	9.9	41.63 d	48.0	5.53 m (CH ₃); 119.24– 138.07 m (PPh ₃ , PPh, and Ph)
19a ^c	74.11 74.50	94.82	110.74	-19.96	119.79, 120.46 121.47, 122.01	114.82 m	98.32 d	9.8	40.09 d	47.1	4.25 d ($J_{CP} = 59.0$, CH ₃); 123.20-138.79 m (PPh ₃ , PPh ₂ , and Ph)
20 a ^c	74.47 74.97	94.59	111.86	-18.84	e, e, e, e	117.92 m	99.10 d	8.6	42.57 d	45.8	120.36–139.30 m (PPh ₃ and Ph)
15b ^c	69.39	91.95	108.49	-22.21	е, е	121.45 m	99.45 d	10.7	52.48 d	54.0	7.24 d ($J_{CP} = 54.3$, CH ₃); 27.15 m (P(CH ₂) ₂ P); 124.10-133.43 m (PPh ₂ and Ph)

^{*a*} δ in ppm and *J* in Hz. Abbreviations: s, singlet; d, doublet; m, multiplet. ^{*b*} Spectra recorded in CD₂Cl₂. ^{*c*} Spectra recorded in (CD₃)₂CO. ^{*d*} $\Delta \delta$ (C-3a,7a) = δ (C-3a,7a(η -indenyl complex)) – δ (C-3a,7a(sodium indenyl)), δ (C-3a,7a) for sodium indenyl 130.70 ppm. ^{*e*} Overlapped by PPh₃, PPh₂, PPh, or Ph carbons.

17a is due to the presence of the chiral C_{γ} atom in the alkynyl group. The ³¹P{¹H} NMR spectra for complexes 18a-20a are similar to that of 17a, but in these cases the ${}^{5}J_{PP}$ could not be determined. ${}^{1}H$ and ${}^{13}C{}^{1}H$ NMR spectra (Tables 5 and 6) are in accordance with the proposed structures. In particular: (i) the CH proton resonance of the alkynyl group in complexes 17a-20a appears as a doublet at δ 5.01–6.06 (${}^{2}J_{\text{HP}} = 9.8-18.6$ Hz) ppm due to the coupling with the phosphorus atom of the phosphine linked to the alkynyl group, and (ii) the C_{α} atom resonance for all the alkynyl-phosphonio complexes appears as a multiplet at δ 114.75–121.45 ppm, showing an effective coupling to the two phosphorus atoms of triphenylphosphine bonded to the metal and also to that of the phosphonio group. C_{β} and C_{γ} resonances appear as doublets at δ 96.53–103.27 ($^2J_{CP}$ = 8.6–12.3 Hz) and δ 39.55–53.24 (J_{CP} = 45.8–54.0 Hz) ppm, respectively.

Allenylidene complexes **1b** and **1c** also react with PMe₃ to yield the alkynyl-phosphonio complexes **15b** (75%) and **15c** (90%), respectively (Scheme 6). Although complex **15b** is stable in solution, **15c** slowly rearranges in THF solution (14 h room temperature) to give the thermodynamically more stable allenyl-phosphonio complex [Ru{C(PMe₃)=C=CPh₂}(η^{5} -C₉H₇)(dppm)][PF₆] (**21c**) (70%), probably promoted by the steric requirements of the two bulky phenyl groups at the C_{γ} position (Scheme 6).

The IR spectrum (KBr) of **21c** shows a typical ν -(C=C=C) absorption band at 1865 cm⁻¹. ¹H and ¹³C-{¹H} NMR spectra are also in accordance with the proposed structure. In particular, the carbon reso-

Scheme 6

 $L_2 = dppm (24c)$

nances of the allenyl moiety appear in the ${}^{13}C{}^{1}H$ NMR spectrum at δ 83.46 (m, C_a), 210.81 (s, C_b) and 100.58 (d, ${}^{3}J_{CP} = 29.2$ Hz, C_{γ}) ppm. These resonances have been assigned accordingly to the data reported for the analogous allenyl-phosphonio complex [Cr{C(PMe₃)= $C=CPh_2$ (CO)₅ $]^{.25}$ The ³¹P{¹H} NMR spectrum of **21c** exhibits the expected resonances of an A2M system at δ 11.79 (³*J*_{PP} = 6.8 Hz, dppm) and δ 26.38 (³*J*_{PP} = 6.8 Hz, PMe₃) ppm. The higher values of the coupling constants compared to that of 15c (⁵ $J_{PP} = 2.8$ Hz) (see Table 5) are consistent with the position of PMe₃ in the C_{α} atom of the allenyl chain.

Complex 1c also reacts with the bulkier phosphine PMe₂Ph leading to the direct formation of the allenylphosphonio complex 22c (Scheme 6) identified on the basis of the NMR data by comparison with those of the

analogous **21c** (see Experimental Section). In contrast, the reaction of diphenylallenylidene complex 1b yields a mixture of the corresponding alkynyl-phosphonio and allenyl-phosphonio complexes. All attempts to form these complexes regioselectively were unsuccessful.

Reaction of Allenylidene Complexes with Sodium 2-Methylthiophenolate. The reaction of diphenylallenylidene ruthenium(II) complexes 1a-c toward sodium 2-methylthiophenolate is similar to their reaction toward PMe₂Ph. Thus, starting from **1a** the alkynyl complex 23a can be obtained in 45% yield, while using 1c the allenyl derivative 24c was formed in 56% yield (Scheme 7). Similarly, when complex 1b was used a mixture of the corresponding alkynyl and allenyl complexes was obtained.

Analytical and spectroscopic data (IR and ³¹P{¹H}, ¹H, and ¹³C{¹H} NMR) of 23a and 24c are in accordance with the proposed structures (see Experimental Section and Tables 1 and 2).

^{(25) (}a) Fischer, H.; Reindl, D.; Troll, C.; Leroux, F. J. Organomet. Chem. 1995, 490, 221. (b) For comparison with other mononuclear allenyl-ruthenium complexes, see ref 21.

Figure 2. Space-filling representation of the allenylidene complex $[Ru(=C=C=CPh_2)(\eta^5-C_9H_7)(PPh_3)_2]^+$ (**1a**).

Concluding Remarks

In this work a systematic study of nucleophilic additions to indenyl-ruthenium(II)-allenylidene complexes is reported. Although theoretical calculations (EHMO) only show small differences in the electrophilicity of C_{α} and C_{γ} atoms (LUMO is centered on C_{α} 25% and C_{γ} 33%),¹⁶ the preferred *cis* orientation of the benzo ring of the indenyl ligand and the presence of bulky ancillary phosphine ligands on the ruthenium atom protect the electrophilic C_{α} atom of the unsaturated chain sterically. In contrast, the C_{ν} atom is more accessible and nucleophiles may be added to this position (Figure 2). Thus complexes $[Ru(=C=C=CPh_2)(\eta^5-C_9H_7)L_2]^+$ $(L_2 = 2PPh_3)$ (1a), dppe (1b)) undergo regioselective additions to the C_{ν} atom with typical nucleophiles such as methoxide, alkyl, acetylide, and phosphines to give functionalized alkynyl derivatives $[Ru{C \equiv CC(Nu)Ph_2}(\eta^5-C_9H_7)L_2]^{n+1}$ (n = 0 (3a, b-5a, b, 9a-11a) and n = 1 (15a, b, 16a, 16a)19a-20a)) in good yields.

The substitution of dppe or the two triphenylphosphine ligands by the small-bite chelating dppm decreases the steric protection of the electrophilic C_{α} atom. This allows the formation of the allenyl complexes [Ru- ${C(PR_3)=C=CPh_2}(\eta^5-C_9H_7)(dppm)]^+$ (**21c**, **22c**) which are obtained by the reaction of the complex [Ru- $(=C=C=CPh_2)(\eta^5-C_9H_7)(dppm)]^+$ (1c) with PMe₃ and PMe₂Ph. It is also apparent that the generation of the allenyl complex **21c** appears to be thermodynamically controlled since the alkynyl-phosphonio complex [Ru- $\{C \equiv CC(PMe_3)Ph_2\}(\eta^5 - C_9H_7)(dppm)\}^+$ (15c) is formed initially. The steric influence of the two bulky phenyl groups in the C_{ν} position of the unsaturated chain vs dppm seems to determine the regioselective formation of the allenyl complex 22c through the addition of the bulkier phosphine PMe₂Ph to the C_{α} atom (the putative alkynyl intermediate has not been detected). The subtle competence in the steric control between the ancillary ligands and the substituents in the C_{γ} atom is confirmed in the nucleophilic addition of PMe₂Ph to the complex $[Ru(=C=C=CPh_2)(\eta^5-C_9H_7)(PPh_3)_2]^+$ which takes place on the C_{γ} atom of the allenylidene chain to give the phosphonio-alkynyl complex 16a.

A similar behavior is also observed in the nucleophilic addition of sodium 2-methylthiophenolate to complex ${\bf 1a}$

or **1c** yielding the alkynyl complex **23a** or the allenyl complex **24c**, respectively.

In summary, it is shown that the regioselectivity of the nucleophilic additions to the allenylidene group is accomplished by the appropriate selection both of the substituents on the hydrocarbon unsaturated chain and of the ancillary ligands on the ruthenium atom. This strategy provides a good synthetic methodology for the generation of a wide series of derivatives showing the ability of the allenylidene complexes as precursors of novel hydrocarbon functionalities.

Experimental Section

The reactions were carried out under dry nitrogen using Schlenk techniques. All solvents were dried by standard methods and distilled under nitrogen before use. The allenylidene complexes [$Ru{=C=C=C(R)Ph}{(\eta^{5-}C_9H_7)L_2}$][PF_6] (**1a**-**c**, **2a**) were prepared as previously reported.^{10f} All reagents were purchased from commercial suppliers and used as received.

Infrared spectra were recorded on a Perkin-Elmer 1720-XFT spectrometer; mass spectra (FAB) were recorded using a VG-Autospec spectrometer, operating in the possitive mode; 3-nitrobenzyl alcohol (NBA) was used as the matrix. The conductivities were measured at room temperature, in *ca.* 10^{-3} mol dm⁻³ acetone solutions, with a Jenway PCM3 conductimeter. The C and H analyses were carried out with a Perkin-Elmer 240-B microanalyzer (uncompleted combustion was observed for complex **3c**). NMR spectra were recorded on a Bruker AC300 instrument at 300 MHz (¹H), 121.5 MHz (³¹P), or 75.4 MHz (¹³C) using SiMe₄ or 85% H₃PO₄ as standards. ¹H, ¹³C-{¹H}, and ³¹P{¹H} NMR spectroscopic data for the alkynyl complexes are collected in Tables 1, 2, 4 and 5.

Synthesis of $[Ru{C \equiv CC(R)Ph_2}(\eta^5 - C_9H_7)L_2]$ (L = PPh₃, $\mathbf{R} = \mathbf{OMe}$ (3a), Me (4a), ⁿBu (5a), $\mathbf{C} \equiv \mathbf{CPh}$ (9a), $\mathbf{C} \equiv \mathbf{C^nPr}$ (10a), C=CH (11a); $L_2 = dppe$, R = OMe (3b), Me (4b), ⁿBu (5b); $L_2 = dppm$, R = OMe (3c)). To a solution of the corresponding allenylidene complex $[Ru(=C=C=CPh_2)(\eta^5 C_9H_7$, L_2][PF₆] (1a-c) (1 mmol) in 50 mL of THF was added, at -20 °C, NaOMe (0.08 g, 1.5 mmol), or the corresponding LiR (in hexane solution, $\overline{2}$ mmol), or a THF solution of the corresponding LiC=CR (R = Ph, ⁿPr) (1 mmol), or a large excess (ca. 1:10) of NaC=CH (suspension in xylene). The mixture was allowed to warm to room temperature, and the solvent was then removed in vacuo. The solid residue was extracted with hexane (for complexes 4a,b, 5a,b) or diethyl ether (for complexes **3a**-c and **9a**-**11a**) and filtered. Evaporation of the solvent gave the alkynyl complexes **3a**-**c**, **4a**,**b**, **5a**,**b** and **9a**–**10a** as yellow-orange solids. Complex **11a** was purified by column chromatography (silica gel) collecting the orange band eluted with a mixture of hexane/diethyl ether (4/ 1). Yield (%) IR data (KBr, ν (C=C), cm⁻¹), analytical data, and mass spectral data (FAB, m/e) are as follows. **3a**: 90; 2058. Anal. Calcd for RuC₆₁H₅₀P₂O: C, 76.15; H, 5.24. Found: C, 75.60; H, 5.12. $[M^+ + 1] = 963$, $[M^+ - R + 1] =$ 932, $[M^+ - R - PPh_3] = 669$, $[M^+ - R - C_9H_7 - PPh_3] = 553$. $(R = OCH_3)$. **3b**: 94; 2086. Anal. Calcd for RuC₅₁H₄₄P₂O: C, 73.27; H, 5.30. Found: C, 72.78; H, 5.35. [M⁺] = 835, [M⁺ -R] = 805. (R = OCH₃). **3c**: 96; 2081. Anal. Calcd for Ru-C₅₀H₄₂P₂O: C, 73.04; H, 5.15. Found: C, 72.03; H, 5.13. [M⁺ R] = 791. (R = OCH₃). **4a**: 75; 2086. Anal. Calcd for Ru-C₆₁H₅₀P₂: C, 77.36; H, 5.43. Found: C, 77.03; H, 5.50. 4b: 62; 2089. Anal. Calcd for RuC₅₁H₄₄P₂: C, 74.70; H, 5.41. Found: C, 74.27; H, 5.48. 5a: 71; 2077. Anal. Calcd for Ru-C₆₄H₅₆P₂: C, 77.79; H, 5.71. Found: C, 78.09; H, 6.19. 5b: 75; 2088. Anal. Calcd for RuC₅₄H₅₀P₂: C, 75.24; H, 5.85. Found: C, 75.15; H, 5.94. 9a: 67; 1953, 2074. Anal. Calcd for RuC₆₈H₅₂P₂: C, 79.12; H, 5.07. Found: C, 77.73; H, 5.43. $[M^+ + 1] = 1033, [M^+ - R] = 741.$ (R = C=CCPh₂C=CPh). 10a: 70; 1943, 2078. Anal. Calcd for RuC₆₅H₅₄P₂: C, 78.21; H, 5.45. Found: C, 77.84; H, 5.65. $[M^+ + 1] = 999$, $[M^+ - R]$

= 741. (R = C=CCPh₂C=CⁿPr). **11a**: 96; 1962, 2077. Anal. Calcd for RuC₆₂H₄₈P₂: C, 77.87; H, 5.06. Found: C, 76.87; H, 5.68.

Synthesis of $[Ru{=C=C(H)C(R)Ph_2}(\eta^5-C_9H_7)(PPh_3)_2]$ - $[BF_4]$ (R = Me (6a), ⁿBu (7a), C=CPh (12a), C=CⁿPr (13a), C=CH (14a)). A solution of the corresponding alkynyl complex $[Ru{C=CC(R)Ph_2}(\eta^5-C_9H_7)(PPh_3)_2]$ (4a, 5a, or 9a-11a) (1 mmol) in 100 mL of diethyl ether, at -20 °C, was treated dropwise with strong stirring with a dilute solution of HBF₄·Et₂O in diethyl ether. Immediately, an insoluble solid precipitated, but the addition was continued until no further solid was formed. The solution was then decanted and the brown solid washed with diethyl ether (3 \times 20 mL) and vacuum-dried. Yield (%), IR data (KBr, $\nu(BF_4^{-})$, cm⁻¹), analytical data, conductivity data (acetone, 20 °C, Ω^{-1} cm² mol⁻¹), and NMR spectroscopic data are as follows. **6a**: 83; 1058. Anal. Calcd for RuC₆₁H₅₁F₄P₂B: C, 70.86; H, 4.97. Found: C, 70.08; H, 5.01. 121. NMR: ³¹P{¹H} (CDCl₃) & 38.04 (s) ppm; ¹H (CDCl₃) δ 1.54 (s, 3H, CH₃), 4.49 (s, 1H, Ru=C=CH), 5.37 (d, 2H, $J_{\rm HH}$ = 2.3 Hz, H-1,3), 5.70 (t, 1H, $J_{\rm HH}$ = 2.3 Hz, H-2), 5.75 (m, 2H, H-4,7 or H-5,6), 6.69-7.50 (m, 42H, Ph, H-4,7 or H-5,6) ppm; ${}^{13}C{}^{1}H{}$ (CDCl₃) δ 30.51 (s, CH₃), 47.62 (s, C_{γ}), 82.62 (s, C-1,3), 98.70 (s, C-2), 116.38 (s, C-3a,7a), 123.48 (s, C_b), 123.82 and 127.23 (s, C-4,7 and C-5,6), 127.50-149.06 (m, Ph), 346.99 (t, ${}^{2}J_{CP} =$ 16.7 Hz, Ru=C_a) ppm. $\Delta\delta$ -(C-3a,7a) = -14.32. **7a**: 79; 1061. Anal. Calcd for RuC₆₄-H₅₇F₄P₂B: C, 71.44; H, 5.34. Found: C, 71.96; H, 5.16. 115. NMR: ${}^{31}P{}^{1}H{}$ (CDCl₃) δ 36.78 (s) ppm; ${}^{1}H$ (CDCl₃) δ 0.77 (t, 3H, $J_{\rm HH} = 7.1$ Hz, CH₃), 1.14 (m, 2H, CH₂), 1.61 (m, 2H, CH₂), 1.70 (m, 2H, CH₂), 4.45 (s, 1H, Ru=C=CH), 5.21 (d, 2H, J_{HH} = 2.1 Hz, H-1,3), 5.32 (m, 2H, H-4,7 or H-5,6), 5.92 (t, 1H, $J_{\rm HH} = 2.1$ Hz, H-2), 6.57–7.54 (m, 42H, Ph, H-4,7 or H-5,6) ppm; ${}^{13}C{}^{1}H{}$ (CDCl₃) δ 14.87 (s, CH₃), 23.40 (s, CH₂), 27.56 (s, CH₂), 41.73 (s, CH₂), 51.62 (s, C_y), 80.96 (s, C-1,3), 98.86 (s, C-2), 117.58 (s, C-3a,7a), 119.16 (s, C_b), 123.92 and 127.22 (s, C-4,7 and C-5,6), 127.83–147.87 (m, Ph), 344.64 (t, ${}^{2}J_{CP} = 17.3$ Hz, Ru= C_{α}) ppm. $\Delta \delta$ (C-3a,7a) = -13.12. **12a**: 82; 1058, 1967: Anal. Calcd for RuC₆₈H₅₃F₄P₂B: C, 72.92; H, 4.77. Found: C, 73.25; H, 4.90. 125. NMR: ${}^{31}P{}^{1}H{}$ (CDCl₃) δ 38.46 (s) ppm; ¹H (CDCl₃) δ 4.42 (s, 1H, Ru=C=CH), 5.47 (d, 2H, $J_{\rm HH}$ = 2.5 Hz, H-1,3), 5.83 (m, 3H, H-2 and H-4,7 or H-5,6), 6.73-7.44 (m, 47H, Ph, H-4,7 or H-5,6) ppm; $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ (CDCl₃) δ 46.84 (s, C_{ν}) , 82.31 (s, C-1,3), 86.77 and 93.03 (s, C=C), 98.47 (s, C-2), 116.00 (s, C-3a,7a), 120.82 (s, C_{β}), 122.57–145.50 (m, Ph, C-4,7, C-5,6), 345.41 (t, ${}^{2}J_{CP} = 16.2$ Hz, Ru=C_a) ppm. $\Delta\delta$ (C-3a,7a) = -14.70. **13a**: 77; 1059, 1967: Anal. Calcd for RuC₆₅H₅₅F₄-P₂B: C, 71.89; H, 5.10. Found: C, 71.22; H, 5.13. 119. NMR: ${}^{31}P{}^{1}H{}$ (CDCl₃) δ 38.51 (s) ppm; ${}^{1}H$ (CDCl₃) δ 0.95 (t, 3H, $J_{\rm HH} = 7.3$ Hz, CH₃), 1.55 (m, 2H, CH₂), 2.19 (t, 2H, $J_{\rm HH} =$ 7.0 Hz, CH₂), 4.40 (s, 1H, Ru=C=CH), 5.37 (d, 2H, $J_{HH} = 2.0$ Hz, H-1,3), 5.81 (m, 3H, H-2 and H-4,7 or H-5,6), 6.73-7.47 (m, 42H, Ph, H-4,7 or H-5,6) ppm; ${}^{13}C{}^{1}H$ (CDCl₃) δ 13.66 (s, CH₃), 21.39 (s, CH₂), 22.21 (s, CH₂), 46.55 (s, C_y), 81.72 (s, C-1,3), 84.11 and 87.37 (s, C≡C), 98.61 (s, C-2), 116.18 (s, C-3a,7a), 121.23 (s, C_b), 123.21 and 130.40 (s, C-4,7 and C-5,6), 127.09–146.09 (m, Ph), 347.62 (t, ${}^{2}J_{CP} = 16.4$ Hz, Ru=C_{α}) ppm. $\Delta\delta$ (C-3a,7a) = -14.52. **14a**: 79; 1059, 1966. Anal. Calcd for RuC₆₂H₄₉F₄P₂B: C, 71.33; H, 4.73. Found: C, 71.02; H, 4.68. 103. NMR: ${}^{31}P{}^{1}H{}$ (CDCl₃) δ 40.22 (s) ppm; ${}^{1}H$ (CDCl₃) δ 3.63 (s, 1H, \equiv CH), 4.65 (s, 1H, Ru=C=CH), 5.70 (d, 2H, J_{HH} = 2.6 Hz, H-1,3), 5.95 (t, 1H, $J_{\rm HH}$ = 2.6 Hz, H-2), 6.17 (m, 2H, H-4,7 or H-5,6), 6.89-7.53 (m, 42H, Ph, H-4,7 or H-5,6) ppm; ¹³C{¹H} (CDCl₃) δ 47.16 (s, C_y), 78.09 (s, =CH), 84.60 (s, C-1,3), 88.32 (s, =C), 99.97 (s, C-2), 116.87 (s, C-3a,7a), 122.30 (s, C_{β}), 124.55 (s, C-4,7 or C-5,6), 128.31-146.52 (m, Ph, C-4,7 or C-5,6), 347.74 (t, ${}^{2}J_{CP} = 16.7$ Hz, Ru=C_a) ppm. $\Delta\delta$ (C-3a,7a) = -13.83.

Synthesis of [Ru{{ $(\kappa^3(C,P,P)-C=C=CPh_2(Ph_2PCHPPh_2)$ }- $(\eta^5-C_9H_7)$] (8c). To a solution of [Ru(=C=C=CPh_2)(\eta^5-C_9H_7)-(dppm)][PF₆] (1c) (0.936 g, 1 mmol) in 50 mL of THF was added, at -20 °C, Li^tBu (0.6 mL of a solution 1.6 M in hexane, 1 mmol). The mixture was allowed to warm to room temperature, and the solvent was then removed *in vacuo*. The solid residue was extracted with diethyl ether and filtered. Evaporation of the diethyl ether gave complex **8c** as a yellow solid. Yield (%), IR data (KBr, ν (C=C=C), cm⁻¹), analytical data, NMR spectroscopic data, and mass spectral data (FAB, m/e) are as follows: **80**; 1903. Anal. Calcd for RuC₄₉H₃₈P₂: C, 74.51; H, 4.85. Found: C, 73.85; H, 4.88. NMR: ³¹P{¹H} (C₆D₆) δ 4.78 (s) ppm; ¹H (C₆D₆) δ 5.57 (t, 1H, ²J_{HP} = 2.3 Hz, (Ph₂P)₂CH), 5.66 (d, 2H, J_{HH} = 3.0 Hz, H-1,3), 6.17 (t, 1H, J_{HH} = 3.0 Hz, H-2), 6.80-8.00 (m, 34H, Ph, H-4,7, H-5,6) ppm; ¹³C{¹H} (C₆D₆) δ 66.08 (s, C-1,3), 66.76 (t, J_{CP} = 21.1 Hz, (Ph₂P)₂CH), 83.15 (t, ²J_{CP} = 50.3 Hz, Ru-C_a), 87.17 (s, C-2), 102.22 (s, C-3a,7a), 105.48 (t, ⁴J_{CP} = 7.2 Hz, C_{γ}), 122.47 (s, C-4,7 or C-5,6), 123.47-150.26 (m, Ph, C-4,7 or C-5,6), 209.39 (t, ³J_{CP} = 15.2 Hz, C_{β}) ppm. $\Delta\delta$ (C-3a,7a) = -28.48. [M⁺ + 1] = 791, [M⁺ - C₉H₇] = 675.

Synthesis of $[Ru{C=CC(PR_3)(R')Ph}(\eta^5-C_9H_7)L_2][PF_6]$ $(L = PPh_3, R' = Ph, PR_3 = PMe_3$ (15a), PMe_2Ph (16a); L =PPh₃, R' = H, PR₃ = PMe₃ (17a), PMe₂Ph (18a), PMePh₂ (19a), PPh_3 (20a); $L_2 = dppe$, R' = Ph, $PR_3 = PMe_3$ (15b); $L_2 = dppm, R' = Ph, PR_3 = PMe_3$ (15c)). To a solution of the corresponding allenylidene complex 1a-c or 2a-c (1) mmol) in 50 mL of THF was added, at room temperature, the corresponding PR₃ (1.5 mmol), and the resulting solution was stirred for 15 min. The solvent was then removed in vacuo, and the yellow-brown solid residue was washed with diethyl ether (3 \times 20 mL) and vacuum-dried. Yield (%), IR data (KBr, $\nu(PF_6^{-})$, $\nu(C \equiv C)$, cm⁻¹), analytical data, and mass spectral data (FAB, *m/e*) are as follows. **15a**: 86; 840, 2041. Anal. Calcd for RuC₆₃H₅₆F₆P₄Ru: C, 65.68; H, 4.90. Found: C, 64.91; H, 5.01. $[M^+] = 1007$, $[M^+ - R] = 931$, $[M^+ - R - C_9H_7 - PPh_3]$ = 553. (R = PMe₃). 16a: 65; 839, 2035: Anal. Calcd for $RuC_{68}H_{58}F_6P_4Ru: C, 67.27; H, 4.81.$ Found: C, 66.79; H, 5.15. 17a: 82; 840, 2082. Anal. Calcd for RuC₅₇H₅₂F₆P₄Ru: C, 63.62; H, 4.87. Found: C, 63.21; H, 4.96. $[M^+] = 931$, $[M^+ -$ R] = 855, $[M^+ - R - PPh_3]$ = 593. (R = PMe₃). 18a: 52; 840, 2080. Anal. Calcd for RuC₆₂H₅₄F₆P₄Ru: C, 65.43; H, 4.78. Found: C, 64.24; H, 4.73. 19a: 98; 838, 2076. Anal. Calcd for $RuC_{67}H_{56}F_6P_4Ru$: C, 70.46; H, 4.94. Found: C, 69.79; H, 4.98. 20a: 98; 839, 2070. Anal. Calcd for RuC72H58F6P4Ru: C, 68.51; H, 4.63. Found: C, 68.68; H, 4.66. 15b: 75; 838, 2051. Anal. Calcd for RuC₅₃H₅₀F₆P₄Ru: C, 61.98; H, 4.91. Found: C, 61.03; H, 5.04. $[M^+] = 881$, $[M^+ - R] = 805$. (R = PMe₃). 15c: 90; 838, 2054: Anal. Calcd for RuC₅₂H₄₈F₆P₄Ru: C, 61.65; H, 4.78. Found: C, 60.95; H, 4.79.

Synthesis of $[Ru{C(PMe_3)=C=CPh_2}(\eta^5-C_9H_7)(dppm)]$ -**[PF₆] (21c).** A solution of $[Ru{C=CC(PMe_3)Ph_2}(\eta^5-C_9H_7)-$ (dppm)][PF₆] (**15c**) (1.012 g, 1 mmol) in 50 mL of THF was stirred, at room temperature, for 14 h. The solvent was then removed in vacuo, and the yellow-brown solid residue was washed with diethyl ether (2 \times 20 mL) and vacuum-dried. Yield (%), IR data (KBr, $\nu(PF_6^{-})$, $\nu(C=C=C)$ cm⁻¹), analytical data, NMR spectroscopic data, and mass spectral data (FAB, m/e) are as follows: 70; 839, 1865. Anal. Calcd for RuC₅₂-H₄₈F₆P₄Ru: C, 61.65; H, 4.78. Found: C, 60.95; H, 4.79. NMR: ${}^{31}P{}^{1}H{}$ ((CD₃)₂CO) δ 11.79 (d, ${}^{3}J_{PP} = 6.8$ Hz, dppm), 26.38 (t, ${}^{3}J_{PP} = 6.8$ Hz, PMe₃) ppm; ${}^{1}H$ ((CD₃)₂CO) δ 1.54 (d, 9H, $^{2}J_{\rm HP}$ = 12.7 Hz, CH₃), 4.18 (m, 2H, PCH_aH_bP), 5.16 (d, 2H, $J_{\rm HH} = 2.5$ Hz, H-1,3), 6.10 (t, 1H, $J_{\rm HH} = 2.5$ Hz, H-2), 6.84-7.63 (m, 34H, Ph, H-4,7, H-5,6) ppm; $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ ((CD_3)₂CO) δ 14.34 (d, $J_{CP} = 55.2$ Hz, CH₃), 50.31 (t, $J_{CP} = 21.7$ Hz, PCH₂P), 67.77 (s, C-1,3), 83.46 (m, RuC $_{\alpha}$), 88.45 (s, C-2), 100.58 (d, $^{3}J_{CP}$ = 29.2 Hz, C_y), 109.34 (s, C-3a,7a), 124.69–138.41 (m, Ph, C-4,7, C-5,6), 210.81 (s, C_{β}) ppm. $\Delta\delta$ (C-3a,7a) = -21.36. [M⁺] $= 867, [M^+ - R] = 791. (R = PMe_3).$

Synthesis of [Ru{C(PMe₂Ph)=C=CPh₂}(η^{5} -C₉H₇)-(dppm)][PF₆] (22c). This compound was prepared from 1c (0.936 g, 1 mmol) and PMe₂Ph (0.143 mL, 1 mmol) in a reaction analogous to that used for the preparation of **15a**-**20a**. Yield (%), IR data (KBr, ν (PF₆⁻), ν (C=C=C) cm⁻¹), analytical data, and NMR spectroscopic data are as follows: 67; 838, 1858. Anal. Calcd for RuC₅₇H₅₀F₆P₄Ru; C, 63.74; H, 4.60. Found: C, 63.83; H, 4.62. NMR: ³¹P{¹H} ((CD₃)₂CO) δ 8.85 (d, ³*J*_P= 5.1 Hz, dppm), 22.16 (t, ³*J*_P = 5.1 Hz, PMe₂Ph) ppm; ¹H ((CD₃)₂CO) δ 1.82 (d, 6H, ²J_{HP} = 12.5 Hz, CH₃), 4.27 (m, 1H, PCH_aH_bP), 5.19 (d, 2H, $J_{HH} = 2.4$ Hz, H-1,3), 5.25 (m, 1H, PCH_a H_b P), 6.32 (t, 1H, $J_{HH} = 2.4$ Hz, H-2), 6.79–7.96 (m, 39H, Ph, H-4,7, H-5,6) ppm; ${}^{13}C{}^{1}H{}$ ((CD₃)₂CO) δ 13.06 (d, J_{CP} = 58.1 Hz, CH₃), 49.85 (t, J_{CP} = 22.4 Hz, PCH₂P), 67.62 (s, C-1,3), 81.82 (m, RuC_{α}), 87.76 (s, C-2), 99.94 (d, ${}^{3}J_{CP} = 24.3$ Hz, C_{γ}), 108.61 (s, C-3a,7a), 124.61 and 125.78 (s, C-4,7 and C-5,6), 126.21–138.53 (m, Ph), 212.50 (s, C_{β}) ppm. $\Delta\delta$ (C-3a,7a) = -22.09.

Synthesis of $[Ru{C \equiv CC[S(o-C_6H_4Me)]Ph_2}(\eta^5-C_9H_7) (PPh_3)_2$] (23a). To a solution of $[Ru(=C=C=CPh_2)(\eta^5-C_9H_7)-$ (PPh₃)₂[PF₆] (1a) (1.075 g, 1 mmol) in 50 mL of THF was added, at room temperature, NaS(o-C₆H₄Me) (0.146 g, 1 mmol), and the resulting solution was stirred for 15 min. The solvent was then removed in vacuo. The solid residue was extracted with hexane and filtered. Evaporation of the hexane gave complex 23a as a yellow solid. Yield (%), IR data (KBr, v-(C=C) cm⁻¹), and analytical data are as follows. 45; 2050. Anal. Calcd for RuC₆₇H₅₄P₂SRu: C, 76.30; H, 5.17. Found: C, 76.94; H, 5.01.

Synthesis of $[Ru{C[S(o-C_6H_4Me)]=C=CPh_2}(\eta^5-C_9H_7)$ -(dppm)] (24c). This compound was prepared from 1c (0.936 g, 1 mmol) and NaS(o-C₆H₄Me) (0.146 g, 1 mmol) in a reaction analogous to that used for the preparation of 23a. Yield (%), IR data (KBr, ν (C=C=C) cm⁻¹), analytical data, and NMR spectroscopic data are as follows. 56; 1875. Anal. Calcd for RuC₅₆H₄₆P₂SRu: C, 73.58; H, 5.07. Found: C, 73.22; H, 4.98. NMR: ${}^{31}P{}^{1}H{}(C_6D_6) \delta 16.92$ (s) ppm; ${}^{1}H(C_6D_6) \delta 2.11$ (s, 3H, CH₃), 3.57 (m, 2H, PCH_aH_bP), 5.26 (d, 2H, $J_{HH} = 2.2$ Hz, H-1,3), 5.57 (t, 1H, $J_{\rm HH} = 2.2$ Hz, H-2), 6.58–7.16 (m, 38H, Ph, H-4,7, H-5,6) ppm; ${}^{13}C{}^{1}H{}$ (C₆D₆) δ 22.01 (s, CH₃), 46.23 (t, $J_{CP} = 21.6$ Hz, PCH₂P), 69.47 (s, C-1,3), 89.06 (s, C-2), 100.41 (t, ${}^{2}J_{CP} = 12.8$ Hz, RuC_{α}), 104.14 and 109.65 (s, C-3a,-7a and C_{ν}), 124.96–142.35 (m, Ph, C-4,7, C-5,6), 199.25 (s, C_{β}) ppm.

X-ray Diffraction Study. Data collection, crystal, and refinement parameters are collected in Table 7. The unit cell parameters were obtained from the least-squares fit of 25 reflections (with θ between 15° and 20°). Data were collected with the $\omega - 2\theta$ scan technique and a variable scan rate, with a maximum scan time of 60 s per reflection. The final drift correction factors were between 1.00 and 1.11. On all reflections, a profile analysis^{26,27} was performed. Lorentz and polarization corrections were applied, and the data were reduced to $|F_0|$ values.

The structure was solved by DIRDIF²⁸ (Patterson methods and phase expansion). Isotropic full-matrix least-squares refinement on $|F_0|^2$ using SHELXL93²⁹ converged to R = 0.08. At this stage an empirical absorption correction was applied using XABS2.³⁰ Maximum and minimum transmission factors were 1.00 and 0.73, respectively.

Finally, all hydrogen atoms (except H(5)) were geometrically placed. During the final stages of the refinement, the positional parameters and the anisotropic thermal parameters of the non-H atoms were refined. The geometrically placed

Table 7. Crystallographic Data for Complex 11a

Table 7. Crystanographic	Data Ior Complex III
formula	$C_{62}H_{48}P_2Ru$
<i>a</i> , Å	11.568(3)
<i>b</i> , Å	14.157(6)
<i>c</i> , Å	14.950(3)
α, deg	96.46(3)
β , deg	104.59(2)
γ , deg	90.91(6)
mol wt	956.01
Z	2
<i>V</i> , Å ³	2352.0(1)
$D_{\rm calcd}$, g cm ⁻³	1.35
F(000)	988
wavelength, Å	0.71073
temp, K	293
radiation	Μο Κα
monochromator	graphite cryst
space group	$P\overline{1}$
cryst syst	triclinic
cryst size, mm	0.40, 0.30, 0.26
μ , mm ⁻¹	0.44
range of abs	0.73-1.00
diffraction geom	$\omega - 2\theta$
θ range, deg	1.42 - 24.97
index ranges for data collecn	$-13 \le h \le 13$
	$-16 \leq k \leq 16$
	$0 \leq l \leq 17$
no. of rflns measd	9003
no. of indep rflns	8245
no. of variables	590
agreement between equiv rflns ^a	0.015
final R factors $(I > 2\sigma(I))$	$R_1 = 0.026, wR_2 = 0.071$
final <i>R</i> factors (all data)	$R_1 = 0.037, wR_2 = 0.072$
^{<i>a</i>} $R_{\text{int}} = \sum (I - \langle I \rangle) / \sum I.$	

hydrogen atoms were isotropically refined with a common thermal parameter, riding on their parent atoms. Coordinates for H(5) were also refined. The function minimized was $[\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^2)^2]^{1/2}, w = 1/[\sigma^2 (F_0^2) + (0.0403P)^2]$ where $P = (\text{Max} (F_0^2, 0) + 2F_c^2)/3$ with $\sigma^2(F_0^2)$ from counting statistics.

The maximum shift to esd ratio in the last full-matrix leastsquares cycle was -0.002. The final difference Fourier map showed no peaks higher than 0.27 e $Å^{-3}$ nor deeper than -0.35e Å⁻³. Atomic scattering factors were taken from International Tables for X-Ray Crystallography (1974).³¹ Geometrical calculations were made with PARST.³² The crystallographic plots were made with EUCLID.³³ All calculations were made at the University of Oviedo on the Scientific Computer Center and X-Ray Group DEC-ALPHA computers.

Acknowledgment. This work was supported by the Dirección General de Investigación Científica y Técnica (Project PB93-0325) and the EU (Human Capital Mobility programme, Project ERBCHRXCT 940501). We thank the Fundación para la Investigación Científica y Técnica de Asturias (FICYT) for a fellowship to V. C.

Supporting Information Available: Crystal structure data for 11a, including tables of atomic parameters, anisotropic thermal parameters, bond distances, and bond angles (19 pages). Ordering information is given on any current masthead page.

OM970358C

⁽²⁶⁾ Grant, D. F.; Gabe, E. J. J. Appl. Crystallogr. **1978**, 11, 114. (27) Lehman, M. S.; Larsen, F. K. Acta Crystallogr., Sect. A **1974**, 30, 580.

⁽²⁸⁾ Beurkens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; García-Granda, S.; Gould, R. O.; Smits, J. M. M.; Smykalla, C. The DIRDIF Program System; Technical Report; Crystallographic Labora-

<sup>tory, University of Nijmegen: Nijmegen, The Netherlands, 1992.
(29) Sheldrick, G. M. SHELXL93. In</sup> *Crystallographic Computing*& Flack, P., Parkanyi, P., Simon, K., Eds.; IUCr/Oxford University Press: Oxford, U.K., 1993.

⁽³⁰⁾ Parkin, S.; Moezzi, B.; Hope, H. J. Appl. Crystallogr. 1995, 28, 53.

⁽³¹⁾ International Tables for X-Ray Crystallography; Kynoch Press: Birminghan, U.K., 1974; Vol. IV.

⁽³²⁾ Nardelli, M. Comput. Chem. 1983, 7, 95.
(33) Spek, A. L. The EUCLID Package. In Computational Crystallography, Sayre, D., Ed.; Clarendon Press; Oxford, U.K., 1982; p 528.