An Efficient and Convenient Synthesis of 4-Vinylimidazoles Using a Novel Horner–Wadsworth–Emmons (HWE) Reagent: Synthetic Studies Toward Novel Histamine H₃-Ligands

Shinya Harusawa,^a Shuji Koyabu,^a Yasutoshi Inoue,^a Yasuhiko Sakamoto,^b Lisa Araki,^a Takushi Kurihara*^a

^a Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan Fax +81(726)901086; E-mail: kurihara@gly.oups.ac.jp

^b R&D Division, AZWELL, Inc., 2-24-3, Sho, Ibaraki, Osaka 567-0806, Japan Fax +81(726)224999; E-mail: nskrd-12@mbd.sphere.ne.jp

Received 20 February 2002; revised 15 April 2002

Abstract: A novel Horner–Wadsworth–Emmons (HWE)-type reagent **1** reacted readily with various aldehydes and ketones to produce (*E*)-vinylimidazoles **2** in good yields. The synthetic utility of **1** was demonstrated by the efficient preparation of four histamine H_3 ligands **3** by simple hydrogenation of **2**.

Key words: Horner–Wadsworth–Emmons reaction, vinylimidazole, hydrogenation, H_3 ligands, immepip

Imidazoles are important as heterocyclic components of many drugs and biologically active molecules.^{1,2} The C-4 substituted imidazole is a common and essential structural feature of the ligands for the histamine H_3 (H_3) receptor.³ Further, it was shown that the current H_3 ligands have affinity for the novel H_4 (H_4) receptor,⁴ which was identified by cloning and pharmacological characterization in 2000. However, only a limited synthetic method for the H_3 ligands have been synthesized using readily available scaffolds like urocainic acid and histamine.³ In continuation of our ongoing projects involving synthetic studies on novel H_3 and H_4 ligands,⁵ we required a reliable and effective procedure for C-4 substituted imidazoles.

Griffith et al.⁶ reported an improved synthesis of vinylimidazoles⁷ via Horner–Wadsworth–Emmons (HWE) reaction of *N*-tritylimidazole-4-carboxaldehyde. However, to our knowledge, an HWE reagent incorporating a functional imidazole group has not been reported to date.⁸ Herein, we report an efficient and convenient synthesis of vinyl imidazoles **2** using a novel HWE reagent **1** (Scheme 1), which reacts not only with a variety of aldehydes, but also ketones in the presence of KOBu-*t* to produce (*E*)-vinylimidazoles **2**. To demonstrate the utility of the novel HWE reagent **1**, an efficient synthesis of four current H₃ ligands was carried out by subsequent hydrogenation of **2**.

Michaelis–Becker reaction⁹ of 4-(chloromethyl)-1-tritylimidazole¹⁰ with lithium diethyl phosphonate, prepared in situ by treatment of diethyl phosphite with LiHMDS, generated diethyl (1-tritylimidazol-4-yl)methylphosphon-

ate (1) in 86% yield, as air-stable needles (Scheme 2). This substitution gave a higher yield than the Arbuzov reaction⁹ (<10%), which required higher reaction temperature (120 °C) and longer reaction time (12 h) in the case of 4-(chloromethyl)-1-tritylimidazole and triethyl phosphite.

Scheme 2

When we first attempted the HWE olefination of cyclohexanecarboxaldehyde using deprotonation of 1 with LiHMDS, erthro- (42%) and threo-diastereomers (8%) of β -hydroxyphosphonate 4 could be captured, accompanied with the desired vinylimidazole (*E*)-**2a** (34%)(Scheme 3), although direct observation of the intermediate (oxyanion of 4) in the HWE reaction has not been generally possible.⁸ Further, reaction of threo-4 with NaH afforded the (E)-olefin 2a (86%),¹¹ but that of erythro-4 caused only a retro-HWE reaction, with recovery of phosphonate 1. This result was consistent with the observation of Bottin-Strzalko et al.¹² that the erythro intermediate did not give the (Z)-olefin.

After investigation of the reaction under various conditions, phosphonate **1** was found to react readily with aldehydes, in the presence of *t*BuOK, to produce C-4 vinylimidazoles **2**,¹³ which can be easily isolated by column chromatography owing to the readily removable trityl group. The scope of the olefination using **1** was

Synthesis 2002, No. 8, 04 06 2002. Article Identifier: 1437-210X,E;2002,0,08,1072,1078,ftx,en;F02002SS.pdf. © Georg Thieme Verlag Stuttgart · New York ISSN 0039-7881

(a) (i) LiHMDS (1.0 eq), -70 °C, 1h; (ii) cyclohexanecarbaldehyde (1.0 equiv), -70 °C to rt, over 1h; (b) NaH, DMF, 50 °C

Scheme 3

actions afforded selectively the E-double bond. Thus, phosphonate 1 reacted with aliphatic aldehydes (Table 1, entries 1-5), aromatic and heteroaromatic aldehydes (Table 1, entries 6-8) to give substituted (*E*)-vinylimidazoles in excellent yields. In the case of 2f and 2h, the vinyl and aromatic proton signals were overlapped in ¹H NMR, but their E-geometry was clearly determined by the vinyl proton signals shifted downfield of their deprotected vinylimidazoles, 4-[2-(4-butylphenyl)]vinyl-1H-imidazole hydrochloride (5f·HCl) and 4-(2-thiophen-2-yl)vinyl-1Himidazole hydrochloride (5h·HCl) obtained by hydrolysis [e.g. **5f**·HCl: δ = 7.03 (d, 1 H, *J* = 16.7 Hz), 7.24 (d, 1 H, J = 16.7 Hz)]. Further, cinnamaldehyde afforded a dienylimidazole 2i in good yield (Table 1, entry 9), while cyclohexanone afforded the corresponding 2j in moderate yield (Table 1, entry 10).

examined as shown in Table 1. For all substrates, the re-

Table 1Synthesis of 2 Using 1

Entry	Substrate	Product	Yield (%)
1 ^a	СНО		72 ^b
		$Tr - N \rightarrow N$	
2°	<u></u> -сно		88
3 ^a	(CH ₂) ₂ CHO	2b	56
4 ^d	⟨◯)→−(CH ₂) ₃ CHO	Tr−N√√N 2c (CH ₂) ₃ −√√	58°
5 ^e		Tr-N N 2d	74
6 ^e	H ₃ C(H ₂ C) ₃ CHO	Tr-N_N	99
7°	CHO	2f	87
		$Tr - N \swarrow N$ 2g	

Synthesis 2002, No. 8, 1072-1078 ISSN 0039-7881 © Thieme Stuttgart · New York

^a Reaction conditions: reflux, 3 h.

^b The yield was based on **1** [**1** (1.0 equiv), aldehyde (1.2 equiv) and *t*BuOK (1.0 equiv)].

^c Reaction conditions: reflux, 1 h.

^d Reaction conditions: r.t., 14 h.

e Reaction conditions: reflux, 2 h.

De Esch et al.¹⁴ reported a study on the influence of lipophilic moieties attached to a 4-1H-imidazole ring on the histamine H₃ receptor activity using H₃ antagonists VUF 5514 ($pA_2 = 7.5$) and VUF 5515 ($pA_2 = 7.8$). These compounds have been synthesized by reaction of the oxazoline intermediate with ammonia under heating in a stainless steel bomb. Compounds 2c and 2d thus obtained could be easily converted into VUF 5514 and VUF 5515 by their hydrogenation (10% Pd/C at 3.0 Kg/cm²), respectively (Table 2, entries 1 and 2). Vinylimidazole 2e similarly afforded a potent and selective H₃ antagonist VUF 4929^{15} (pA₂ = 8.4) in a patent application (Table 2, entry 3). This two-step operation was further applied to an efficient synthesis of immepip $(pD_2 = 8.0)$ which has been extensively used as an H₃ agonist. Immepip was first reported by Vollinga et al.¹⁶, the synthesis of which was achieved by starting from 4-pyridine carboxaldehyde in 20% overall yield, via several steps involving hydrogenation at 50 atmosphere over Pd/C. The present synthetic approach readily provided immepip via 2k from commercially available 1-benzyl-4-piperidone in nearly quantitative yield (Table 1, entry 11 and Table 2, entry 4).

The preparation of C-4 substituted imidazoles using phosphonate 1 is experimentally straightforward and particularly suitable for the study of novel histamine ligands. Considering the privileged position of imidazole compounds in medicinal chemistry, we believe that the reagent 1 will become a useful tool in the synthesis of bioactive molecules.

Table 2Conversion of 2 into H3 Ligands

^a Hydrochlodide of **2** was subjected to hydogenation.

^b Isolated as dihydrochloride.

Synthesis of 4-Vinylimidazoles 1075

The melting points were determined on a hot stage apparatus and are uncorrected. ¹H and ¹³C NMR spectra were taken with tetramethylsilane as internal reference. Reactions with air- and moisturesensitive compounds were carried out under argon. Unless otherwise noted, all extracts were dried over Na_2SO_4 or $MgSO_4$, and the solvent was removed in a rotary evaporator under reduced pressure. Chromatography was performed on silica gel. THF was distilled from sodium-benzophenone.

Diethyl (1-Tritylimidazol-4-yl)methylphosphonate (1)

Lithium hexamethyldisilazide (1 M in THF, 31.2 mL, 31.2 mmol) was added dropwise over 1 h to a solution of diethyl phosphite (4.30 g, 31.2 mmol) in anhyd THF (10 mL) at -70 °C under argon. A solution of 4-(chloromethyl)-1-tritylimidazole¹⁰ (9.30 g, 26.0 mmol) in THF (80 mL) was then added dropwise to the resulting mixture over 0.5 h. After the reaction mixture was stirred for 15 min at the same temperature, it was allowed to reach r.t. and stirred for 3 h at this temperature. The mixture was diluted with sat. aq NH₄Cl (150 mL), and the THF was removed under reduced pressure. The resulting suspension was extracted with EtOAc (4 × 100 mL), and the organic phase was dried and evaporated. The resulting crude solid mass was purified by column chromatography [MeOH–EtOAc (1:20)] to give **1** (10.30 g, 86%) as a white powder. This was recrystallized from EtOAc–hexane to give white needles; mp 141–144 °C.

¹H NMR (CDCl₃): δ = 1.24 (t, 6 H, J = 8.0 Hz), 3.17 (d, 2 H, J = 21.6 Hz), 4.02 (quint, 4 H, J = 6.0 Hz), 6.81 (s, 1 H), 7.10–7.40 (m, 16 H).

³¹P NMR (CDCl₃): $\delta = 27.0$ (s).

MS (SIMS): m/z = 460 (M⁺).

HRMS: m/z calcd for $C_{27}H_{29}N_2O_3P$ (M^+) 460.1914; found 460.1898.

Anal Calcd for $C_{27}H_{29}N_2O_3P$: C, 86.08; H, 7.22; N, 6.69. Found: C, 86.03; H, 7.32; N, 6.41.

Reaction of 1 with Cyclohexanecarboxaldehyde in the Presence of LiHMDS $% \mathcal{A}_{\mathrm{CYC}}$

LiHMDS (1 M in THF) (0.5 mL, 0.5 mmol) was added dropwise over 10 min to a solution of **1** (230 mg, 0.5 mmol) in THF (4 mL) at -70 °C with stirring, and the resulting yellow solution was stirred for 10 min. Cyclohexanecarboxaldehyde (56 mg, 0.5 mmol) in THF (4 mL) was then added dropwise over 5 min to the solution. After the reaction mixture had been stirred at -70 °C for 1 h, it was allowed to reach r.t. (25 °C) over 1 h. The resulting mixture was quenched with H₂O, and the solvent was removed under reduced pressure. The residue was dissolved in EtOAc–hexane (1:1, 30 mL), and the organic layer was washed with H₂O (3 × 20 mL), dried, and evaporated to give a crude oil. Chromatography on silica gel using 20% EtOAc in hexane to EtOAc as eluent gave (*E*)-**2a** (70 mg, 34%), *erythro*-**4** (121 mg, 42%), *threo*-**4** (23 mg, 8%), and **1** (21 mg, 9%) in that order.

(*E*)-4-(2-Cyclohexylvinyl)-1-trityl-1*H*-imidazole (2a) Needles; mp 197–200 °C (hexane–benzene).

¹H NMR (500 MHz, CDCl₃): δ = 1.1–1.21 (m, 2 H), 1.21–1.35 (m, 2 H), 1.6–1.7 (br, 2 H), 1.7–1.82 (br, 4 H), 2.08 (br m, 1 H), 6.18 (d, 1 H, *J* = 16.0 Hz), 6.32 (dd, 1 H, *J* = 16.0, 6.9 Hz), 6.67 (s, 1 H), 7.1–7.2 (br s, 6 H), 7.3–7.4 (m, 10 H).

¹³C NMR (D₂O): δ = 26.1, 26.2, 32.9, 40.8, 75.2, 118.1, 118.9, 128.0, 128.3, 129.7, 135.3, 138.9, 139.7, 142.4.

MS (EI, 70 eV): m/z = 418 (M⁺).

HRMS: m/z calcd for $C_{30}H_{30}N_2$ (M⁺) 418.2407; found 418.2404.

Anal Calcd for $C_{30}H_{30}N_2$: C, 86.08; H, 7.22; N, 6.69. Found: C, 86.03; H, 7.32; N, 6.41.

[2-Cyclohexyl-2-hydroxy-1-(1-trityl-1*H*-imidazol-4-yl)]diethyl Phosphonate (*erythro-*4) Oil.

³¹P NMR (CDCl₃-H₃PO₄): $\delta = 28.50$.

¹H NMR (300 MHz, CDCl₃): δ = 1.00–1.30 (m, 1 H), 1.20 (t, 3 H, J = 7.2 Hz), 1.23 (t, 3 H, J = 7.2 Hz), 1.62–1.80 (br m, 10 H), 3.42 (dd, 1 H, $J_{\text{H-P}}$ = 24.0, $J_{\text{H-H}}$ = 1.9 Hz), 3.87 [td, 1 H, $J_{\text{H-P}}$ = $J_{\text{H-H}}$ = 1.9 Hz], 3.90–4.12 (m, 4 H), 6.83 (dd, 1 H, J = 6.0, 3.0 Hz), 7.10–7.38 (m, 15 H), 7.41 (s, 1 H).

MS (EI, 70 eV): m/z = 573 (M⁺ + 1).

HRMS: m/z calcd for $C_{34}H_{42}N_2O_4P$ (M⁺ + 1), 573.2880; found, 573.2886.

threo-4

Oil.

³¹P NMR (CDCl₃-H₃PO₄): $\delta = 28.80$.

¹H NMR (500 MHz, CDCl₃): δ = 1.20 (t, 3 H, *J* = 7.2 Hz), 1.23 (t, 3 H, *J* = 7.2 Hz), 1.40 (m, 1 H), 1.55–1.82 (br m, 10 H), 3.44 (dd, 1 H, *J*_{H-P} = 21.3, *J*_{H-H} = 8.0 Hz), 3.95 (m, 1 H), 4.00–4.16 (m, 4 H), 6.75 (dd, 1 H, *J* = 6.0, 3.0 Hz), 7.10–7.37 (m, 15 H), 7.41 (s, 1 H).

MS (SIMS): $m/z = 573 (M^+ + 1)$.

HRMS: m/z calcd for $C_{34}H_{42}N_2O_4P$ (M⁺ + 1) 573.2880; found, 573.2879.

Preparation of (E)-2a from threo-4

NaH (60% dispersion in oil, 0.5 mg, 0.013 mmol) was added in one portion to a stirred solution of *threo*-**4** (7 mg, 0.013 mmol) in anhyd DMF (0.5 mL). The reaction mixture was stirred at 50 °C for 1 h till formation of a white precipitate and diluted with EtOAc (20 mL). The organic layer was washed with H₂O (3 × 5 mL), dried, and evaporated to give a crude oil, which was subsequently purified by column chromatogrphy to give (*E*)-**2a** (4.4 mg, 86%).

Vinylimidazoles 2; General Procedure

*t*BuOK (67 mg, 0.6 mmol) was added to a mixture of phosphonate **1** (276 mg, 0.6 mmol) and the appropriate aldehyde (0.5 mmol) in THF (5 mL). The mixture was refluxed for 1–3 h under argon (TLC monitoring), and concentrated. After the addition of CHCl₃ (20 mL) and brine (20 mL), the organic layer was separated, and the aqueous layer was further extracted with CHCl₃ (2 × 20 mL). The combined organic layer was dried (MgSO₄) and evaporated. The residue was purified by column chromatography (Table 1).

2a Yield: 72%.

2b

Small needles; yield: 88%; mp 211-215 °C (EtOAc-hexane).

¹H NMR (300 MHz, CDCl₃): $\delta = 1.07$ (s, 9 H), 6.16 (d, 1 H, J = 16.2 Hz), 6.42 (d, 1 H, J = 16.2 Hz), 6.67 (s, 1 H), 7.10–7.40 (m, 16 H). MS (EI, 70 eV): m/z = 392 (M⁺).

HRMS: *m/z* calcd for C₂₈H₂₈N₂ (M⁺), 392.2251; found, 392.2247.

Anal Calcd for $C_{28}H_{28}N_2$: C, 85.67; H, 7.19; N, 7.14. Found: C, 85.20; H, 7.14; N, 7.08.

2c

Viscous oil; yield: 56%.

¹H NMR (300 MHz, CDCl₃): δ = 2.48 (q, 2 H, *J* = 8.4 Hz), 2.77 (t, 2 H, *J* = 8.4 Hz), 6.26 (d, 1 H, *J* = 15.6 Hz), 6.27–6.48 (dt, 1 H, *J* = 15.6, 8.4 Hz), 6.69 (s, 1 H), 7.00–7.60 (m, 15 H).

MS (EI, 70 eV): m/z = 440 (M⁺).

HRMS: m/z calcd for $C_{32}H_{28}N_2$ (M⁺), 440.2251; found, 440.2254.

2d

Viscous oil; yield: 58%.

¹H NMR (300 MHz, CDCl₃): δ = 1.77 (quint, 2 H, *J* = 7.4 Hz), 2.20 (q, 2 H, *J* = 7.4 Hz), 2.66 (t, 2 H, *J* = 7.4 Hz), 6.23 (d, 1 H, *J* = 15.8 Hz), 6.36 (dt, 1 H, *J* = 15.8, 7.0 Hz), 6.66 (s, 1 H), 7.05–7.45 (m, 21 H).

MS (EI, 70eV): m/z = 454 (M⁺).

HRMS: m/z calcd for $C_{33}H_{30}N_2$ (M⁺), 454.2407; found, 454.2415.

2e

Viscous oil; yield: 74%.

¹H NMR (300 MHz, CDCl₃): $\delta = 1.56$ (qd, 2 H, J = 15.0, 4.4 Hz), 1.66–1.78 (dm, 2 H, J = 15.0 Hz), 1.92–2.23 (m, 3 H), 2.88–2.94 (dm, 2 H, J = 15.0 Hz), 3.49 (s, 2 H), 6.19 (d, 1 H, J = 15.5 Hz), 6.32 (dd, 1 H, J = 15.5, 6.7 Hz), 6.68 (s, 1 H), 7.05–7.40 (m, 21 H).

MS (EI, 70 eV): m/z = 509 (M⁺).

HRMS: m/z calcd for C₃₆H₃₅N₃ (M⁺), 509.2829; found, 509.2827.

2f

Prisms; yield: 99%; mp 157–159 °C (EtOAc-hexane).

¹H NMR (300 MHz, CDCl₃): $\delta = 0.92$ (t, 3 H, J = 8.4 Hz), 1.35 (sext, 2 H, J = 8.4 Hz), 1.59 (quint, 2 H, J = 8.4 Hz), 2.58 (t, 2 H, J = 8.4 Hz), 6.85 (s, 1 H), 6.89 (d, 1 H, J = 16.4 Hz), 7.10–7.40 (m, 20 H), 7.45 (s, 1 H).

¹³C NMR (CD₃OD): δ = 13.9, 22.4, 33.5, 35.4, 75.4, 119.3, 119.6, 126.1, 127.1, 128.1, 128.6, 129.8, 135.1, 139.3, 139.5, 141.9, 142.3.

MS (EI, 70 eV): m/z = 468 (M⁺).

HRMS: m/z calcd for $C_{34}H_{32}N_2$ (M⁺), 468.2564; found, 468.2563.

Anal Calcd for $C_{34}H_{32}N_2$: C, 87.14; H, 6.88; N, 5.98. Found: C, 87.04; H, 6.91; N, 5.98.

4-[2-(4-Butylphenyl)]vinyl-1*H*-imidazole Hydrochloride (5f·HCl)

To determine the (*E*)-geometry of **2f**, it was converted into the unsubstituted imidazole, **5f**·HCl as follows. A solution of **2f** (194 mg, 0.415 mmol) in aq 2 N HCl (6 mL)–EtOH (4 mL) was refluxed for 1 h and then diluted with H₂O (10 mL). After neutralization by addition of NaHCO₃, the mixture was extracted with CHCl₃ (5 × 10 mL). The extract was dried and evaporated to give a residue, which was subsequently chromatographed using MeOH–CHCl₃ (1:9) as eluent to give **5f** (74 mg, 80%) as an oil.

¹H NMR (500 MHz, CD₃OD): $\delta = 0.95$ (t, 3 H, J = 8.4 Hz), 1.38 (sext, 2 H, J = 8.4 Hz), 1.60 (quint, 2 H, J = 8.4 Hz), 2.62 (t, 2 H, J = 8.4 Hz), 7.1 (br s, 4 H), 7.14 (d, 2 H, J = 7.9 Hz), 7.38 (d, 2 H, J = 7.9 Hz).

MS (SIMS): $m/z = 227 (M^+ + 1)$.

HRMS: m/z calcd for $C_{15}H_{19}N_2~(M^+$ + 1), 227.1547; found, 227.1546.

5f·HCl

Viscous oil.

¹H NMR (500 MHz, CD₃OD): $\delta = 0.91$ (t, 3 H, J = 8.4 Hz), 1.33 (sext, 2 H, J = 8.4 Hz), 1.58 (quint, 2 H, J = 8.4 Hz), 2.60 (t, 2 H, J = 8.4 Hz), 7.03 (d, 1 H, J = 16.7 Hz), 7.24 (d, 1 H, J = 16.7 Hz), 7.21 (d, 2 H, J = 7.6 Hz), 7.46 (d, 2 H, J = 7.6 Hz), 7.62 (s, 1 H), 8.92 (s, 1 H).

¹³C NMR (CD₃OD): δ = 14.4, 23.3, 34.7, 36.4, 112.5, 117.0, 127.9, 130.0, 134.2, 134.4, 135.3.

2g

Viscous oil; yield: 87%.

¹H NMR (300 MHz, CDCl₃): $\delta = 6.91$ (s, 1 H), 7.00 (d, 1 H, J = 17.0 Hz), 7.04–7.40 (m, 17 H), 7.47 (s, 1 H), 7.73 (d, 1 H, J = 8.1 Hz), 8.43 (br s, 1 H), 8.69 (br s, 1 H).

MS (SIMS): $m/z = 414 (M^+ + 1)$.

HRMS: m/z calcd for $C_{29}H_{24}N_3$ (M⁺+1), 414.1969; found, 414.1979.

2h

White powder; yield: 85%; mp 204–207 °C (EtOAc-hexane).

¹H NMR (300 MHz, $CDCl_3$): $\delta = 6.75$ (d, 1 H, J = 16.5 Hz), 6.82 (s, 1 H), 6.93–7.00 (m, 2 H), 7.10 (d, 1 H, J = 5.1 Hz), 7.12–7.20 (m, 6 H), 7.3–7.4 (br s, 10 H), 7.41 (s, 1 H).

MS (SIMS): m/z = 418 (M⁺).

HRMS: m/z calcd for $C_{28}H_{22}N_2S_1$ (M⁺), 418.1499; found, 418.1503.

Anal Calcd for $C_{28}H_{22}N_2S$: C, 80.35; H, 5.30; N, 6.69. Found: C, 80.05; H, 5.25; N, 6.63.

5h·HCl

A solution of **2h** (131 mg, 0.313 mmol) in aq 2 N HCl (4 mL)–EtOH (5 mL) was refluxed for 1 h to give **5h** HCl (63 mg, 95%) as white powder using the same procedure as for the preparation of **5f** HCl.

¹H NMR (300 MHz, CD₃OD): $\delta = 6.80$ (d, 1 H, J = 16.4 Hz), 7.00 (dd, 1 H, J = 5.0, 3.6 Hz), 7.15 (d, 1 H, J = 3.6 Hz), 7.35 (d, 1 H, J = 16.4 Hz), 7.36 (d, 1 H, J = 5.0 Hz), 7.50 (s, 1 H), 8.68 (S, 1 H).

2i

Needles; yield: 68%; mp 225-228 °C (EtOAc-hexane).

¹H NMR (300 MHz, CD₃OD): $\delta = 6.50$ (d, 1 H, J = 15.3 Hz), 6.68 (d, 1 H, J = 15.3 Hz), 6.81 (s, 1 H), 6.88 (dd, 1 H, J = 15.3, 11.0 Hz), 7.05 (dd, 1 H, J = 15.3, 11.0 Hz), 7.15–7.20 (br s, 5 H), 7.26–7.44 (br s, 16 H).

Anal Calcd for $\rm C_{32}H_{26}N_2:$ C, 87.64; H, 5.98; N, 6.39. Found: C, 87.21; H, 5.97; N, 6.31.

2j

White powder; yield: 58%; mp 222–223 °C (EtOAc-hexane).

 ^1H NMR (300 MHz, CDCl₃): δ = 1.60 (m, 6 H), 2.23 (m, 2 H), 2.64 (m, 2 H), 5.98 (s, 1 H), 6.65 (s, 1 H), 7.10–7.38 (m, 15 H), 7.40 (s, 1 H).

MS (EI, 70 eV): m/z = 404 (M⁺).

HRMS: m/z calcd for $C_{29}H_{28}N_2$ (M⁺), 404.2251; found, 404.2248.

Anal Calcd for $C_{29}H_{28}N_2$: C, 86.10; H, 6.98; N, 6.92. Found: C, 86.21; H, 6.97; N, 6.90.

4-(4-Phenylbutyl)-1H-imidazole (VUF5514)¹⁴

A solution of **2c** (252 mg, 0.57 mmol) in MeOH–EtOAc (1:3, 10 mL) was hydrogenated with 10% Pd/C (150 mg) as catalyst at a initial pressure of 3.0 kg/cm² for 15 h. The catalyst was removed by filtration through a Celite pad, and the filtrate was concentrated to give a crude oil, which was subsequently purified by column chromatography using MeOH–CH₂Cl₂ (1:9) as eluent to give VUF5514 (103 mg, 90%) as a viscous oil.

¹H NMR (300 MHz, CD₃OD): δ = 1.70 (m, 4 H), 2.26 (m, 4 H), 4.40–5.80 (br s, 1 H), 7.78 (s, 1 H), 7.10–7.20 (m, 5 H), 7.56 (s, 1 H).

MS (SIMS): m/z = 201 (M⁺ + 1).

HRMS: m/z calcd for $C_{13}H_{17}N_2 \ (M^+ + 1),\ 201.1391;$ found, 201.1396.

4-(4-Phenylpentyl)-1H-imidazole (VUF5515)14

This compound was synthesized from **2d** (132 mg, 0.29 mmol) according to the synthetic procedure for VUF5514 and was obtained as a colorless oil in 92% yield.

¹H NMR (300 MHz, CD₃OD): δ = 1.30–1.50 (m, 2 H), 1.60–1.80 (m, 4 H), 2.61 (t, 2 H, *J* = 7.6 Hz), 2.64 (t, 2 H, *J* = 7.6 Hz), 7.08–7.36 (m, 6 H), 8.45 (s, 1 H).

MS (SIMS): m/z: 215 (M⁺ + 1).

HRMS: m/z : calcd for $C_{14}H_{19}N_2$ (M⁺ + 1), 215.1547; found, 201.1551.

Preparation of Immepip [4-(1*H*-imidazol-4-yl)methylpiperidine] via 2k

2k

Phosphonate **1** (276 mg, 0.6 mmol) and KOBu-*t* (67 mg, 0.6 mmol) were added to a solution of 1-benzyl-4-piperidone (95 mg, 0.5 mmol) in THF (6 mL). After the reaction mixture was refluxed for 2 h, sat. aq NH₄Cl (1 mL) was added and evaporated. The residue was dissolved with saturated aq NH₄Cl (10 mL) and extracted with CHCl₃ (3 × 20 mL), and the CHCl₃ layer was dried (MgSO₄) and evaporated. The resulting oily residue was purified by column chromatography (EtOAc) to give **2k** (246 mg, 99%) as a colorless viscous oil.

¹H NMR (300MHz, CDCl₃): δ = 2.30–2.40 (m, 2 H), 2.42–2.60 (m, 4 H), 2.79–2.90 (m, 2 H), 3.52 (s, 2 H), 6.02 (s, 1 H), 6.66 (s, 2 H) 7.08–7.44 (m, 21 H).

MS (EI, 70eV): m/z = 495 (M⁺).

HRMS: *m/z*: 495.2681 (calcd for C₃₅H₃₃N₃: 495.2673).

Immepip-2HCl

A solution of **2k** (162 mg, 0.327 mmol) in aq 1 N HCl (1.5 mL)– EtOH (5 mL) was stirred at r.t. for 10 min, and evaporated to give a residue (**2k**·2HCl). A solution of the dihydrochloride in MeOH (20 mL) was subsequently hydrogenated with 10% Pd/C (120 mg) as catalyst at an initial pressure of 3.0 kg/cm² for 15 h. The catalyst was removed by filtration and the filtrate was concentrated to give a residue, which was subsequently dissolved with H₂O (20 mL). The aqueous solution was washed with benzene (3 × 20 mL) and evaporated to give immepip·2HCl (80 mg, quant) as a white powder; mp 235–239 °C.

¹H NMR (500 MHz, CD₃OD): δ = 1.52 (m, 2 H), 1.92 (d, 2 H, J = 13.0 Hz), 2.02 (br, 1 H), 2.77 (d, 2 H, J = 7.0 Hz), 3.01 (t, 2 H, J = 13.0 Hz), 3.41 (d, 2 H, J = 13.0 Hz), 7.42 (s, 1 H), 8.85 (s, 1 H). ¹³C NMR (CD₃OD): δ = 29.4, 31.4, 34.7, 45.0, 118.0, 132.7, 135.0.

MS (EI, 70 eV): m/z = 165 (M⁺).

HRMS: m/z calcd for C₉H₁₅N₃ (M⁺) 165.1265; found 165.1263.

The dihydrochloride thus obtained was further confirmed by conversion into immepip-2HBr synthesized by Vollinga et al. 16

Immepip

To a MeOH solution of the immepip-2HCl was added a small amount of Chromatorex NH-DM 1020. The solvent was evaporated to give a coated silica gel, which was subsequently placed on a column (Chromatorex NH-DM 1020). Chromatography using CHCl₃–MeOH–28% NH₄OH (50:2:1) as the eluent gave immepip (48 mg, 89% from **2k**) as a colorless oil.

¹H NMR (CD₃OD): δ = 1.10 (qd, 2 H, *J* = 13.0, 5.0 Hz), 1.63 (dm, 3 H, *J* = 13.0 Hz), 2.49 (tm, 4 H, *J* = 13.0 Hz, 4 H), 2.95 (dm, 2 H, *J* = 13.0 Hz), 6.67 (s, 1 H), 7.46 (s, 1 H).

Immepip-2HBr

50% Aq HBr solution (240 mg, 5 equiv) was added to a solution of immepip (48 mg) in EtOH (20 mL). The mixture was stirred at r.t. for 15 min and evaporated to give a residue, which was subsequently washed with acetone (4 × 3 mL) and dried to give immepip·2HBr (95 mg, quant) as white powder; mp 237–239 °C (Lit.^{16b} mp 221.1–222.7 °C).

¹H NMR (D₂O): δ = 1.46 (qd, 2 H, *J* = 13.0, 5.0 Hz), 1.92 (dm, 2 H, *J* = 13.0 Hz), 1.99 (m, 1 H), 2.75 (d, 2 H, *J* = 7.0 Hz), 2.99 (tm, 2 H, *J* = 13.0 Hz, 2 H), 3.43 (dm, 2 H, *J* = 13.0 Hz), 7.28 (s, 1 H), 8.59 (s, 1 H).

¹³C NMR (D_2O): $\delta = 29.2, 31.3, 34.4, 45.3, 117.8, 132.4, 134.5.$

Anal Calcd for $C_9H_{15}N_3$ 2HBr: C, 33.05; H, 5.24; N, 12.85. Found: C, 32.80; H, 5.24; N, 12.70.

4-(1H-Imidazol-4-yl)ethylpiperidine (VUF4929)¹⁵

Vinylimidazole **2e** (196 mg, 0.385 mmol) was converted into VUF4929 (68 mg, quant, free amine) according to the synthetic procedure of immepip described above.

¹H NMR (300 MHz)(CD₃OD): δ = 1.19 (qd, 2 H, *J* = 13.0, 3.5 Hz), 1.36–1.52 (m, 2 H), 1.60 (q, 2 H, *J* = 7.2 Hz), 1.70–1.82 (dm, 2 H, *J* = 13.0 Hz), 2.50–2.70 (m, 4 H), 3.00–3.10 (dm, 2 H, *J* = 13.0 Hz), 6.78 (s, 1 H), 7.59 (s, 1 H).

VUF4929-2HCl

The free amine was stirred with aq 1 N HCl–EtOH at r.t. for 15 min and evaporated to give VUF4929·2HCl as a white powder; mp 216–220 $^{\circ}$ C.

¹H NMR (500 MHz, CD₃OD): δ = 1.47 (qd, 2 H, J = 13.0, 3.5 Hz), 1.65–1.75 (m, 3 H), 1.97–2.04 (dm, 2 H, J = 13.0 Hz), 2.80 (t, 2 H, J = 7.2 Hz), 3.00 (t, 2 H, J = 13.0 Hz), 3.37–3.43 (dm, 2 H, J = 13.0Hz), 7.36 (s, 1 H), 8.81 (s, 1 H).

¹³C NMR (CD₃OD): δ = 22.4, 29.7, 34.2, 35.6, 45.2, 116.8, 134.7, 135.3.

MS (EI, 70eV): m/z = 179 (M⁺).

HRMS: m/z calcd for $C_{10}H_{17}N_3$ (M⁺), 179.1422; found, 179.1424.

Acknowledgments

We thank Prof. A. Yamatodani, School of Allied Health Science, Faculty of Medicine, Osaka University, for encouraging us in this study. Financial support of this work by the Ministry of Education, Science, and Culture of Japan [Grant No. 11672127] is gratefully acknowledged.

References

- Grimmett, M. R. In *Comprehensive Heterocyclic Chemistry II: Imidazoles*, Vol. 3; Katritzky, A. R.; Rees, C. W.; Scriven, E. F., Eds.; Pergamon: Oxford, **1996**, 77–220.
- (2) For some examples, see: (a) Rohrle, A. N.; Schmidhammer, H. *Helv. Chim. Acta* 1998, *81*, 1070. (b) Davies, D. H.; Haire, N. A.; Hall, J.; Smith, E. H. *Tetrahedron* 1992, *48*, 7839. (c) Gordon, T.; Hansen, P.; Morgan, B.; Singh, J.; Baizman, E.; Ward, S. *Biorg. Med. Chem. Lett.* 1993, 915. (d) Reid, R. C.; March, D. R.; Dooley, M. J.; Bergman, D. A.; Abbenante, G.; Fairlie, D. P. *J. Am. Chem. Soc.* 1996, *118*, 8511. (e) Von Geldern, T. W.; Kester, J. A.; Bal, R.; Wu-Wong, J. R.; Chiou, W.; Dixon, D. B.; Opgenorth, T. J. *J. Med. Chem.* 1996, *39*, 968. (f) Pridgen, L. N.; Mokhallalati, M. K.; McGuire, M. A. *Tetrahedron Lett.* 1997, *38*, 1275.

- (3) For reviews, see: (a) Stark, H.; Schlicker, E.; Schunack, W. *Drugs Future* 1996, *21*, 507. (b) Leurs, R.; Blandian, P.; Tedford, C.; Timmerman, H. *TIPS* 1998, *19*, 177. (c) Watanabe, T.; Timmerman, H.; Yanai, K. *Histamine Reseach in the New Millennium*; Elsevier: Amsterdom, 2001.
- (4) For a review, see: Hough, L. B. Mol. Pharmacol. 2001, 59, 415.
- (5) (a) Harusawa, S.; Imazu, T.; Takashima, S.; Araki, L.; Ohishi, H.; Kurihara, T.; Yamamoto, Y.; Yamatodani, A. *Tetrahedron Lett.* **1999**, *40*, 2561. (b) Harusawa, S.; Imazu, T.; Takashima, S.; Araki, L.; Ohishi, H.; Kurihara, T.; Sakamoto, Y.; Yamamoto, Y.; Yamatodani, A. *J. Org. Chem.* **1999**, *64*, 8608.
- (6) (a) Griffith, R. K.; DiPietro, R. A. Synth. Commun. 1986, 16, 1761. (b) Adger, B. M.; Surtees, J. Synth. Commun. 1987, 17, 223.
- (7) Kokosa, J. M.; Szafasz, R. A.; Tagupa, E. J. Org. Chem. 1983, 48, 3605.

- (8) For a review, see: Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863.
- (9) Cadogan, J. I. G. Organophosphorus Reagents in Organic Synthesis; Academic Press: New York, **1979**.
- (10) Coates, I. H.; North, P. C.; Oxford, A. W. Eur. Pat. Appl. EP 306323, (1989); *Chem. Abstr.* 1989, 111, 153800.
- (11) Buss, A. D.; Warren, S. Tetrahedron Lett. 1983, 36, 3931.
- (12) Bottin-Strzalko, T.; Seyden-Penne, J. Bull. Soc. Chim. Fr. 1984, 161.
- (13) All yields are of the pure products after chromatography.
- (14) De Esch, I. J. P.; Gaffar, A.; Menge, W. M. P. B.; Timmerman, H. *Bioorg. Med. Chem. Lett.* **1999**, *7*, 3003.
- (15) Shih, N. Y.; Green, M. J. PCT Int. Appl. WO 93 12107, (1993); Chem. Abstr. 1993, 119, 271158.
- (16) (a) Vollinga, R. C.; de Koning, J. P.; Jansen, F. P.; Leurs, R.; Menge, W. M. P. B.; Timmerman, H. J. Med. Chem. 1994, 37, 332. (b) Vollinga, R. C. Ph. D. Thesis; Vrije Universiteit Amsterdam: The Netherlands, 1995.