

Available online at www.sciencedirect.com

Tetrahedron Letters 46 (2005) 377-380

Tetrahedron Letters

Synthesis of benz[5,6]azepino[4,3-*b*]indoles by 1,7-electrocyclisation of azomethine ylides

Miklós Nyerges,^{a,*} Áron Pintér,^a Andrea Virányi,^b István Bitter^b and László Tőke^a

^aResearch Group of the Hungarian Academy of Sciences, Department of Organic Chemical Technology, Technical University of Budapest, H-1521 Budapest, PO Box 91, Hungary

^bDepartment of Organic Chemical Technology, Technical University of Budapest, H-1521 Budapest, PO Box 91, Hungary

Received 13 October 2004; revised 15 November 2004; accepted 25 November 2004

Abstract—A new, general route to the benz[5,6]azepino[4,3-*b*]indole ring system has been developed via the 1,7-dipolar electrocyclisation reactions of azomethine ylides derived from easily available 3-formyl indole derivatives. The intermediacy of azomethine ylides was shown by the trapping of the proposed $\alpha,\beta:\gamma,\delta$ -conjugated dipole with *N*-phenylmaleimide. © 2004 Elsevier Ltd. All rights reserved.

The 1,3-dipolar cycloaddition of dipoles to an olefin or an acetylene derivative is one of the most useful approaches for the construction of five-membered heterocyclic rings.¹ There are, however, many other synthetically useful reactions of these dipoles, including the 1,5- and 1,7-electrocyclic^{2,3} ring closure of appropriately substituted unsaturated dipolar systems. Recently, we⁴ and others⁵ published the first examples of the 1,7electrocyclisation of nonstabilised azomethine ylides with $\alpha,\beta:\gamma,\delta$ -unsaturation, followed by some examples of 1,7-electrocyclisation of electron-withdrawing group stabilised azomethine ylides.⁶

As a continuation of these studies our aim was to show the generality of this method as a tool for the annelation of a benzazepine ring to different heterocycles in one step. Our previous experiments with 2-phenyl-3-formylquinolines 1 resulted in the formation 1*H*-pyrrolo-[3,4-c]quinolines 3 as products via a 1,5-electrocyclisations (Scheme 1).⁷

In this letter we describe the reactions of the analogous azomethine ylides formed from 2-aryl-indol-3-carbaldehydes **7a–h** and **8a,b**. In these conjugated dipoles the 1,5electrocyclisation pathway is not accessible.

The starting materials were prepared via the appropriate 2-arylindoles **6a–h** by the treatment with small excess of Vilsmeier reagent.⁸ In the case of 2-phenylindole-3-carbaldehyde (**7a**) the protection of the indole nitrogen was achieved (Scheme 2).

The nonstabilised azomethine ylides 9 R = H, CH₃, Bn, R¹ = CH₃, Bn, E = H (Table 1, entries 1–6) were

Scheme 1. Reagents and conditions: (i) sarcosine, xylene, reflux.

Keywords: Azomethine ylide; Cycloaddition; Electrocyclisation; Indole.

^{*} Corresponding author. Tel.: +361 463 2213; fax: +361 463 3648; e-mail: mnyerges@mail.bme.hu

^{0040-4039/\$ -} see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.11.127

Scheme 2. Reagents and conditions: (i) *N*,*N*-dimethylaniline, 170 °C (45–62%); (ii) POCl₃, DMF, 80 °C (73–91%); (ii) KOBu', MeI, 'BuOH; or BnBr, NaH, DMF.

Table 1. Benz[5,6]azepino[4,3-b]indoles produced via Scheme 3

Entry	Starting aldehyde	R	R^1	R^2	R^3	R^4	Ε	Reaction time (h)	Product	Yield %
1	7a	Н	Н	Н	Н	CH ₃	Н	6	11a	54
2	7a	Н	Н	Н	Н	Bn	Н	10	11b	46
3	8a	CH_3	Н	Н	Н	CH_3	Н	18	11c	46
4	8a	CH_3	Н	Н	Н	Bn	Н	16	11d	38
5	8b	Bn	Н	Н	Н	CH_3	Н	18	11e	40
6	8b	Bn	Н	Н	Н	Bn	Н	96	11f	41 ^a
7	7a	Н	Н	Н	Н	CH_3	CO_2CH_3	15	11g	15
8	8a	CH_3	Н	Н	Н	CH_3	CO_2CH_3	20	11h	18
9	8b	Bn	Н	Н	Н	CH_3	CO_2CH_3	60	11i	
10	7b	Н	CH_3	Н	Н	CH_3	Н	6	11j	52
11	7c	Н	Cl	Н	Н	CH_3	Н	8	11k	58
12	7d	Н	CH_3O	Н	Н	CH_3	Н	6	111	55
13	7e	Н	Н	CH ₃ O	Н	CH_3	Н	6	11m	59
14	7f	Н	Br	CH_3O	Н	CH_3	Н	8	11n	55
15	7g	Н	Н	Н	CH_3	CH_3	Н	6	110	54
16	7h	Н	Br	Н	CH_3	CH_3	Н	6	11p	61

^a≈20% Starting material recovered.

generated from the aldehydes in refluxing xylene using the method of decarboxylative condensation with sarcosine or *N*-benzyl-glycine.⁹ The azomethine ylide intermediates reacted via the expected 1,7-electrocyclisation reaction to the azepines 10 and finally by a 1,5-hydrogen shift to give the products 11a-f (Scheme 3). The products were isolated in acceptable yields after column chromatography. As can be seen from the table beside the very similar yields, the reaction times depended on the *N* substituent of the indole and the glycine. The fastest reaction was observed in the case of unprotected indole aldehyde **7a** with sarcosine, while the reaction of **8b** with *N*-benzyl-glycine was not complete after four days boiling in xylene.

In our early studies we found significant differences between the reactivity of $\alpha,\beta:\gamma,\delta$ -unsaturated, nonstabilised and $\alpha,\beta:\gamma,\delta$ -unsaturated, ester-stabilised azomethine ylides. The former dipoles react via a 1,7electrocyclisation to yield dihydrobenzazepines,¹⁰ whilst the latter give other products via novel rearrangements.^{11,12} We have also investigated the reactions of **7a** and **8a,b** aldehydes with methyl sarcosinate. The ester-stabilised azomethine ylides **9** (R = H, CH₃, R₁ = CH₃, E = CO₂CH₃) in this case reacted again via 1,7-electrocyclisation to give benzazepines **11g,h**, however in low yields. In the reaction of **8b** and *N*-benzyl glycine there was no product observed by TLC after refluxing for 60 h in xylene.

In a few examples, we investigated the effect of the additional substituents on the indole nucleus and/or 2-aryl ring on the course of the electrocyclisation process. In the reactions of the unprotected indoles **7b–h** and sarcosine, azepines **11j–p** were again isolated in acceptable yields, with no visible effects of the substituents of the starting materials on the yield, or the reaction times.

The intermediacy of azomethine ylides was shown in one case by trapping the dipole 9 ($R = CH_3$, E = H) with *N*-phenylmaleimide to give the two isomeric cycloadducts 12 and 13 (ratio $\approx 5:1$) in good yield. The stereochemistry of the major isomer (12) was proved by NOE experiments (Scheme 4).

In summary we have explored a convenient reaction sequence which provides a useful route to the benzo[c]-indolo[2,3-*e*]azepine ring system¹³ via the 1,7-dipolar electrocyclisation reactions of azomethine ylides derived from easily available 3-formylindole derivatives.¹⁴

Scheme 3. Reagents and conditions: (i) E = H: sarcosine or *N*-benzyl glycine, xylene, reflux; $E = CO_2CH_3:CH_3NCH_2CO_2CH_3:HCl, Et_3N$, xylene, reflux.

Scheme 4. Reagents and conditions: (i) sarcosine, toluene, reflux (92%).

Acknowledgements

This work was financially supported by the National Fund for Science and Research, Hungary (OTKA Project No. T 046196). N.M. thanks the Hungarian Academy of Sciences for a Bolyai J. fellowship. A grant from the József Varga Foundation provided to A.V. is gratefully appreciated.

References and notes

- (a) Tsuge, O.; Kanemasa, S. Adv. Heterocycl. Chem. 1989, 45, 232; (b) Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products; Padwa, A., Pearson, W. H., Eds.; John Wiley & Sons, 2002.
- For excellent reviews on 1,5-dipolar cyclisations, see: (a) Taylor, E. C.; Turchi, I. J. Chem. Rev. 1979, 79, 181; (b) Huisgen, R. Angew. Chem., Int. Ed. Engl. 1980, 19, 947.
- (a) Zecchi, G. Synthesis 1991, 181; (b) Groundwater, P. W.; Nyerges, M. Adv. Heterocycl. Chem. 1999, 73, 97.
- Arany, A.; Groundwater, P. W.; Nyerges, M. Tetrahedron Lett. 1998, 38, 3267.
- 5. Marx, K.; Eberbach, W. Tetrahedron 1997, 53, 14687.
- Nyerges, M.; Virányi, A.; Pintér, Á.; Tőke, L. *Tetrahedron* Lett. 2003, 44, 793.
- Pintér, A.; Nyerges, M.; Virányi, A.; Tőke, L. Tetrahedron Lett. 2003, 44, 2343.

- 8. Von Angerer, E.; Prekajac, J.; Strohmeier, J. J. Med. Chem. 1984, 27, 1439.
- (a) Tsuge, O.; Kanemasa, S.; Ohe, M.; Takenaka, S. Bull. Chem. Soc. Jpn. 1987, 60, 4079; (b) Grigg, R. Chem. Soc. Rev. 1987, 16, 89; (c) Nyerges, M.; Balázs, L.; Bitter, I.; Kövesdi, I.; Tőke, L. Tetrahedron 1995, 51, 6783.
- Arany, A.; Bendell, D.; Groundwater, P. W.; Garnett, I.; Nyerges, M. J. Chem. Soc., Perkin Trans. 1 1999, 2605.
- Nyerges, M.; Arany, A.; Fejes, I.; Groundwater, P. W.; Zhang, W.; Bendell, D.; Anderson, R. J.; Tőke, L. *Tetrahedron* 2002, 58, 845.
- Groundwater, P. W.; Sharif, T.; Arany, A.; Hibbs, D. E.; Hurthouse, M. B.; Garnett, I.; Nyerges, M. J. Chem. Soc., Perkin Trans. 1 1998, 2837.
- 13. General procedure for the preparation of compounds 11a–f: the corresponding indole aldehyde (1 mmol) was dissolved in hot xylene (50 ml) and sarcosine (0.27 g, 3.0 mmol) or sarcosine methyl ester (0.3 g, 3.0 mmol) was added. The reaction mixture was refluxed and further portions of sarcosine (0.09 g, 1.0 mmol) or sarcosine methyl ester (0.10 g, 1 mmol) were added every 2 h until the starting aldehyde completely disappeared (6–18 h, judged by TLC except for 11f). All the solvent was removed in vacuo and the residue was purified by column chromatography (eluent: chloroform–methanol 8:1).
- 14. All new compounds afforded correct elemental analyses and spectroscopic data. Selected examples: 6-benzyl-5,6,7,12-tetrahydro-benz[c]azepino[4,3-b]indole (11b): ¹H NMR (250 MHz, CDCl₃): 10.68 (s, 1H), 7.84 (d, 2H, J = 7.6 Hz), 7.44–6.94 (m, 11H), 4.26 (s, 2H), 3.89 (s, 2H), 3.76 (s, 2H); ¹³C NMR (62.5 MHz, CDCl₃): 138.3 (q), 136.8 (q), 135.8

(q), 131.7 (q), 131.2 (q), 129.0 (CH), 127.9 (CH), 127.5 (q), 127.2 (2×CH), 126.4 (CH), 126.0 (2×CH), 124.4 (CH), 121.5 (CH), 118.0 (CH), 117.1 (CH), 111.7 (q), 110.3 (CH), 58.6 (CH₂), 57.8 (CH₂), 52.4 (CH₂); IR (KBr, cm⁻¹): 3401, 3029, 2945, 2917, 2780, 1451, 1340, 1314, 1248, 1116, 1065. 6,12-Dimethyl-5,6,7,12-tetrahydrobenz[c]azepino[4,3-b]indole (11c): ¹H NMR (250 MHz, CDCl₃): 7.73 (d, 1H, J = 7.8 Hz), 7.55 (m, 2H), 7.51 (t, 1H, J = 7.3 Hz), 7.46 (d, 1H, J = 8.2 Hz), 7.43 (t, 1H, J =7.4 Hz), 7.34 (t, 1H, J = 7.7 Hz), 7.25 (t, 1H, J = 7.4 Hz), 3.93 (s, 3H), 3.66 (s, 2H), 3.48 (s, 2H), 2.54 (s, 3H); ¹³C NMR (62.5 MHz, CDCl₃): 137.9 (q), 137.8 (q), 137.7 (q), 132.6 (q), 131.0 (CH), 127.5 (CH), 127.3 (CH), 127.2 (CH) 127.1 (q), 121.9 (CH), 119.7 (CH), 118.1 (CH), 111.6 (q), 109.5 (CH), 58.3 (CH₂), 48.4 (CH₂), 43.8 (CH₃), 31.1 (CH₃); IR (KBr, cm⁻¹): 3446, 3044, 2933, 2777, 1930, 1681, 1600, 1488, 1467, 1352, 1258, 1241, 1200, 1130, 1090, 1034, 1008. Methyl, 6,12-dimethyl-5,6,7,12-tetrahydro*benz[c]azepino[4,3-b]indole-5-carboxylate* (11g): ^{1}H NMR (250 MHz, CDCl₃): 7.68 (d, 1H, J = 7.7 Hz), 7.58 (d, 1H, J = 7.4 Hz), 7.52–7.18 (m, 6H); 3.89 (s, 3H), 3.78 (s, 2H), 3.60 (s, 1H), 3.56 (s, 3H), 2.58 (s, 3H); ¹³C NMR (62.5 MHz, CDCl₃): 177.5 (q), 137.9 (q), 135.6 (q), 132.4 (q), 131.7 (CH), 130.7 (q), 128.5 (q), 128.1 (CH), 127.8 (CH), 127.7 (CH), 122.4 (CH), 120.2 (CH), 117.9 (CH),

109.7 (CH), 109.4 (q), 57.3 (CH₂), 47.7 (CH₃), 43.9 (CH₂); 42.6 (CH₃); 31.2 (CH₃); IR (KBr, cm⁻¹): 3404, 2963, 2515, 2361, 1708, 1635, 1542, 1497, 1468, 1388, 1355, 1262, 1096, 1030. Methyl, 3-bromo-9-methoxy-6-methyl-5,6,7,12-tetra*hydro-benz[c]azepino[4,3-b]indole* (111): ¹H NMR (300 MHz, DMSO-d₆): 11.11 (s, 1H), 7.75 (d, 1H, J = 8.3 Hz), 7.56 (d, 1H, J = 8.3 Hz), 7.48 (s, 1H), 7.30 (d, 1H, J = 8.7 Hz), 6.93 (s, 1H), 6.82 (d, 1H, J = 8.7 Hz),4.08 (s, 2H), 3.78 (s, 3H), 3.45 (s, 2H), 2.42 (s, 3H); ¹³C NMR (75 MHz, DMSO-d₆): 153.5 (q), 140.1 (q), 132.3 (CH), 131.8 (q), 131.3 (q), 130.1 (CH), 127.9 (q), 127.1 (CH), 119.5 (q), 113.1 (CH), 112.9 (q), 112.1 (CH), 99.9 (CH), 60.1 (CH₂), 55.5 (CH₃), 43.9 (CH₃), 40.0(CH₂); IR (KBr, cm⁻¹): 3222, 3054, 2968, 2791, 1489, 1353, 1327, 1304, 1280, 1259, 1233, 1110, 1050. Cycloadduct 12: ¹H NMR (250 MHz, CDCl₃): 8.59 (s, 1H), 7.79 (d, 1H, J = 7.5 Hz), 7.57–7.08 (m, 13 H), 3.88 (dd, 1H, J = 6.9 and 13.8 Hz), 3.77 (d, 1H, J = 7.7 Hz), 3.64 (m, 3H), 2.06 (s, 3H); ¹³C NMR (62.5 MHz, CDCl₃): 176.7 (q), 173.3 (q), 161.8 (q), 138.2 (q), 133.5 (2 × CH), 132.1 (q), 130.8 (q), 129.1 (CH), 128.6 (2×CH), 128.0 (CH), 126.1 (2×CH), 125.6 (q), 125.6 (2×CH), 121.6 (CH), 119.6 (CH), 111.1 (CH), 108.0 (CH), 65.3 (CH), 57.3 (CH₂), 50.7 (CH), 43.9 (CH), 38.4 (CH₃); IR (KBr, cm⁻¹): 2944, 2843, 1708, 1593, 1492, 1481, 1389, 1320, 1188, 1144, 1089, 1024.